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Chapter

Kinematics for Spacecraft-Type
Robotic Manipulators
Ijar Milagre da Fonseca, Maurício Nacib Pontuschka

and Glaydson Luiz Bertoze Lima

Abstract

The scope of this chapter is the study of the forward and inverse kinematics for a
space robot. The main focus is to compute the position and orientation of manipula-
tors’ end-effectors relative to their platform. Such platform plays the role of work-
stations referred in the literature approaching ground manipulators. In this study, the
method is to write the manipulator kinematics’ equations as functions of the joint
variables by following the Denavit-Hartenberg convention. The homogeneous trans-
form technique is used to study the kinematics. The set of coordinate frames defined
in this chapter follows the convention for frames that appears in the literature for
ground robot manipulators. The kinematics related to the spacecraft attitude is added
in the formulation because the manipulator studied in this chapter is type spacecraft.
The objective is to provide an overview and clear understanding of the kinematics’
equations for spacecraft-type manipulators. To be consistent with orbital dynamics
area, the inertial, orbital, and body-fixed coordinate frames are included in this
kinematics study. The forward and inverse kinematics formulations are derived. The
MATLAB®/Simulink tools are presented for the computer simulations of the forward
and inverse kinematics.

Keywords: space robot manipulators, forward kinematics, inverse kinematics,
attitude, orbit

1. Introduction

Kinematics is mainly concerned with the geometry of motion. The subject of
kinematics is to some extent mathematical and does not consider any forces associ-
ated with the motion. A comprehensive study of kinematics is a prerequisite to the
successful formulation of the equations of motion and the dynamic analysis. Con-
sistent with the geometry of motion, kinematics involves the definition of systems
of reference, methods of establishing relationships between frames, and algebraic
manipulations of matrices and vectors. Kinematics is primarily concerned with
describing the orientation of a body with respect to a known reference or coordinate
frame. When dealing with robotic manipulators, we have to include also transla-
tional kinematics. In this chapter, the calculation goes beyond the algebraic manip-
ulations of rotation matrices connecting frames. This includes the derivation of the
equations for the rotational and the translational kinematics that characterize robot
manipulators’ kinematics. Space robotic manipulators are designed to implement
orbital operations. There is a considerable difference regarding Earth-based manip-
ulators, as they increase the type and number of reference systems for proper
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problem formulation [1–4]. The main differences with regard to Earth-based robotic
manipulators are the inclusion of an Earth-centered inertial coordinate frame (ECI),
besides the local vertical, local horizontal (LVLH) reference frame, and the spacecraft
fixed reference frame. These frames are used to describe the kinematics’ differential
equations related to orbit and attitude motions. The other reference frames are typical
of those defined for ground manipulators. For space manipulators, we need to con-
sider the relationships between all these reference systems.

2. Forward kinematics of manipulators and D-H convention—
homogeneous transforms

Forward kinematics is the problem of computing the position and orientation of
the robot tool with respect to a fixed reference frame defined on the base of the
space robot. Such manipulators can be seen as a set of links connected in a chain of
joints. The joints are points of connection between a pair of links. The joints of a
manipulator may be revolute (rotatory), prismatic (sliding), or a combination of
both. According to that link to joint configuration, any robot manipulator kinemat-
ics can be described in terms of four quantities associated with each link. Two of
these quantities describe the link itself. The other two describe the link’s connection
to the neighboring link. For revolute joints, the angle θi is the joint variable, and the
other three quantities are fixed link parameters. These parameters are illustrated in
Figure 1 as the twist angle αi�1, the distances ai�1, and di. For prismatic joints, the
joint variable is di, while the angle θi is zero. In this case, αi�1, and ai�1 are fixed link
parameters (see Figure 1). The description of manipulators by these quantities is
referred as the Denavit-Hartenberg convention, denoted here as D-H [5, 6]. The
understanding of those four quantities requires the frame convention shown in
Figure 2. The frames are denoted by the symbol {}, for example {i-1} denotes a
frame whose origin is in joint i-1. A summary of the link parameters considering
frames convention shown in Figure 2 can be written as:

• ai is the distance measured along x-axis from zi to ziþ1

• αi is the angle rotation measured about xi from zi to ziþ1

• di is the distance measured along zi from xi�1 to xi

• θi is a joint angle measured about zi from xi�1 to xi.

Figure 1.
D-H convention showing the notation, joint variable, and parameters.
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The D-H convention describes the manipulator rotational plus translational
kinematics by using homogeneous transform. This transform is a 4� 4 matrix in
the form:

i�1p

1

� �

¼

cos θi � sin θi 0 i�1px
sin θi cos θi 0 i�1py

0 0 1 i�1pz
0 0 0 1

2

6

6

6

6

4

3

7

7

7

7

5

ipo

1

� �

¼
1�1
     iR

i�1po

0 1

" #

ip

1

� �

(1)

The result is i�1
    i p ¼ i�1

    iR
ipþi�1po and 1 = 1. The subscript o is just to say that the

position of the end-effector is given with respect to the origin of the frame 1�1
     iR:

The 3� 3 1�1
     iR block matrix is related to the rotation between frames i� 1f g and

if g by the joint angle θi. The 3� 1 vector i�1po is related to the end-effector position
with respect o the frame i� 1f g. The advantage of this approach is the use of matrix
notation including the position in addition to the orientation.

Such matrix notation facilitates the mathematical formulation in a compact and
comprehensive format. Also, the D-H formulation is appropriate to implement
problems in the MATLAB® computational environment.

Let us discuss now the manipulation of the frames as defined in Figure 2 and
their parameters. The D-H convention considers that all the joint angle rotations
take place along z-axis. The rule is the same for the joint variables di (prismatic
joints). In the case of prismatic joints, the joint angle is zero. This convention
regarding joint variables along z-axis means that when z-axis is not parallel to the
next one, a twist angle rotation α must be done so as to generate a new z-axis
parallel to the next one. Angle α can be positive or negative. Another convention
applies to the distance ai. Once we have the new z-axis parallel to the next one, the
distance ai is determined by drawing a mutual perpendicular line between both z-
axes. Such line will determine the distance between the joints and is also the place of
a new x-axis. A y-axis completes the right-handed frame (Figure 2). If the line
containing ai crosses the z-axis offset of the joint, it defines a distance di as shown
in Figure 2. Finally, we rotate the z-axis by the joint variable θi and a new frame is
generated, taking into account the offset di.

On the base of the space robot attachment, the Ox0y0z0 frame or 0f g is defined.
Note that the frame is i� 1f g, and for i = 1, this frame is 0f g. In the literature of robot
manipulators, 0f g frame does not move with respect to the space robot platform.
Accordingly, the joint associated to {0} is also named joint 0 from which the link 0

Figure 2.
Frames, links, and D-H quantities.
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connects to the joint 1. It is common to define joint 0 coincident with joint 1. In this
case, a0 is zero. For ground robots, it is common to define Ox0y0z0 as an inertial
frame. However, such definition is not consistent with the concept of inertial frames,
mainly when we have space robot orbiting the Earth. For a space robotic manipulator,
the Ox0y0z0 frame is defined with its origin somewhere on the platform and locates
the placement of joint zero. Figures 2 and 3 illustrate the frames, joint axes, joint
variables, and the other fixed quantities according to the D-H convention.

To include the translation in the same matrix notation, we use the homogeneous
transform as shown in Eq. (1).

Before going to the other frames definition for the spacecraft, let us implement
the matrix algebra, considering Figure 2. To clarify the procedure to obtain the
general expression for the rotational-translational kinematics, let us redefine some
frames in Figure 2.

• Let the frame formed by x0i�1, y
0
i, z

0
i�1, obtained be a rotation αi�1 about xi�1, be

defined as Rf g;

• Consider frame formed by x0i�1, y
0
i�1, z

0
i�1 translated by ai�1 as Qf g;

• Consider the frame obtained by a rotation θi and parallel to frame if g as Pf g;

• Consider frame if g obtained by a translation di.

Consider now Figure 2 that shows the various frames in addition to the D-H
parameters.

To write the kinematics’ equations in the frame i� 1f g, we need to compute the
rotation matrices using the homogeneous transform as below

Figure 3.
Space robot on-orbit configuration and frames.
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i�1P ¼ i�1
   R TR

QT
Q
P T

P
i T

    iP ¼ i�1
i T    iP

i�1
     iT ¼

1 0 0 0

0 cαi�1 �sαi�1 0

0 sαi�1 cαi�1 0

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

1 0 0 ai�1

0 1 0 0

0 0 1 0

0 0 0 1

2

6

6

6

6

6
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7

7

7

7

7

5

cθi �sθi 0 0

sθi cθi 0 0

0 0 1 0

0 0 0 1

2
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6

6

6

6
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7

7

7

7

5

1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1
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6

6

6

6
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7

7

7

7

7

5

i�1
    i T ¼

1 0 0 ai�1

0 cαi�1 �sαi�1 0

0 sαi�1 cαi�1 0

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

cθi �sθi 0 0

sθi cθi 0 0

0 0 1 di

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

cθi �sθi 0 ai�1

sθicαi�1 cθicαi�1 �sαi�1 �sαi�1di

sθisαi�1 cθisαi�1 cαi�1 cαi�1di

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(2)

where i�1
    i T ¼ i�1

    RT
R
QT

Q
P T

P
i T and the subscript to superscript means transform

from the previous to the next coordinate frame.
These abbreviations will be used throughout this chapter.

si ¼ sθi ¼ sin θi (3)

ci ¼ cθi ¼ cos θi (4)

c12 ¼ c θ1 þ θ2ð Þ ¼ c1c2 � s1s2 ¼ cθ1cθ2 � sθ1sθ2 (5)

s12 ¼ s θ1 þ θ2ð Þ ¼ c1s2 þ s1c2 ¼ cθ1sθ2 � sθ1cθ2 (6)

c123 ¼ c ∑
3

i

θi

� �

and s123 ¼ s ∑
3

i

θi

� �

for i ¼ 1, 2, 3 (7)

In Eq. (2), the first matrix,

1 0 0 0

0 cαi�1 �sαi�1 0

0 sαi�1 cαi�1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

, (8)

is given by a rotation of αi�1 about xi�1. Note that no translation appears in the
matrix. That matrix makes the zi�1 parallel to the next, zi-axis. The next matrix,

1 0 0 ai�1

0 1 0 0

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

, (9)

refers to the translation ai�1. This translation is along the xi�1-axis, defining the
distance ai�1. As zi�1 is parallel to zi, the distance ai�1 is a mutual perpendicular to
both the previous and the next z-axis. The rotation matrix,
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cθi �sθi 0 0

sθi cθi 0 0

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

, (10)

results of rotation about zi by the joint angle θi . This rotation generates a frame
parallel to if g at a distance di (offset) from the joint i. The 4th matrix,

1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1

2

6

6

6

4

3

7

7

7

5

, (11)

translates the frame by di completing the transform from frame if g to i� 1f g.
Sometimes, it is more convenient to write the kinematic differential equations in
the frame if g. In this case, we have to transpose the rotation matrices so as to have
the equations written in frame if g but in coordinates of i� 1f g.

For space robots, we must compute the kinematics not only of the manipulator
but also for the whole spacecraft (rotational and translational kinematics) [3, 4]. To
do this, it is necessary to define three more frames:

• the Earth-centered inertial (ECI) frame ⨁XYZ, defined at the center of the
Earth (the symbol ⨁ means Earth)

• the local vertical, local horizontal frame (LVLH) denoted as Cxlylzl. C is the
center of mass of the space robot. The subscript l is a short for LVLH;

• and a spacecraft fixed system of reference, defined in the center of mass of the
space robots [7] and denoted by Cxpypzp.

Figure 3 illustrates these new frames. The Cxlylzl is fixed in the orbit. So, it
follows with the orbit synchronized with the orbital velocity and with zl pointing
toward the local vertical (Nadir direction). In the literature, this frame is also
named RPY (roll, pitch, and yaw). Roll is the rotation angle about the orbital
velocity direction (x-direction), pitch is the rotation angle about the negative orbit
normal (y-axis), and yaw is the rotation angle about the local vertical (z-axis). The
roll, pitch, and yaw angles yield the space robot attitude with respect to the Cxlylzl
frame. Both the Cxlylzl and the Cxpypzp frames coincide with each other in a

nominal attitude specification, that is, the space robot is pointing toward the local
vertical, and the spacecraft attitude is zero. As the Cxpypzp frame is fixed in the

spacecraft, the attitude is given by the angles between Cxlylzl and Cxpypzp. Other

conventions may be used for the definition of these frames. The reference systems
⨁XYZ, Cxlylzl, and Cxpypzp are included in the formulation to allow for describing

the rotational and translational kinematics in frame Cxpypzp or in the frame Cxlylzl.

In general, the equations of dynamics are written in the body fixed frame, Cxpypzp.

We can write the kinematics and/or the kinematics’ differential equations in any of
those three frames by using transformation matrices. The {ECI} allows writing the
translational kinematic expressions in terms of the orbit parameters [7]. If the
coupling between the orbit and attitude motion is negligible (in general, it is), we
can write the rotational kinematics in the Cxpypzp or Cxlylzl frames, including the
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orbital velocity only. The practice is to use the Euler angles to describe the angular
orientation between both frames (the attitude of the spacecraft with respect the
Cxlylzl frame). According to the Euler Theorem, we can do this through three
sequences of rotations from one frame to another frame. Figure 3 shows both
frames in a nominal configuration in which the attitude angles are zero and
both frames are coincident. As the spacecraft moves, the fixed frames also move.
Figure 4 illustrates the rotation between those frames. So, we can derive the
kinematic expressions by using the spacecraft fixed frame, xpypzp.

Let us consider that the spacecraft fixed frame is misaligned from the Cxlylzl by
the angles as shown in Figure 4. Figure 4a illustrates the space robot in-orbit
configuration with attitude different from zero. Note that in this figure, both Cxlylzl
and Cxpypzp are misaligned. Figure 4b illustrates the sequence of rotations from

Cxlylzl to Cxpypzp.

The sequence of three rotations is φ⟵θ⟵ψ [7]. The arrows indicate the
direction of the sequence as: first, a rotation about zl by the angle ψ generating an
auxiliary frame Cx0py0pz0p. Then, a second rotation is done about y0l by the angle θ
generating the auxiliary frame Cx}py}pz}p. Finally, the third rotation is done about

x} to coincide with Cxpypzp. There are 12 sets of Euler angle sequences of rotations

to describe the rotational kinematics. However, the sequence of rotations
φ⟵θ⟵ψ is one the most used transformations for satellites’ rotational kinematics
description. This transform provides the relationship between both Cxlylzl and
Cxpypzp frames. The notation of the sequence used here is the same as φ�!θ�!ψ.

However, the first notation emphasizes the resulting structure of matrix multipli-
cation when implementing the transformation from Cxlylzl to Cxpypzp frames as we

are going to show next.
First rotation, about zl

x0p

y0p

z0p

8

>

>

<

>

>

:

9

>

>

=

>

>

;

¼

cψ sψ 0

�sψ cψ 0

0 0 1

2

6

6

4

3

7

7

5

xl

yl

zl

8

>

>

<

>

>

:

9

>

>

=

>

>

;

(12)

Figure 4.
(a) Satellite on-orbit configuration with Cxpypzp misaligned from Cxlylzl and (b) the Euler sequence of

rotations φ�!θ�!ψ:
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Second rotation, about y0p � y00p

x00p

y00p

z00p

8

>

<

>

:

9

>

=

>

;

¼

cθ 0 �sθ

0 1 0

sθ 0 cθ

2

6

4

3

7

5

x0p

y0p

z0p

8

>

<

>

:

9

>

=

>

;

(13)

Third rotation, about x}p � xp

xp

yp
zp

8

>

<

>

:

9

>

=

>

;

¼

1 0 0

0 cφ sφ

0 �sφ cφ

2

6

4

3

7

5

x}p

y}p

z}p

8

>

<

>

:

9

>

=

>

;

(14)

By substituting Eq. (13) into Eq. (14) and substituting Eq. (12) into the result, we
have:

xp

yp
zp

8

>

<

>

:

9

>

=

>

;

¼

1 0 0

0 cφ sφ

0 �sφ cφ

2

6

4

3

7

5

cθ 0 �sθ

0 1 0

sθ 0 cθ

2

6

4

3

7

5

cψ sψ 0

�sψ cψ 0

0 0 1

2

6

4

3

7

5

xl

yl
zl

8

>

<

>

:

9

>

=

>

;

(15)

So, the structure is really like φ⟵θ⟵ψ .
The final matrix allows writing the equations in the spacecraft fixed frame

Cxpypzp in coordinates of Cxlylzl as:

xp

yp
zp

8

>

<

>

:

9

>

=

>

;

¼

cθcψ cθsψ �sθ

sφsθcψ � cφsψ sφsθsψ þ cφcψ sφcθ

cφsθcψ þ sφsψ cφsθsψ � sφcψ cφcθ

2

6

4

3

7

5

xl

yl
zl

8

>

<

>

:

9

>

=

>

;

¼
p
l R (16)

By transposing this matrix, we can write the kinematics’ equation in the LVLH
frame:

xl

yl
zl

8

>

<

>

:

9

>

=

>

;

¼

cθcψ cθsψ �sθ

sφsθcψ� cφsψ sφsθsψþ cφcψ sφcθ

cφsθcψþ sφsψ cφsθsψ� sφcψ cφcθ

2

6

4

3

7

5

T
xp

yp
zp

8

>

<

>

:

9

>

=

>

;

¼ l
pR pf g (17)

The relationships from nf g to 0f g can be written as:

0
nT ¼ 0

1T
1
2T

2
3T…

n�1
     nT (18)

To write the kinematics of the spacecraft-like robot manipulator in the LVLH
system of reference, we have to concatenate all the matrices. By using Eqs. (17) and
(18) and Eq. (2), we can establish the relationships between i the coordinate frames as:

l
iT ¼ l

PT
p
0T

i�1
     iT (19)

where

l
pT ¼

l
pR3�1 03�1

01�3 1

" #

¼

cθcψ sφsθcψ � cφsψ cφsθcψ þ sφsψ rcx

cθsψ sφsθsψ þ cφcψ sφcθ rcy

�sθ sφcθ cφcθ rcz

0 0 0 1

2

6

6

6

4

3

7

7

7

5

;
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p
0T ¼

�1 0 0
0 0 1
0 1 0

2

4

3

5—this transform relates OxOyOzO with Cxpypzp (see Figure 3)

i�1
     iT is given by Eq. (2)

i ¼ 1, 2,…,n

The vector rcf g ¼ rcx rcy rcz
� �T

represents the translation from the center of
mass (CM) to the robot base or the OxOyOzO frame. This is a constant vector in this
formulation. However, when the robot manipulator is in orbit operation, the links
move, changing the location of the system CM, in other words, the CM location
becomes a variable of the problem. By the time the space shuttle was in operation,
this type of problem appeared. When it grasped significant massive target, the
system CMmotion affected the efficiency of the robot arm to put the target where it
was planned. Another problem experienced by the space shuttle manipulator was
the interaction between the attitude control system and the robot arm structural
flexibility. The attitude control was in action to keep the shuttle stabilized while the
manipulator was commanded to grasp a target. The structural flexibility of the long
arms was excited by the attitude actuators and entered in elastic vibration mode
causing problems to accomplish a safety grasping of the target. But this is another
story and may be subject of research on another occasion.

Example 1. Consider the robot manipulator shown in Figure 3 where the space
robot is stabilized with Cxlylzl and Cypzp frames. Find the kinematics relationship

written in the OxOyOzO frame. First, we built the D-H as shown in Table 1 for the
problem.

By inspection in Figure 3, we can see that all the z-axes are parallel and the joints
are revolute. So, the parameters α and d are zeros. Following the D-H table:

0
1T ¼

cθ1 �sθ1 0 1

sθ1 cθ1 0 0

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

(20)

1
2T ¼

cθ2 �sθ2 0 l1

sθ2 cθ2 0 0

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

(21)

Table 1.
D-H parameters for Example 1.
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2
3T ¼

cθ3 �sθ3 0 l2
sθ3 cθ3 0 0

0 0 1 0
0 0 0 1

2

6

6

4

3

7

7

5

(22)

so

0
3T ¼ 0

1T
1
2T

2
3T ¼

cθ1 �sθ1 0 1

sθ1 cθ1 0 0

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

cθ2 �sθ2 0 l1

sθ2 cθ2 0 0

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

cθ3 �sθ3 0 l2

sθ3 cθ3 0 0

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

(23)

Compacting the result through the definition of c = cos, s = sin, and
i ¼ θi, i ¼ 1, 2, 3 we have

0
3T ¼

c3c12 � s3s12 �c3s12 � s3c12 0 l1c1 þ l2c12

c3s12 þ s3c12 c3c12 � s3s12 0 l1s1 þ l2s12

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

¼

c123 �s123 0 l1c1 þ l2c12

s123 c123 0 l1s1 þ l2s12

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

(24)

where

c123 ¼ cos ∑
3

i¼1
θi

� �

¼ c3c12 � s3s12 (25)

s123 ¼ sin ∑
3

i¼1
θi

� �

¼ c3s12 þ s3c12 (26)

i ¼ 1, 2, 3

Note that we considered the spacecraft stable in attitude with the Cxpypzp
aligned to the Cxlylzl frame. But be aware that if the manipulator moves in attitude,
the kinematics’ differential equations of the spacecraft shall account for the manip-
ulator links of kinematics’ differential equations. In particular, if the manipulator is
to grasp an on-orbit target, the attitude of the manipulator-like spacecraft must be
synchronized to that of the target so that the relative attitude of both spacecraft and
target is zero. As the dynamic analysis is out of the scope of this chapter, we will
assume that the robot arm kinematics’ equations differ from ground robots only by
Cxlylzl and xpypzp frames. For orbital robots these frames are used to describe the

kinematics differential equations related to orbit and attitude motions.

Example 2. Consider Figure 5 which illustrates a revolute-prismatic-revolute
(RPR) manipulator. In this case, we have a rotation θ1ð Þ, a translational variable
d2ð Þ, and another rotation θ2ð Þ as illustrated in Table 2. The convention is that
those degrees-of-freedom occur along z-axis.

For this case, we have one rotation of θ1, translation of d2, and a rotation of θ3.
Following the D-H convention above, we should make a few comments. First,

we have a rotation on z-axis. Then, we use the twist angle rotation to make a
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new z-axis for the joint variable d2. The sequence of rotations is shown in
Eqs. (18)–(20).

0
1T ¼

cθ1 �sθ1 0

sθ1 cθ1 0

0 0 a1

2

6

4

3

7

5
(27)

1
2T ¼

1 0 0

0 cα1 �sα1

0 cα1 cα1

2

6

4

3

7

5
(28)

2
3T ¼

cθ3 �sθ3 0

sθ3 cθ3 0

0 0 1

2

6

4

3

7

5
(29)

To account for the translation d2, we can use the homogeneous transformation as:

cθ1 �sθ1 0 0

sθ1 cθ1 0 0

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

(30)

1 0 0 0

0 cα1 �sα1 0

0 sα1 cα1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

(31)

1 0 0 0

0 1 0 0

0 0 1 d2

0 0 0 0

2

6

6

6

4

3

7

7

7

5

α1 ¼ 90oð Þ (32)

cθ3 �sθ3 0 0

sθ3 cθ3 0 0

0 0 1 l2

0 0 0 1

2

6

6

6

4

3

7

7

7

5

(33)

Note that this notation of homogeneous matrix allows including the two
translations of this problem. Also, note that the offset translation is along z.
The transform matrix (α2 ¼ 90oÞ yields:

Figure 5.
(a) RPR manipulator showing the joints, (b) D-H parameters, and (c) frames.
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1 0 0 0

0 cα1 �sα1 0

0 sα1 cα1 0

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

1 0 0 0

0 1 0 0

0 0 1 d2

0 0 0 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

1 0 0 0

0 0 �1 0

0 1 0 0

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

1 0 0 0

0 1 0 0

0 0 1 d2

0 0 0 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

1 0 0 0

0 0 �1 �d2

0 1 0 0

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(34)

This result is a transformation, 12T
2, that is, the transform from frame {2} to frame

{1}. Combining all the transformations, we can write from frame {3} to frame {0} as:

0
3T ¼0

1T
1
2T

2
3T ¼

cθ1 �sθ2 0 0

sθ2 cθ1 0 0

0 0 1 0

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

1 0 0 0

0 0 �1 �d2

0 1 0 0

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

cθ3 �sθ3 0 0

sθ3 cθ3 0 0

0 0 1 0

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

cθ1cθ3 �cθ1sθ3 sθ3 sθ1 l2 þ d2ð Þ

sθ1cθ3 �sθ1sθ3 �cθ1 �cθ1 l2 þ d2ð Þ

sθ3 cθ3 0 0

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(35)

We can also find the transpose of this transformation to have the transformation:

3
0T ¼ 3

2T
2
1T

1
0T

cθ3 sθ3 0 0

�sθ3 cθ3 0 0

0 0 1 0

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

1 0 0 0

0 0 1 �d2

0 �1 0 0

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

cθ1 sθ1 0 0

�sθ1 cθ1 0 0

0 0 1 0

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

cθ1cθ3 sθ1cθ3 sθ3 0

�cθ1sθ3 �sθ1sθ3 cθ3 0

sθ1 �cθ1 0 � l2 þ d2ð Þ

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(36)

3. Inverse kinematics

Inverse kinematics consists of finding the joint variables given the robot manipu-
lator end-effector position and orientation with respect to the user workstation. The
workstation means a known location and reference system. It could be the platform
of the robotic system. In this chapter, the platform reference system is the frame
Cxpypzp represented by {P}. In general, such frame is defined in the center of mass of
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the space robotic system. We know the location of that system of reference. Also, we
know the location of the Cxlylzl frame because we know the space robot orbit. In the
previous section, we considered the relationship between frames to write the equa-
tions in the {0}. In the inverse problem, we want to find joint variables given the
specified position and orientation of the tool relative to {0} or {p}. We assume that
the robot attitude and orbit control subsystem keeps the space robot stabilized while
it works. This is to simplify the formulation. This assumption is reasonable since this
is exactly what must be done when the space robot is in operation. We have already
presented and discussed the several frames defined to study the robot kinematics. We
will refer to just one more, the frame defined on the tool, {T}.

There are some aspects of inverse kinematics that make it more complex than
forward kinematics [5, 6]. We will briefly report them, but we will not go into too
many details. In this chapter, our focus is on the solution methods for inverse
kinematics problem.

One of the main aspects of the inverse kinematics is solvability because we have to
face the problem of existence of solutions and of multiple solutions. Also, this prob-
lem brings to light the concept of manipulator workspace which is the volume of
space that the end-effector of the manipulator can reach. For space robot, this prob-
lem is critical because if the object to be manipulated is beyond space robot
workspace, the space mission may not accomplish goals like grasping a target,
docking to another spacecraft, put a piece of structure in right location during
assembling space structures, and so on. For a solution to exist, the point specified to
be reached by the end-effector must be inside the manipulator workspace. Another
problem related to the workspace of robots is to plan a trajectory [9] preventing
collisions with objects, another robot, or astronaut inside the workspace. There are
two useful definitions related to workspace. One is the dextrous workspace [5] and
the other is the reachable workspace. The first refers to the space volume that the
end-effector reaches with all orientation. The second is that volume of space that the
robot can reach in at least one orientation. If the position and orientation specified for
the robot task is inside the workspace, then at least one solution exists. Workspace
also depends on the tool-frame transformation, since it is frequently the tool-tip that
is discussed when we discuss reachable points in space. Details about the solvability
problem for inverse kinematics may be seen in [5].

3.1 The inverse kinematics solution methods

In solving inverse problems, the first thing we must consider is that there are no
general algorithms [5, 8, 9] that may be employed to solve manipulator kinematics.
We state that a manipulator is solvable when the joint variables can be determined
by an algorithm for a given position and orientation of the tool frame, {T}.

The solutions may be classified as close solution and numerical solutions. Numer-
ical solutions are in general slower than close solutions and would require another
chapter for discussion. We will concentrate in the close solutions methods. These
methods can be subdivided into algebraic and geometric solutions. This classification
is somehow hazy since each solution method uses both algebraic and geometric
kinematic formulations. In presenting and discussing the methods, we point out that
according to the concept of solution we stated here, the revolute and prismatic
manipulators having six degrees of freedom (DOF) in series chain are solvable.

3.2 Algebraic solution

Consider the robot manipulator mounted on the spacecraft platform and the on-
orbit configurations in the nominal attitude as shown in Figure 3. Let us apply the
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algebraic solution. Note that the frame defined in the last link is the frame for n = 3.
So, the transform from frame {0} to frame {N} is given by Eq. (24) repeated here
for didactic reasons.

O
NT ¼

c123 �s123 0 l1c1 þ l2c12

s123 c123 0 l1s1 þ l2s12

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

(37)

Now consider that for inverse kinematics, the specified position of the end-
effector is given:

O
NT ¼

cφ �sφ 0 x

sφ cφ 0 y

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

(38)

Note that this specified orientation and position are the angle φ and the Carte-
sian position (x, y, 0) of the tool. As Eq. (37) must be equal to Eq. (38), the problem
can be solved by comparing the elements of the matrices. The joint angles and the
parameters li, i ¼ 1, 2 are unknown. The specified orientation given by φ and the

components of the vector x y zf gT, in the planar case, x and y are known and
represent the tool position with respect to {0}. By equating a11 element of both
matrices we have:

cφ ¼ c123 ¼ cos ∑
3

i¼1
θi

� �

(39)

sφ ¼ s123 ¼ cos ∑
3

i¼1
θi

� �

(40)

x ¼ l1c1 þ l2c12 (41)

y ¼ l1s1 þ l2s12 (42)

where

c12 ¼ c1c2 � s1s2

s12 ¼ c1s2 þ s1c2

The algebraic solution requires the solution of Eq. (39) to Eq. (42). We can
compute the square of Eqs. (41) and (42) to obtain:

x2 þ y2 ¼ l1
2 þ l2

2 þ 2l1l2c2 (43)

Solving Eq. (43) by c2, we compute c2 as:

c2 ¼
x2 þ y2 � l1

2 þ l2
2� 	

2l1l2
(44)

Important information can be extracted from Eq. (44). We know that the cosine
function must be between �1 and + 1. By checking such constraint, we obtain
information whether or not the solution exists. In case a solution does not exist, the
meaning is that the point is not inside the robot manipulator workspace.
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Let us assume that the orientation and position specified in inside the
workspace. In this case, we can compute s2 as:

s2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c22
p

(45)

The joint angle can then be computed by:

θ2 ¼ Atan2
s2
c2

� �

(46)

Atan2 s2
c2

� �

computes tan �1 s2
c2

� �

, but uses the signs of both s2 and c2 to identify

the quadrant in which the resulting angle lies.
Note that there are signs to be considered in Eq. (45). The signs are related to

multiple solutions.
Once we have obtained θ2, we can obtain θ1 by manipulating Eqs. (41) and (42).

To solve the problem, we should define:

k1 ¼ l1 þ l2c2 (47)

k2 ¼ s2 (48)

and use the trigonometric identities

c12 ¼ c1c2 � s1s2 (49)

s12 ¼ c1s2 þ s1c2 (50)

to rewrite Eqs. (41) and (42) as:

x ¼ k1c1 � k2s1 (51)

x ¼ k1s1 þ k2c1 (52)

Next, we make a change of variable by writing k1 and k2 in the form:

r ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1
2 þ k2

2
q

(53)

and

γ ¼ Atan2 k1; k2ð Þ (54)

Using these new variables, we can write Eqs. (51) and (52) as:

x

r
¼ cγcθ1 � sγcsθ1 ¼ c γ þ θ1ð Þ (55)

y

r
¼ cγsθ1 þ sγθ1 ¼ s γ þ θ1ð Þ (56)

from which

γ þ θ1 ¼ Atan2
y

r
;

x

r

� �

¼ Atan2 y; xð Þ (57)

Then, using the definition of γ, we obtain the expression for θ1 as:

θ1 ¼ Atan2 y; xð Þ � Atan2 k1; k2ð Þ (58)
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As we have θ1 and θ2, we can find θ3 by using Eqs. (39) and (40)

∑
3

i¼1
θi ¼ Atan2 sφ; cφð Þ ¼ φ ¼ θ1 þ θ2 þ θ3 (59)

Once have θ1 and θ2, we obtain θ3 from Eq. (59).
Transcendental equations commonly arise when applying the algebraic

approach. The greater the number of degrees of freedom of the robotic manipula-
tor, the more laborious is the solution of the problem.

3.3 Geometric solution

By using this approach, we simply work the geometry of the arm. For the same
problem,wemay have the position of the joint associated to the frame {N}with respect
to the origin of frame {O} by using geometry. Frame {N} refers to the frame attached to
the last link of themanipulator. Consider Figure 6 showing the triangle formed by the
geometrical configuration of the sides of the links and the line from the origin of the
frame {O} to the origin of frame {N}. Applying the law of cosines, we can write:

x2 þ y2 ¼ l1
2 þ l2

2 � 2l1l2 cos 180� θ2ð Þ ¼ l1
2 þ l2

2 þ 2l1l2c2 (60)

c2 ¼
x2 þ y2 � l1

2 þ l2
2� 	

2l1l2
(61)

Again, this solution must be between 1 and � 1 in order to have a valid solution.
Assuming that the solution exists, then:

s2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
x2 þ y2 � l1

2 þ l2
2� 	

2l1l2

" #2
v

u

u

t (62)

Finally, we can write another solution for θ2 in terms of the tangent since we
have both sin and cosine of the angle θ2

θ2 ¼ Atan2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
x2 þ y2 � l1

2 þ ℓ2
2

� 	

2l1l2

" #2

,

v

u

u

t

x2 þ y2 � l1
2 þ l2

2� 	

2l1l2

8

<

:

9

=

;

(63)

Figure 6.
Space robot manipulator—geometric solutions for the inverse kinematics.

16

Kinematics - Analysis and Applications



Finally, we can write other solution for θ2 in terms of the tangent since we have
both sin of and cosine of the angle θ2

Now Let us compute a solution for θ1

β ¼ Atan2 y; xð Þ (64)

For ψ, we use the law of cosines to obtain:

cψ ¼
x2 þ y2 þ l1

2 � l2
2

2l1l2
(65)

Geometry yields then

θ1 ¼ β � ψ (66)

where β ¼ Atan2 y; xð Þ.

ψ is obtained by using the law of cosines as ℓ2
2 ¼ x2 þ y2 þ l1

2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

l1cosψ
By solving this equation by cosψ , we obtain Eq. (65). Finally, we use Eqs. (64)

and (65), to obtain θ1 as in Eq. (66).
Now, we can compute θ3 from:

∑
3

i¼1
θi ¼ θ1 þ θ2 þ θ3 ¼ φ (67)

Solving Eq. (67) for θ3, we complete the solution. Note that φ is the specified
orientation and we had already computed θ1 and θ2. Thus, the problem is solved.

3.4 Algebraic solution method involving working matrix algebra

Let us consider a six-DOF revolute manipulator. The transformation from
frames {O} to the {N} (N = 6) is

0
6T ¼

a11 a12 a13 px

a21 a22 a23 py

a31 a32 a33 pz

0 0 0 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(68)

We know that this final matrix represents the following successive transforms

0
6T ¼ 0

1T
1
2T

2
3T

3
4T

4
5T

5
6T (69)

Where, for the revolute manipulator

0
1T ¼

c1 �s1 0 0

s1 c1 0 0

0 0 1 0

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(70)

By premultiplying the left side of Eq. (68) by the inverse of Eq. (70), we obtain:
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c1 s1 0 0

�s1 c1 0 0

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

a11 a12 a13 px
a21 a22 a23 py
a31 a32 a33 pz
0 0 0 0

2

6

6

6

4

3

7

7

7

5

¼ 1
2T

2
3T

3
4T

4
5T

5
6T (71)

By equating both sides of Eq. (71), we start identifying solutions by comparing
the elements of matrices from both sides. Then, we continue by multiplying both

sides, by the inverse of the 1
2T and repeat the process to identify more solutions to

obtain:

c2 s2 0 �l1c2

�s2 c2 0 l1s2

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

c1 �s1 0 0

s1 c1 0 0

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

a11 a12 a13 px
a21 a22 a23 py
a31 a32 a33 pz
0 0 0 0

2

6

6

6

4

3

7

7

7

5

¼ 2
3T

3
4T

4
5T

5
6T

(72)

By implementing this process, we can solve the inverse kinematics for the six-
DOF revolute joints with all the z-axis parallels.

Consider Table 2 and the associated transformation matrix Eq. (36) for the RPR
manipulator of Figure 5. Let us solve the inverse kinematics using the above
method of matrix algebra. Al the matrix manipulations were computed by using the
MATLAB® symbolic manipulator. The specified orientation and position is given by
Eq. (68), by premultiplying the right side of this equation by inverse of Eq. (30), we
obtain:

c1 s1 0 0

�s1 c1 0 0

0 0 1 0

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

a11 a12 a13 px

a21 a22 a23 py

a31 a32 a33 pz

0 0 0 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

cθ3 �sθ3 0 0

0 0 �1 � l2 þ d2ð Þ

sθ3 cθ3 0 0

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

a11cθ1 þ a21sθ1 a12cθ1 þ a22cs a13sθ1 pxcθ1 þ pysθ1

a21cθ1 � a11sθ1 a22cθ1 � a12cθ1 a23cθ1 � a13sθ1 pycθ1 � pxsθ1

a31 a32 a33 pz

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼ 1
3T

(73)

Comparing the resulting matrices, on the left and right, for the elements (1,4)
and (2,4), respectively, we obtain:

Table 2.
The D-H parameters and joint variables.
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θ1 ¼ �Atan2 px; py

� �

(74)

d2 ¼ pxsθ1 � pycθ1 � l2 (75)

Comparing elements from both sides yields

pz ¼ 0 (76)

Premultiplying the result of left side again by the inverse of 1
2T , we obtain:

1 0 0 0

0 0 1 0

0 �1 �d3 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

c1 s1 0 0

�s1 c1 0 0

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

a11 a12 a13 px
a21 a22 a23 py
a31 a32 a33 pz
0 0 0 0

2

6

6

6

4

3

7

7

7

5

¼

cθ3 �sθ3 0 0

sθ3 cθ3 0 0

sθ3 cθ3 1 l2

0 0 0 1

2

6

6

6

4

3

7

7

7

5

(77)

The left side yields

a11cθ1 þ a21sθ1 a12cθ1 þ a22sθ1 a13cθ1 þ a23sθ1 pxcθ1 þ pysθ1

a31 a32 a33 pz
a11sθ1 � a21cθ1 a12sθ1 � a22cθ1 a13sθ1 � a23cθ1 pxsθ1 � pycθ1 � d2

0 0 0 1

2

6

6

6

4

3

7

7

7

5

(78)

By comparing the matrix elements (2,1) and (2,2) for both sides, we can
compute θ3 as:

a31 ¼ sθ3 and a32 ¼ cθ3 (79)

then, we obtain from tan θ3 ¼
a31
a32

¼)θ3 ¼ Atan2 a31; a32ð Þ

Of course, this example is simple. When we have a six-DOF manipulator, the
algebraic manipulation to solve the inverse kinematics is hard, and the solution may
require using transformation of variables. The MATLAB® software package has
applications that easier the hard algebraic manipulation such as the symbolic
manipulator and some specific functions for forward and inverse kinematics com-
putation. MATLAB® functions include kinematics, trajectory generation, dynamics,
and control. The toolbox also includes Simulink® models to describe the evolution
of arm or mobile robot state over time for the sake of control. Regarding this
chapter, functions like manipulating and converting between data types such as
vectors, rotation matrices, homogeneous transformations, and twists are very
important. Some important functions related to this chapter are:

• angvec2r that converts angle and vector orientation to a 3x3 rotation matrix;

• angvec2tr that converts angle and vector orientation to a 4x4 homogeneous
transform;

• syms command that allows the definition of symbolic variables for rotation
and homogeneous algebra. The symbolic manipulation allows include several
commands to simplify results of matrix algebraic manipulation.

• eul2tr (phi, theta, psi, options) converts the Euler angles to a (4x4)
homogeneous transformation matrix.
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• rpy2tr (roll, pitch, yaw, options) command refers to the LVLH frame
referred in this chapter and converts the roll-pitch-yaw angles to homogeneous
transform.

There are several other commands/functions that are very useful for applica-
tions approached in this chapter and the reader is advised to see [10].

4. Conclusion

In this chapter, we have approached the forward and inverse kinematics for
space robot manipulators via the D-H convention. In all cases presented here, the
spacecraft nominal attitude was considered stabilized. Otherwise, it would be nec-
essary to consider kinematics in terms of absolute position described in the LVLH or
in the spacecraft fixed frame with variable attitude angles. Some examples are
solved, and a related reference is provided. Al the algebraic matrix manipulations
presented here were obtained by using the MATLAB® Symbolic tool box. Also, the
chapter presented other features of the MATLAB® and Simulink® software related
to the subject of the chapter. Despite its importance, differential kinematics is out of
scope of this chapter and maybe the subject of future work.
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