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Abstract

RNA interference (RNAi) and gene inactivation are extensively used biological terms in
biomedical research. Two categories of small ribonucleic acid (RNA) molecules, viz.,
microRNA (miRNA) and small interfering RNA (siRNA) are central to the RNAi. There
are various kinds of algorithms developed related to RNAi and gene silencing. In this
book chapter, we provided a comprehensive review of various machine learning and
association rule mining algorithms developed to handle different biological problems
such as detection of gene signature, biomarker, gene module, potentially disordered
protein, differentially methylated region and many more. We also provided a comparative
study of different well-known classifiers along with other used methods. In addition, we
demonstrated the brief biological information regarding the immense biological chal-
lenges for gene activation as well as their advantages, disadvantages and possible thera-
peutic strategies. Finally, our study helps the bioinformaticians to understand the overall
immense idea in different research dimensions including several learning algorithms for
the benevolent of the disease discovery.

Keywords: machine learning, association rule mining, RNAi, gene silencing,
multi-omics data

1. Introduction

RNAi [1] is an innate biological process in which RNA molecules inhibit gene expression or

translation [2] by suppressing targeted mRNA molecules. Since the discovery of RNAi by

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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Andrew Fire and Craig Mello, it has become evident that RNAi has immense potential in

suppression of desired genes [3]. The first evidence that double-stranded RNA (dsRNA) could

achieve efficient gene silencing through RNAi came from studies on the nematode

Caenorhabditis elegans [4] and Drosophila melanogaster [5], which lead toward understanding

the biochemical nature of the RNAi pathway. Two types of small ribonucleic acid (RNA)

molecules—microRNA (miRNA) and small interfering RNA (siRNA)—are central to RNAi

[6]. To compare two types of elicit RNAi, the siRNA must be fully complementary to its target

mRNA, whereas, miRNA only needs to be partially complementary to its target mRNA.

In organisms like C. elegans and D. melanogaster, RNAi can be induced by introducing long

dsRNA complementary to the target mRNA to be degraded, however, in mammalian cells and

organisms, introducing dsRNA longer than 30 bp activates a potent antiviral response. To solve

this limitation, siRNAs are used to induce RNAi in mammalian cells and organisms [7–9].

The discovery of both siRNA and miRNA provides a new therapeutic approach [10, 11] for the

treatment of diseases by targeting genes that have undesired mutated or overexpression of

normal genes. The RNAi Process is as following. SiRNAs that induce the degradation of

specific endogenous is very common phenomenon in eukaryotic cells to inhibit protein pro-

duction at post transcriptional level [12]. The RNAi process is initiated by short dsRNAs, 21–25

nucleotides that lead to the sequence specific inhibition of their homologous mRNAs. These

siRNAs are normally produced in cells from cleavage of longer dsRNA precursors by Dicer

that is a ribonuclease III family member. The cleaved parts are incorporated into a multi-

component nuclease complex known as the RNA-induced silencing complexes (RISC), which

contain the splicing protein Argonaute-2 (Ago-2) [13]. The ssRNA derived from the short

dsRNA acts as a antisense strand directing the complex to the specific target mRNA; in where

a RISC-associated endoribonuclease cleavages the target mRNA [14]. Therapeutic approaches

based on siRNA involve the introduction of a synthetic siRNA into the target cells to elicit

RNAi, thereby inhibiting the expression of a specific messenger RNA (mRNA) to produce a

gene silencing effect [15]. RNAi is beneficial in accelerating cures in medicine, especially when

a disease is thought to due to a defective gene [16]. For historical perspective, the first applica-

tion of RNAi therapy was in age-related macular degeneration (AMD) by using siRNAs to

suppress the vascular endothelial growth factor (VEGF) pathway that causes abnormal growth

of blood vessels behind the retina, carried out directly to the patient’s eye [17]. RNAi tech-

niques have been used against the spread of tumor growth and increasing its sensitization

toward drug treatment, RNAi technology will be beneficial to selectively affect cancer cells

without damaging normal cells as the RNAi therapy against cancer cells is used for directly

targeting the oncogenes; and therefore, found to stop progression and invasion of the tumor

cells [18, 19] and also increase the sensitization of tumor against drug, as mentioned earlier

[20]. As RNAi can silence disease-associated genes in tissue culture and animal models, the

development of RNAi-based reagents for therapeutic applications involves technological

enhancements that improve siRNA stability and delivery in vivo [21], while minimizing off-

target and nonspecific effects.

A number of different approaches have been developed for the in vivo delivery of siRNA,

among which, rapid infusion by hydrodynamic injection of siRNA achieves the best delivery

in rodents [22]. However, this way, the delivery is restricted to highly vascularized tissues,
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such as the liver [23] and also, it is currently not a viable method for delivery in human clinical

studies. Lipid-based in vivo applications have been devised [24], which have been used exten-

sively for cell culture experiments, with some issues, like the cationic nature of the lipids used

in cell culture leads to aggregation when used in animals and results in rapid serum clearance

and lung accumulation. Even then, there are an increasing number of reports citing success

with lipid-mediated delivery of siRNAs in vivo. To improve the delivery of siRNA into human

liver cells [25] without transfection agents, lipophilic siRNAs were conjugated with derivatives

of cholesterol, lithocholic acid, or lauric acid, where the lipid moieties were covalently linked to

the 50-ends of the RNAs using phosphoramidite chemistry [26]. These could down-regulate the

expression of a LacZ expression construct. By conjugating cholesterol to the 30-end of the sense

strand of siRNA by means of a pyrrolidine linker, the pharmacological properties of siRNA

molecules was improved by Soutschek et al. [27]. Advantages of cholesterol attachments are

evident as being more resistant to nuclease degradation, more stable in the blood by increasing

binding to human serum albumin and increased uptake of siRNA molecules by the liver.

Intravascular delivery of siRNA molecules is a very simple technique, which was used to

protect mice from fulminant hepatitis using siRNAs against Fas receptors by Song et al. [28],

who administer Fas siRNA by intravenous injection into mice over a 24-hour period. The

authors could show the persist effects for 10 days and protected mice against experimentally

induced liver fibrosis. Local delivery of siRNAs have also been tried into the eye to target the

VEGF pathway and shown that it could be therapeutically beneficial in neovascularization-

related eye diseases. SiRNA topical gels have also been used to deliver them to cells in

dermatological applications and cervical cancer treatment [29]. Gene gun method was used

for an intradermal administration of nucleic acids to enhance cancer vaccine potency [30]. The

other technique is an electroporation, which has been used to deliver siRNAs into the brain

[31] and muscles of rodents. Injecting viral vectors for the in vivo delivery of siRNA directly

have been tried, where an adeno-associated virus (AAV) associated shRNA vector injected

directly into the midbrain neurons of adult mice to silence of the tyrosine hydroxylase gene

near the site of injection for several weeks. However, there exist an alternative to injection,

called as an ex vivo approach to generate human immunodeficiency virus (HIV)-1-resistant

lymphocytes and macrophages [32]. It was accomplished through using a lentiviral vector, an

anti-rev siRNA construct into CD34(+) hematopoietic progenitor cells. The siRNA-transduced

progenitor cells were allowed to mature into macrophages in vitro and T-cells in vivo, [33].

Many machine learning, bio-statistical [34] and association rule mining methods [35] are

available that have been developed to solve different problems related to gene silencing and

disease discovery. In this book chapter, we provided a comprehensive survey of different

machine learning and association rule mining algorithms developed for tackling various

biological challenges such as detection of gene signature, biomarker, gene module, potentially

disordered protein detection, differentially methylated region, multi-omics data integration,

etc. We also described a comparative study of different well-known classifiers along with other

used methods for the study. Meanwhile, many gene module discovery based approaches are

also developed that employs several machine learning, deep learning and soft computing

approaches. In addition, many multi-objective algorithms are also developed to find optimal

multi-omics genetic signatures for the respective disease. Furthermore, we demonstrated the
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brief biological information regarding the immense biological challenges for gene activation

and their advantages, disadvantages and possible therapeutic strategies. There are certain

challenges exist, such as off-target effects, cytotoxicity, need for efficient delivery methods,

their clinical implementation need efficient delivery vehicles and siRNA activity, itself, non-

specific gene silencing, activation of innate immune system, the lack of efficient in vivo deliv-

ery systems still remain to be handled. Apart from these challenges, the development of

efficient tissue-specific and differentiation dependent expression of siRNA is essential for

transgenic and therapeutic approaches. However, there are successful in vitro and in vivo

experiments for raising hopes in treating human diseases with RNAi [36]. Moreover, our study

is useful for the researchers to understand the central idea about RNAi and gene silencing,

along with the current machine/deep learning and association rule mining algorithms related

to these (Figure 1).

2. Fundamental concepts

In this section, some basic symbols of the graph mining, pattern recognition, [39] and informa-

tion theory are described. A graph is an ordered pair G = (V, E) comprising of a set of vertices

denoted as V and a set of edges denoted as E. To avoid ambiguity, the graph is described here

precisely as undirected and simple. Let, Q ¼ N;Eð Þ be an unweighted as well as undirected

Figure 1. Flowchart of the RNAi mechanism [37, 38].
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graph, and H be a (hypograph) of it, (H ⊆ N). Further, suppose, the density of H, denoted by

Ds Hð Þ, be defined as Ds Hð Þ ¼ ∣IE Hð Þ∣
∣H∣

, where IE Hð Þ depicts the induced edge-set of H, and ∣H∣

refers to the cardinality of H. Suppose, the highest density of the graph H, referred to as

Ds∗ Hð Þ, is illustrated as follows: Ds∗ Hð Þ ¼ maxH⊆V DS Hð Þf g. Now, if Q ¼ N;Eð Þ is a weighted

graph, Ds Hð Þ will be

P
e∈ IE Hð Þ

wte

∣H∣
, where IE Hð Þ symbolizes the induced edge-set of H, and wte

denotes the weight of the edge e∈ IE Hð Þ. Entropy of a random variable evaluates the amount

of uncertainty corresponding to the variable [40]. The entropy of a discrete variable A, referred

to as EP Að Þ, is defined in the following: EP Að Þ ¼ �
P

a∈Ap að Þ log bp að Þ, where p að Þ refers to the

probability mass function of A, and the value of b, in general, is considered as 2. Mutual

information [41] between two random variables estimates the quantity of information that

they combinedly share, i.e., the mutual dependency between them. When mutual information

is zero, this signifies that these two variables are entirely independent to each other; whereas

when mutual information is higher, it signifies that these two variables are extremely depen-

dent on each other.

Topological Overlap Measure (TOM) and other related measures: Ravasz et al. [42] proposed a

new measure Topological Overlap Measure (TOM) that provided the similarity between two

nodes belonging to a network depending upon nearest neighbor concept. Furthermore, vari-

ous modified versions of TOM such as weighted TOM (wTOM) [43], generalized TOM

(GTOM) [44] are present in the literature. In the course of computing the wTOM, Pearson

correlation coefficient scores are first evaluated for all pairs of vertices, and then a soft

thresholding power (say, β >¼ 1) is utilized from the correlation coefficient matrix through

scale free topology. After that, weighted adjacency matrix is calculated using the coefficient

matrix using the calculated power β. Then wTOM is computed from the weighted adjacency

matrix. In the same way, the GTOM can also be defined just like TOM except it counts the

number of m-step neighbors while calculating TOM measure between two vertices. Now, for

calculating GTOM of order 0 (i.e., GTOM0), the adjacency score becomes the score of GTOM0.

But, for determining the GTOM with higher order than zero (i.e., GTOM1, GTOM2,

GTOM3,...), it follows the same procedure of TOM calculation, but counts up to €d-th neighbors

for each vertex (€d ¼ 1; 2; 3,…). Notably, GTOM1, GTOM2 and other higher order GTOMwork

only on binary matrix. So, before using those measures, the weighted adjacency matrix is

translated into binary matrix in which the greater adjacency value than a specified cutoff

(e.g., 70% score of the distance between the minimum and maximum adjacency values is

converted into 1, and the lower value than the cutoff is transferred into 0.

In data mining, hierarchical clustering is one of the most popular cluster analyses in forming a

hierarchy of clusters. There exist two types of strategies: agglomerative and divisive [45]. As is

already known, agglomerative hierarchical clustering does not need any input parameters

except the similarity matrix. Thus, there is no extra burden of utilizing cluster initialization as

it simply merges two closest clusters at each iteration and continues till a singleton cluster is

found. Divisive hierarchical clustering also follows the same style but in a reverse order. This is

the major benefit of performing hierarchical clustering over the traditional K-means clustering

algorithm, which is sensitive to initialization.
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Association rule mining (ARM) [46] is a popular method for generating interesting relation-

ships among different items (viz., genes). Suppose, GST ¼ g1; g2;…; gn
� �

be a item set (gene

set) and SST ¼ s1; s2;…; smf g be sample set (viz., transaction set). Therefore, an association rule

can be stated as A ) C, where A,C ⊆ GST and A ∩C ¼ ϕ. Notably, A and C symbolize as

antecedent and consequent, respectively. An association rule can be described as the cause-

effect relationships of the corresponding item sets in the transactions of a transactional data-

profile in a big shopping market. A set of bought items may fall into a transaction. In a similar

fashion, many genes may occur together in a sample (transaction) of a gene expression profile

or similar profile. Many of these genes may be up-regulated or down-regulated, whereas the

remaining genes will be non-differentially expressed.

3. Machine learning and rule mining approaches for gene inactivation

Currently, omics data analysis is one of the widely popular research domains. It can be

categorized into two major types, single-omics data analysis, and multi-omics data analysis.

In earlier, single-omics data processing such as gene expression data processing was highly

popular. In those days, basically microarray gene expression data was popular. Now, the

microarray data becomes obsolete while RNAseq, next-generation sequencing (NGS) and

whole exome sequencing (WES) data become popular. However, the major aim of the single

omics data analysis was to identify genetic marker as well as gene module identification. In

current era, multi-omics data integration is now a big challenge to any researcher since it

consists of various kind of profiles that are either proportional or inversely proportional to

each other. Different kinds of regression analysis (logistic regression, sglasso [47, 48], flasso

[47], etc.) are popular to integrate the multi-omics data. In case of the multi-omics data, the aim

is to determine either single (or, combinatorial) gene marker, or gene signature, or multi-

biomolecular closed bio-circuit. There are many machine learning and association rule mining

methods available that have been developed to solve different problems related to gene

silencing and disease discovery (Table 1 for tools and Table 2 for their application). For this

regard, Bandyopadhyay et al. provided a comprehensive survey of various statistical tests for

determining differentially expressed transcripts from microarray or other related datasets [69].

Then a rank based weighted association rule mining, RANWAR is developed to identify

weighted interesting genomic rules applicable to any kind of genomic or epigenomic data [9].

A new technique of gene-based association rule mining approach was developed in [62]. Next,

another statistics-based association rule mining technique “StatBicRM” had been proposed

that utilized statistical test and Binary Inclusion maximal algorithm (BiMax) to find

classification-based genetic rules [46]. Reverently, further enhancement of “StatBicRM” algo-

rithm was performed and a new method of combinatorial marker discovery had been devel-

oped whose central concept was based upon the inverse relationship between the gene

expression and methylation pattern [50]. In addition, mutual information based feature selec-

tion strategy had been incorporated into the statistical methodology, and a new method of

identifying epigenetic biomarkers through maximal relevance and minimal redundancy based

feature (gene) selection method from bi-omics dataset was proposed [63]. A new method of
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Method name Reference Type Brief description

Multi-view gene modules using

hypograph mining

Bhadra et al. [49] Gene-module

detection

Module detection from multi-view data

using the statistical test and mutual

information based dense subgraph.

RANWAR Mallik et al. [9] Rank based

genomic rule

mining

Rank based weighted association rule

mining to identify interesting genomic rules

applicable to any genomic/epigenomic data.

Combinatorial marker discovery

by integrating multiple profiles

Bandyopadhyay

et al. [50]

Combinatorial

marker discovery

Integrating gene expression and

methylation profiles, and identifying

combinatorial gene markers.

DTFP-growth Mallik et al. [51] Gene based ARM Multiple-threshold based ARM integrating

gene expression, methylation and protein-

protein interaction profiles.

StatBicRM Maulik et al. [46] Statistical

biclustering-based

rule mining

Statistical biclustering-based rule mining

and analyzing the gene expression and

methylation data profiles using it.

sglasso Augugliaro

[47, 48]

Regression method Sglasso tool develops the structured

graphical lasso estimator for the weighted

l1-penalized RCON(V, E) model.

flasso Augugliaro

[47, 52]

Regression method Implements the weight l1-penlized factorial

dynamic Gaussian graphical model.

MVDA Serra et al. [53] Multi-view

genomic profile

integration

Works to conjoin the those kinds of data at

the levels of the outcomes of every single

view clustering iteration.

Machine learning for epigenetics

and future medical applications

Holder et al. [54] Machine learning

and deep learning

approaches

Active learning and imbalanced class

learning are utilized to solve the

shortcoming with machine learning for

building better feature selection and solving

the imbalance data problem.

A machine learning approach to

integrate big data for precision

medicine

Lee et al. [55] Molecular marker

discovery

The robust molecular markers that might be

useful for targeted treatment of the acute

myeloid leukemia are identified.

Deep learning based multi-omics

integration robustly predicts

survival

Chaudhary

et al. [56]

Deep learning

based multi-omics

integration method

A deep learning method is used to integrate

multi-omics data and to perform survival

study on hepatocellular carcinoma.

Deep learning for genomics: a

concise overview

Yue et al. [57] Deep learning

applications on

genomic data

The strengths of various deep learning

methodologies are demonstrated that are

applicable on any kind of genomic profile.

intNMF Chalise and

Fridley [58]

Integrative

clustering method

Integrative clustering of several high

dimensional profiles and subtype

classification by non-negative matrix

factorization (NMF).

Multi-modal data analysis for

heterogeneous data

Yang and

Michailidis [59]

Module detection

for heterogeneous

data

The multi-modal profile analysis is

conducted for heterogeneous data

depending upon NMF.

Comparative study and

evaluation of the integrative

techniques for the multilevel

omics data

Pucher et al. [60] Integrative method

for multilevel

omics profiles

The comparative study of three integrative

methods (viz., NMF, sparse canonical

correlation analysis (sCCA) and logic data

mining MicroArray Logic Analyzer
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identifying multi-view gene-module identification was also proposed that applied the inte-

grated methodology of statistical method and dense subgraph mining [49]. Detection of

strongly connected genetic modules in multi-omics regulatory networks is an important study

for the integrated study analysis of the network-based architecture. Many profiles belonging to

the multi-omics datasets basically consist of a massive amount of genes, many of them are

noisy and redundant. Such kind of noisy and redundant genes (or, features) are irrelevant

while obtaining knowledge from the data. Furthermore, it is computationally absurd to utilize

any clustering technique on such type of huge sized data profiles to get the dense genetic

Method name Reference Type Brief description

(MALA)) is conducted on simulated data

and real omics profile.

WeCoMXP Mallik and

Bandyopadhyay

[61]

Weighted

connectivity

(similarity)

measure

WeCoMXP is developed integrating co-

expression, co-methylation and protein-

protein interactions, and useful for

determining the similarity between any two

molecules.

Tumor prediction using

integrated analysis of expression

and methylation

Mallik et al. [62] Rule-based

classifier

Integrated analysis of gene expression and

DNA methylation and classification rule

mining for tumor/cancer prediction.

Epigenetic gene marker discovery

through feature selection

Mallik et al. [63] Gene based ARM Epigenetic gene marker discovery using

maximal relevance and minimal

redundancy based feature selection.

Table 1. The machine learning and rule mining methods related to gene inactivation and RNAi.

Method name Reference Type Brief description

TF-MiRNA-gene network

based modules for cytosine

variants

Sen et al.

[64]

Module detection TF-MiRNA-gene network based module

detection for 5hmC and 5mC brain samples

between human and rhesus.

IDPT Mallik

et al. [65]

Intrinsically disordered

protein finding

Potential intrinsically disordered protein

identification through transcriptomic analysis

of genes for epigenetic data.

Integration of DNA

methylation data and gene

expression data

Singh

et al. [66]

Finding differentially

methylated regions

Differentially methylated regions are

determined and further statistical analysis is

performed.

Application of machine-

learning algorithms for gene

expression regulation

Cheng

and

Worzel

[67]

Applications of machine

learning methods on gene

regulation

The machine learning strategies on gene

regulation are reviewed, and their functional

links mediated by histone modifications and

transcription factors are demonstrated.

Application of machine-

learning techniques on

histone methylation

Xu et al.

[68]

Predictive model of gene

expression by epigenetic

factors by regression

A new model is developed to predict the gene

expression using the function of histone

modification levels through multi-linear

regression multivariate adaptive regression

splines.

Table 2. Applications of machine learning and rule mining methods related to gene inactivation.
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clusters. In many times, researchers face problems while calculating and subsequently accu-

mulating the similarity matrix of such massive dimensions consisting of all the mutual depen-

dency information between all the possible gene-pairs equivalent to every such profile. So,

managing the high dimensionality of the underlying profile is a critical challenge to the

researchers. To overcome the “curse of dimensionality” problem, the job of feature selection is

basically treated as one of the most important preprocessing works to remove such noisy and

redundant genes, which in turn decreases the total elapsed time. The main purpose of the

feature selection is to find an optimal subset of features depending on some optimization

conditions by which efficient knowledge discovery can be performed [70]. Depending on the

availability of the class labels, the feature selection process can be organized into two types:

supervised and unsupervised [71]. Unsupervised feature selection does not need the class label

information while choosing the minimized feature subset [72], whereas supervised feature

selection selects a subset of favorable features by utilizing the knowledge of class labels into

the feature selection procedure. In the case of supervised feature selection, significant test [73],

mutual information [74], are some broadly used measures to evaluate the excellence of the

candidate features. In the territory of biological rematches, a statistical test is generally treated

as one of the important tools for obtaining the significant genes for the big sized datasets, and

therefore aids in decreasing the size of the dataset. There are different types of statistical tests

such as t-test, significant analysis of microarrays, empirical Bayes test, etc. in the literature.

The significant genes therefore provide a weighted graph in which the nodes refer to the

significant genes and the weighted edges signify the association between the related two

nodes. Recently, graph data can be obtained in different rising fields of studies for forming

the complicated structures viz., biological networks, chemical compounds, social networks,

protein structures, etc. With the increasing stipulate on the analysis of large sized structured

data, graph mining has become one of the most demanding topics of research for identifying

the critical relationships among various entities included in the large graphs [75]. In the recent

era, analyzing multi-omics dataset is one of the emerging topics of research where different

profiles denoting several directions are applied to carry out different important tasks viz.,

marker determination, classification, and clustering. For this regard, many research works

have been performed in the following directions viz., marker identification [76], classification

[77], clustering [78], etc. Recently, Bhadra et al. [49] have developed a new algorithm handling

an integrated study comprising of statistical method and normalized mutual information

oriented hypo-graph mining to find the multi-omics co-similar genetic modules present in

multi-omics datasets. Formerly, various statistical (viz., correlation, regression oriented) and/

or weight-based techniques (viz., [79]) are matured for multi-omics data integration, but not for

multi-omics genetic-module detecting. Furthermore, some multi-view data integration mech-

anism employs various soft-computing methods such as clustering, non-matrix factorization,

etc. Recently, Serra et al. [53] proposed a framework for combining different data profiles of

multi-view datasets by integrating several clustering results done on each profile through non-

matrix factorization. Pucher et al. [60] provided a comprehensive review and comparative

study of the three integrative methods (viz., non-negative matrix factorization (NMF), sparse

canonical correlation analysis (sCCA) and logic data mining MicroArray Logic Analyzer

(MALA)) on simulated data as well as real omics profile. In addition, there are many deep

Machine Learning and Rule Mining Techniques in the Study of Gene Inactivation and RNA Interference
http://dx.doi.org/10.5772/intechopen.83470

113



learning techniques that were also developed to handle biological data. Chaudhary et al. [56]

proposed a deep learning based methodology to integrate multi-omics data and robustly

perform survival study on hepatocellular carcinoma. Furthermore, there are many interesting

applications of the above machine learning and deep learning techniques. For example, Xu

et al. [68] developed a new model using the regression to predict the gene expression using the

function of histone modifications/variants levels through the consecutive regression methods

(viz., multi-linear regression as well as multivariate adaptive regression splines). Mallik et al.

[65] performed a comprehensive analysis to identify potential intrinsically disordered proteins

through the transcriptomic analysis of genes for the expression and methylation data. To find

differentially methylated regions is also an area of interest. Comparison of different classifiers

used in many tools related to RNAi and gene inactivation is described in Table 3.

4. Biological challenges for gene inactivation

There are certain challenges exist, such as off-target effects, cytotoxicity, need for efficient

delivery methods, their clinical implementation need efficient delivery vehicles and siRNA

activity, itself, non-specific gene silencing, activation of innate immune system, the lack of

efficient in vivo delivery systems still remain to be handled [80]. The effective delivery of RNAi

therapeutics in vivo is one of the important challenge and have to consider several parameters

C4.5 classifier K-nearest

neighbors (KNN)

classifier

Naive Bayes

classifier

Support vector machines

(SVM) classifier

Artificial neural networks

(ANN) classifier

• Can use both

discrete and

continuous

values.

• Can use only

continuous

values.

• Can use both

discrete and

continuous

values.

• Can use only continuous

values.

• Can use both discrete

and continuous values.

• Handles

noise.

• Sensitive to

noisy features.

• Sensitive to

noisy features.

• Is less effective when

data contains noisy fea-

tures.

• Handles noisy features.

• Classes need

not be linearly

separable.

• Classes need

not be linearly

separable.

• Classes need

not be linearly

separable.

• Works well even if data is

not linearly separable in

the input feature space.

• Works fine even if data is

not linearly separable in

the input feature space.

• Faces the

problem of

overfitting.

• Overcomes the

problem of

overfitting.

• Faces the prob-

lem of

overfitting.

• Overcomes the problem

of overfitting.

• Overcomes the problem

of overfitting.

• Needs large

searching

time.

• Requires

higher

searching time

for a larger

data.

• Enormous

Computational

efficiency.

• Needs higher searching

time for a larger data.

• Needs high processing

time if neural network is

huge.

Table 3. Comparison of different classifiers.
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for an efficient silencing, particle sizing, duration of the RNAi effect, its stability and modifica-

tion, the delivery system and clearing off-target effects [81]. Apart from these challenges, the

development of efficient tissue-specific and differentiation dependent expression of siRNA is

essential for transgenic and therapeutic approaches. Bioactive drugs have been shown to

perturb the naturally running system as these can clog/saturate the biochemical pathways.

Since siRNA/shRNA relies on the endogenous microRNA machinery, thereby high doses of

ectopic RNA have the risk of saturating all component of the miRNA pathway components.

This was observed in the work by Grimm et al. [82] observed fatality association with high

doses of liver-directed AAV-encoded shRNAs in mice, where high doses killed the recipient

mice within 2 months. The length threshold of siRNAs seems to vary among cell types and it is

an important consideration as dsRNA would induce innate immune responses that would

eventually lead to cell death in mammalian. However, dsRNA less than 30 nucleotides have

been shown good enough for no induction of cellular toxicity in mammalian and longer

dsRNA is known to rapidly induce interferon responses. This suggests the careful risk assess-

ment strategies when using longer and more potent Dicer substrates siRNAs. Moreover,

correct RNAi targets are must, though ideal specificity of RNAi targets has not been shown.

However if RNAi is going to silence off-targets, it can alter the gene function, which is clearly

undesirable, therefore, care should be taken before-hand not to suppress the off-targets. If one

third of siRNA are chosen randomly that it results in a toxic phenotype [83]. Comparison of

siRNA and miRNA is described Table 4. However, there are successful in vitro and in vivo

experiments for raising hopes in treating human disease with RNAi. The epigenetic network

is one of the complex regulatory networks where epigenetic mechanisms such as DNA

siRNA miRNA

• Must be fully complementary to its target mRNA. • Can be partially complementary to its target mRNA.

• 21–23 nucleotide RNA duplex, notably endoge-

nous siRNAs’ origin is more polemic.

• 19–25 nucleotide RNA duplex, derived from gene units.

• dsRNA (30–100 nucleotides), before Dicer

processing.

• Precursor miRNA (70–100 nucleotides) with interspersed mis-

matches and hairpin structure, prior to Dicer processing.

• One mRNA target. • Can have multiple targets (>100 at the same time).

• For gene regulation, endonucleolytic cleavage of

mRNA occurs.

• For gene regulation, translational repression degradation of

mRNA occurs.

• Used as a therapeutic agent. • Utility as a drug target therapeutic agent Diagnostic and bio-

marker tool.

• siRNAs shut down gene expression at a post-

transcriptional level through mRNA degradation.

• MiRNAs silence their target genes mainly and most of the

times through translational repression.

• Occurs in plants and lower animals, occurrence in

mammals is questionable.

• Occurrence in plants and animals.

• Rarely found as an evolutionary conserved. • Evolutionary conserved most of the time in the related organ-

ism.

Table 4. Comparison of siRNA and miRNA.
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methylation and modifications to histone proteins regulate gene expression and high-order

DNA structure [84]. Epigenetics is basically a study of heritable changes in phenotypes where

the DNA sequences are not changed anymore. DNA methylation [85] is an epigenetic factor

that represents the inclusion of a methyl group (–CH3) to the fifth position of a cytosine

pyrimidine ring or to the sixth nitrogen position of an adenine purine ring in genomic DNA.

DNA methylation generally decreases belong to the gene expression level. In this connection,

copy number variation (CNV) [86] is another latest domain of research in genomics. It is

basically an event where the repetition of different portions of the genome continuously

happens, and an alteration on the number of repeats in the genome is recognized between

individual to individual in the human population. Copy number variation is a category of

structural changes, especially, it is a type of either duplication or deletion event which gener-

ally influences a reasonable number of base pairs. It has been realized from recent researches

that around two-thirds of the total human genome is made up of repeats. In the case of

mammals, copy number alteration provides a significant contribution on producing the neces-

sary deviation in both the population and disease phenotype. Cancer forms by various types of

somatic genetic changes including copy-number alternations which affect the activity of the

critical genes regulating the growth of the cell. Disadvantages and advantages of RNAi, and

possible overcome strategies are demonstrated briefly in Table 5.

5. Conclusion

RNAi and gene inactivation are well-known research topics in the research of biomedical field.

MiRNA and siRNA are closely associated with RNAi. Various categories of algorithms associ-

ated with RNAi and gene silencing have been developed in last 2 decades. In this book

Disadvantages Advantages and possible therapeutic strategies

• RNAi-based therapeutics has led to trigger several off-

target (unintended) effects and hence shown host innate

immune responses.

• Strategies for selective internalization and with endoge-

nous mechanism without disrupting the natural path-

way should be used to achieve maximal benefit from

RNAi-based therapeutics.

• Pol III expressed shRNAs delivered in an AAV deliv-

ered in mice tail vein through injection was lethal due to

acute liver failure.

• Levels of ectopic expression of therapeutic shRNAs

should be carefully controlled (low yet effective) to avoid

off target effects.

• Using naked siRNA has poor cellular uptake, it acti-

vates toll-like receptors and does not target to specific

cell types.

• Naked siRNA are comparatively stable and non-

immunogenic.

• Viral vectors for shRNA, expensive to create and cause

immune reactions.

• High affinity toward infecting target cells, expression can

long last.

• Lack of efficient delivery systems is the most critical

challenge for the therapeutic applications of small

RNAs.

• Identify the critical problem from the literature and

allow researchers to publish failed ideas.

Table 5. Disadvantages, advantages of RNAi and possible therapeutic strategies.
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chapter, we provided a comprehensive review of various machine/deep learning as well as

association rule mining algorithms that have been developed for handling different biological

problems such as gene signature detection, multi-omics data integration, single/combinatorial

biomarker identification, gene module detection, potentially disordered protein detection,

differentially methylated region finding, and many more. Thereafter, a comparative study of

several well-known classifiers along with other used approaches for the study has been

included. In addition, we provided a brief biological description of the immense biological

challenges for the gene activation along with their advantages, disadvantages and possible

therapeutic strategies. Finally, this chapter helps the bioinformaticians to understand the

central idea of RNAi and gene silencing along with their peripheral machine/deep learning

and association rule mining algorithms for the benevolent of the disease discovery as well as

possible therapeutic values.
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