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Abstract

Spontaneous models of lupus were recognized four decades ago beginning in 
the early 1960s with the NZB/NZW F1 (NZB/W F1) mouse, an F1 hybrid between 
the New Zealand Black (NZB) and New Zealand White (NZW) mice. Although the 
parental strains display limited autoimmunity, the NZB/W F1 develops severe lupus-
like features similar to that of human lupus patients. Here, we will address the genetic 
characteristics of the model and discuss its main characteristics such as the presence 
of serum antinuclear autoantibodies (ANA) including anti-dsDNA, mild vasculitis, 
and the development of immune complex-mediated glomerulonephritis. Similar to 
human lupus, the disease develops primarily in female mice after six months of age, 
with a lesser percentage and severity in male mice. The relation of this phenomenon 
will be examined in the context of estrogen levels. The participation of both innate 
and adaptive immunity will be addressed as well as the contribution of both T and 
B cells in the development of the clinical aspects of the disease. We will focus on the 
use of the model as a valuable tool for elucidating the pathogenic mechanisms of the 
disease, as well as its use as preclinical testing of therapeutic for human use.

Keywords: lupus, mouse model, histopathology, autoreactive cells and antibodies, 
genetics, sex

1. Introduction

Autoimmune diseases are generally defined by the existence of autoantibodies and 
the presence of autoreactive T and B lymphocytes. More than 80 different autoimmune 
disorders have been described, including systemic lupus erythematosus (SLE). Animal 
models of human diseases are an invaluable tool for defining pathogenic mechanisms, 
finding novel therapeutic targets, and testing new therapies. These models have the 
advantage of having a shorter lifetime, a characteristic that allows to study the full cycle 
of the disease and to test for the possible therapies in much shorter period. Although 
using animal models may have some disadvantages due to the obvious genetic and 
physiological differences with humans, they have been an invaluable tool to study 
human diseases, especially in autoimmunity. Although the exact etiology of SLE has 
not yet been identified, there is a consensus that numerous factors such as genetics, 
environment, and hormonal aspects are involved in the development of this disease. 
Several mouse models resemble specific elements of the human disease and have 
been employed to understand the cellular and genetic treats linked to SLE susceptibil-
ity. Most of them, share in common, the development of glomerulonephritis and 
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autoantibodies against autoantigens. In Table 1, we summarize the principal character-
istics of the most extensively studied mouse strains of both spontaneous and induced 
murine lupus models. Additionally, there are genetically modified mouse models in 
which researchers inactivate, express, or overexpress a gene product or protein to 
recognize their single role in lupus and immunity in general such as transgenic-induced 
lupus and gene knockout-induced lupus [1–3]. In this chapter, we will refer in detail to 
the NZB/W F1 mice, which are the oldest classic spontaneous models of lupus used to 
study, on the one hand, the numerous susceptibility loci from which several candidate 
genes have emerged. Also, it has allowed to address important issues such as physiologi-
cal aspects of the disease, antibody specificities, the role of antigen-presenting cells, the 
participation of B and T lymphocytes, and drug responses in many preclinical studies. 
This model was generated by the cross between the NZB and NZW strains. Both NZB 
and NZW display limited autoimmunity, as will be discussed here, while the NZB/W 
F1 hybrids develop severe lupus-like phenotypes resembling that of lupus patients. The 
purpose of this chapter is to summarize the contributions and significant advances in 
the understanding of lupus pathogenesis by the use of the NZB/W F1 murine model.

2. Histopathology characteristics of NZB/W F1 mice

In pre-autoimmune NZB/W F1 mice, in vivo expression of IFN-α precipitates 
the autoimmune process and kidney damage, leading to premature death from 
severe immune complex glomerulonephritis. This fact does not happen in non-
autoimmune BALB/c mice. These findings support the notion that sustained IFN-α 
production in susceptible individuals may be sufficient to generate all the character-
istics of SLE [4]. Interestingly, Liu et al. demonstrated that IFN-α accelerates murine 
systemic lupus erythematosus in NZB/W mice in a T cell-dependent manner [5].

Table 1. 
Main mouse models used to study lupus.
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The major cause of death in the NZB/W F1 female is chronic glomerulonephritis 
with heavy mesangial deposits before 5 months of age, tubular cast formation, 
proliferation of glomerular cells, prominent crescent formation, and a significant 
periglomerular and interstitial monocytic infiltrate. Extraglomerular renal deposits 
of IgG2a and C3 are present in the peritubular tissue and arterioles, and increase in 
frequency with age.

Diseased mice develop splenomegaly and progressive thymic cortical atrophy 
that begins very early in the disease and results in nearly complete loss of the thymic 
cortex as the disease progresses. In many mice, the loss of cortex is accompanied 
by medullary atrophy. Additionally, females have lymphoid hyperplasia with nodes 
rarely exceeding 2–3 times the average size [6].

3. Serologic characteristics of NZB/W F1 mice

Interestingly very early, it was reported that repeated administration of 
dsDNA or ssDNA to NZB/W F1 mice has a tolerogenic and long-lasting effect 
in this strain of mice that otherwise are susceptible to developing lupus [7]. 
Autoimmune-prone NZB mice mainly produce anti-DNA antibodies IgM and 
develop a mild SLE. NZB/W F1 females develop a fulminant SLE at 6–9 months 
associated with a decrease in IgM and an increase in anti-DNA IgG antibodies. 
These results helped to elucidate the role of the H-2 complex in the anti-DNA 
antibody production, leading to the conclusion that the production of IgG 
anti-DNA antibodies observed in NZB/W F1 hybrid mice is restricted to the 
H-2d/H-2z heterozygous mice [8].

NZB/W F1 mice present high levels of circulating autoantibodies. Antibody-
secreting cells (ASCs) from these mice produce antinuclear antibody (ANA) 
and anti-dsDNA predominantly, the majority of them being the IgG2a and IgG3 
classes [3, 5, 9]. NZB/W F1 mice also produce other extractable nuclear antigens 
(ENA) autoantibodies such as anti-small nuclear ribonucleoprotein (snRNP) 
and anti-heterogeneous nuclear ribonucleoproteins (hnRNP) [10]. All these 
autoantibodies form immune complexes that are deposited in different organs 
like liver, kidney, and skin. Moreover, Brick et al. have described the presence of 
anti-histone antibodies in the serum of autoimmune NZB/NZW F1 mice and in 
MRL/lpr mice [11]. On the other hand, dietary fat affects antibody levels to lipids 
and cardiolipin in autoimmune-prone NZB/W F1 mice. Antibodies to cardiolipin 
have been reported to play an important role in thrombus formation and an 
increase in the rate of abortions, both in human lupus patients and in murine 
lupus [12].

CD5+ B-1 cells have attracted much attention, because of their involvement in 
both autoimmunity and B cell-type chronic lymphocytic leukemia (B-CLL). It has 
been demonstrated that elimination of B-1 cells prevents autoimmune symptoms in 
autoimmune-prone mice [13]. CD5+ B cells seem to be the precursors of CD5- anti-
DNA IgG antibody-producing B cells in autoimmune-prone NZB/W F1 mice [14]. 
However, whether B-1 cells in the peritoneum are generally involved in the patho-
genesis of the autoimmune disease remains controversial.

4. Cellular abnormalities

Systemic lupus erythematosus (SLE) produces alterations in the organism that 
affect cells of the innate and adaptive immune systems. In this section, we will 
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summarize the modifications described in diseased NZB/W F1 mice in different 
immune cell populations.

4.1 Dendritic cells

Dendritic cells (DCs) are the cellular sentinels of the organism, important 
orchestrators of immune responses, and key components in fine-tuning the balance 
between tolerance and immunity.

Two major subsets of DCs are described: conventional DCs (cDCs) and plasma-
cytoid DCs (pDCs), although other subsets of DCs have been described from DCs 
generated from bone marrow cultures [15]. Tissue-derived pDCs are considered 
to be the major IFN-α source in SLE; however, diseased NZB/W F1 mice show an 
increase in the frequency and absolute numbers of both cDCs and pDCs in spleen 
and blood compared to healthy mice. Also, compared to healthy mice, diseased 
mice present alterations in both types of DCs since they display an abnormal phe-
notype characterized by an overexpression of the co-stimulatory molecules CD80, 
CD86, PD-L1, and PD-L2. Homing experiments demonstrate that DCs from lupus-
diseased mice migrate preferentially to the spleen compared to DCs from control 
mice. This preferential recruitment and retention of DCs in the spleen are related 
to altered expression of different chemokine and chemokine receptors on both DCs 
and spleen stromal cells [16]. Recently, pDCs from spleen and bone marrow have 
been compared in several models of lupus-prone mice without clear results con-
cerning the role of pDC in the development of lupus [17].

In NZB/W F1 mice, the spleen is the principal organ, where nucleosome-specific 
T cells are stimulated. Splenic antigen-presenting cells, including macrophages, 
contribute significantly to the production of autoantibodies and in the develop-
ment of the disease [18]. On the other hand, anti-apoptotic molecules such as Bcl-2 
inhibitors selectively kill pDCs, but not cDCs, reducing IFN-α production [19].

4.2 Macrophages

Macrophages are professional antigen-presenting cells and play an essential 
role in the activation of the adaptative immune response. Macrophages usually 
eliminate circulating apoptotic bodies and pathogens. Macrophages from diseased 
NZB/W F1 lupus mice have reduced phagocytic capacity. The impaired ability of 
resident peritoneal macrophages from lupus-prone mice to engulf apoptotic cells 
has been demonstrated by in vivo and in vitro cell clearance assays [20, 21]. Some 
studies have shown defective Fc-mediated phagocytosis by peritoneal macrophages 
[22] making more autoantigens available that favor an autoimmune response. In 
this regard, it was shown that spleen F4/80high macrophages could present autoan-
tigen efficiently to T cells, thus giving help to autoantibody-producing B cells in 
lupus-prone mice [18].

F4/80high macrophages reside in healthy kidneys. In NZB/W F1, there is an 
increasing number of macrophages during nephritis. However, these macrophages 
do not show a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype upon 
cytokine stimulation. Instead, they acquired a mixed functional phenotype that 
resembles gut F4/80high macrophages constitutively activated [23]. Macrophages 
from diseased NZB/W F1 mice differ in the expression of some inflammatory 
genes, chemokine receptors, and TLRs, which are consistent with their heterogene-
ity and variability in renal location, further supporting the idea that ineffective 
macrophage function may contribute to glomerulonephritis in NZB/W F1 mice.

Macrophages produce a broad array of cytokines that can affect the immune 
response. For example, macrophages from peritoneal cavity upon stimulation with 
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DNA secrete high amounts of IL-6 and TNF-α [24], two cytokines that participate 
in B cell proliferation and function. Very early, it was reported that IL-6 secretion 
by peritoneal and not by spleen macrophages have an active role in the production 
of anti-DNA autoantibodies in NZB/W F1 mice [25].

4.3 T cells

In the NZB/W F1 lupus mice, spleen CD4+ T cells exhibit an activated phe-
notype characterized by high expression of PD-1, CD25, CD69 and increased 
secretion of IFN-γ and IL-10 [16, 26]. The primary function of T cells in lupus is to 
help B cells in the production of autoantibodies [27], thus, avoiding the interaction 
between T and B cells may decrease the signs of the disease. Treatment with an 
anti-CD4 monoclonal antibody dramatically reduced glomerular immunoglobulin, 
complemented deposition, and diminished lymphocytic infiltration and vasculitis 
in the kidneys [28]. CD28 blockade decreased the production of anti-ds DNA 
autoantibody, prevented the development of lupus nephritis, and prolonged animal 
survival [29].

Regulatory CD4+ T cells (Tregs) are essential players in the maintenance of 
peripheral immune tolerance. Usually, Tregs suppress the activity of specific T 
helper (Th) cells, but in NZB/W F1 mice, a homeostatic state of imbalance between 
regulatory and effector T cells is produced due to a decrease of IL-2, an essential 
cytokine for the maintenance of Tregs [30]. On the other hand, the levels of the 
adipocytokine leptin are elevated in diseased mice and correlate with the produc-
tion of autoantibodies and renal disease. Although leptin can promote effector T 
cell responses to self-antigens, it also inhibits Treg activity [31]. On the other hand, 
Likuni et al. demonstrated that Tregs could directly suppress B cells in NZB/W 
F1 lupus mice through cell-to-cell contact-mediated mechanisms, thus directly 
regulating auto-antibody-producing B cells, including those B cells that increase in 
number during active disease [32].

Follicular helper T cells are CD4+ T cells population that supports the activation 
and differentiation of previously class-switched B cells to long-lived antibody-
secreting plasma cells. Recent reports show that follicular helper T cells contribute 
to the pathogenesis of lupus through the ICOS/ICOSL pathway in NZB/W F1 
mice [33]. Also, the activation through the Ox40/Ox40L pathway increases the 
number of follicular helper T cells and promotes cellular and humoral autoimmune 
responses in NZB/W F1 mice [34]. Interestingly, Cortini et al. showed that, recipro-
cally, B cells support the follicular helper T cells development in NZB/W F1 mice 
through the OX40L expression on B cells [35].

Although CD8+ T cells have not been directly implicated in SLE, sick NZB/W 
F1 mice show an impaired expansion of CD8+ T cells, as well as the acquisition of 
memory, secretion of cytokine, and suppression of autoimmunity [36].

4.4 B cells

Participation of B cells in lupus implicates several of its cellular functions. 
Besides the secretion of autoantibody against a panoply of antigens, B cells contrib-
ute in other ways to the pathogenesis of lupus, including antigen presentation to T 
cells, follicular helper T cell differentiation, and cytokine secretion. Although the 
phenotype of resting B cells isolated from NZB/W F1, and non-autoimmune mice 
do not show significant differences, B cells from lupus mice are hyper-responsive 
to T cell-derived stimuli in vitro. T cell-derived cytokines and signals delivered 
through CD40 crosslinking induce higher levels of proliferation, IgM secretion, and 
enhanced expression of costimulatory molecules in NZB/W F1 B cells [37].
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B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) play 
key roles in peripheral B cell survival, maturation, and differentiation. In NZB/W F1 
mice, chronic activation of the immune system induced an increase in the levels of 
circulating BAFF and APRIL. The continuous activation of B cells and thus overex-
pression of BAFF and APRIL may contribute to an increase in the generation of autore-
active B cells and a thus furthering the development of autoimmune disease [38].

B cells activation by T cells leads to the differentiation of B cells into long-lived 
plasma cells. However, continuous activation in autoimmune NZB/W F1 mice 
also generates short-lived plasmablasts. The number of splenic antibody-secreting 
cells (ASC) increases in NZB/W F1 mice aged 1–5 months and stabilizes after 
this period. Less than 60% of the splenic auto-ASCs are short-lived plasmablasts, 
whereas 40% are non-dividing, long-lived plasma cells with a half-life of 6 months. 
Although anti-proliferative immunosuppressive therapy depleted short-lived plas-
mablasts, long-lived plasma cells survived and continued to produce autoantibodies 
[39]. Additionally, Cheng et al. demonstrated that autoantibodies from long-lived 
“memory” plasma cells of NZB/W F1 mice drive complex immune nephritis [40].

5.  Genetic characteristics: susceptibility loci in NZB and NZW mice and 
in the NZB/W F1 hybrid

Several chromosomal regions containing genes affecting lupus susceptibility or 
resistance have been identified pointing that murine lupus is genetically complex 
and mediated by a combination of genes.

In NZB/W F1 hybrids, genetic interactions between alleles present in NZB and 
NZW are the causes of the severe systemic autoimmunity found in these mice, due 
to the generation of a phenotype that is absent in both parental strains.

To search for contributing loci in this model of SLE, investigators backcrossed 
NZB/W F1 mice to NZW, then used brother-sister mattings to generate 27 sub-
strains, termed New Zealand mixed (NZM) mice [41]. Further analysis of these 
27 substrains led to the selection of NZM2410 as a lupus model. Susceptibility to 
lupus in NZM2410 is predominantly due to genes localized to the telomeric region 
of chromosome 1 (Sle1), the middle of chromosome 4 (Sle2), and the centromeric 
segment of chromosome 7 (Sle3) [42]. To study the contribution of each of these 
loci to pathogenesis, congenic strain construction was performed by transferring 
each of these intervals from NZM2410 onto the B6 background. Phenotypic analysis 
of congenic mice revealed that each locus contributes a unique component pheno-
type to the disease [43]. Although the B6.Sle congenic strains express phenotypes 
relevant to autoimmunity, none develop severe pathology, indicating that individual 
genes are not sufficient to cause lupus. The co-expression of these three major loci 
is necessary and sufficient for the development of a fully penetrant disease. These 
studies demonstrated that susceptibility to lupus involves both genetic interactions 
and additive effects of individual genes.

Additionally, to the Sle susceptibility loci, other loci present on chromosomes 1, 
4, 7, and 17 have been associated with susceptibility in multiple lupus-prone strains 
including the NZB/W F1 model, an indication that genes in these regions may be 
necessary for immune regulation and function.

5.1  Susceptibility loci for systemic lupus on chromosome 1: Sle1, Nba2,  
Lbw7, Sbw1, and Cgnz1

The congenic strain, B6.Sle1, develops autoantibodies against nuclear 
autoantigens and displays spontaneous T cell activation without developing 
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glomerulonephritis [44]. Fine mapping of the Sle1 locus determined that four loci 
within this congenic interval, termed Sle1a, Sle1b, Sle1c, and Sle1d, are implicated in 
the loss of tolerance to chromatin [45, 46].

Analyses of NZB congenic mice, (NZB X SM/J)F1 X NZB, revealed that the 
Nba2 lupus susceptibility locus is associated with hypergammaglobulinemia and 
the development of various autoantibodies, including anti-DNA, anti-chromatin, 
and anti-gp70 [47]. In these studies, mice congenic for the Nba2 locus did not 
develop significant renal disease on a B6 background but developed severe lupus 
nephritis when crossed with NZW mice [48], consistent with the need of multiple 
susceptibility genes for full expression of lupus.

The susceptibility loci, Sle1 and Nba2, overlap in the same region of chromo-
some 1, suggesting that some susceptibility genes may be shared among lupus-
prone strains. Within The Nba2 and Sle1 genetic segment there are genes encoding 
for the inhibitor type IIFcγR (FcγR IIB) [49], members of the SLAM/CD2 family of 
immunomodulatory receptors (Cd244, Cd229, Cs1, Cd48, Cd150, Ly108, and Cd84) 
[45] and members of the IFN-inducible (Ifi) family [48] all of which can regulate 
cell proliferation and survival. Analysis of congenic strains demonstrated that the 
presence of nuclear antigens and the severity of renal disease are linked with the 
FcγR and SLAM gene clusters with little involvement from the Ifi interval [50].

The inhibitory receptor for IgG, FcγRIIB, appears to be a fundamental regulator 
of B cell as well as myeloid cell activation [51]. Deficiencies in these routes result 
in heightened humoral and inflammatory responses, further contributing to lupus 
pathology [52].

The complement receptor 2 (CR2) gene, which encodes the complement recep-
tor type 2 that acts as a B cell co-receptor is also in the Sle1c interval [53].

Theofilopoulos and colleagues identified Sbw1 and Lbw7 in chromosome 1 
during their original linkage analysis of (NZB X NZW) F2 progeny [54]. Sbw1 
defines a locus associated with splenomegaly, while Lbw7 defines a locus associated 
with anti-chromatin autoantibodies. Lbw7 of NZW origin is likely to be identical to 
Nba2 from NZB [54]. Additionally, Cgnz1 was detected in lupus-prone NZM2338 
mice and significantly linked to chronic glomerulonephritis, severe proteinuria, and 
early mortality in female mice [55].

5.2 Susceptibility loci for systemic lupus on chromosome 4: Sle2, Nba1, Sgp4, 
Lbw2, Sbw2, and Adnz1

The congenic strain, B6.Sle2, displays lowered B cell activation thresholds coin-
cident with the appearance of polyclonal IgM in the sera and expansion of the B1a 
cell compartment, in the absence of glomerulonephritis [43]. Interestingly, combin-
ing this locus with Sle1, resulted in glomerulonephritis and enhanced mortality 
compared with the single congenic strains alone [56].

Another susceptibility locus present on chromosome 4 is the Nba1 locus from 
NZB and the Lbw2 susceptibility locus from NZB/W F1. Both are associated with 
kidney disease, while another locus, sbw2, is associated with splenomegaly. The 
Sbw2 locus mapped to the same region as Lbw2, suggesting a single locus with 
pleiotropic effects [54]. The Nba1/Lbw2 interval contains the C1qa gene encoding 
the first component of complement C1q. It has been shown that an insertion poly-
morphism in the NZB sequence upstream of C1q gene may be related to a limited 
degree of C1q production, which may confer a risk for lupus nephritis by reducing 
IC clearance and promoting IC deposition in the glomeruli [57].

Overlapping with the Nba1 locus, there is a locus designated Sgp4, which was 
linked to the production of nephritogenic gp70 antigens. Production of auto-
antibodies to the retroviral envelope glycoprotein gp70, and the generation of 
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gp70-anti-gp70 immune complexes (gp70 IC) have been implicated in the develop-
ment of nephritis in these lupus models [58, 59].

An additional study using NZM2328 mice found that the NZB-derived locus 
Adnz1 also contributed to the production of anti-DNA autoantibodies but not to 
lupus nephritis [55].

5.3 Susceptibility loci for systemic lupus on chromosome 7: Sle3, Lbw5, Nba5, 
and Aia3

Chromosome 7 contains several susceptibility genes regulating nephritis and 
autoantibodies. Among them are the Sle3 and Lbw5 loci, both derived from the 
NZW strain and the Nba5 locus from the NBW strain. A candidate gene present 
in this region is Cd22, which functions as a negative regulator of BCR signaling 
transduction.

Sle3 appears to be responsible for the hyperactive and pro-inflammatory 
antigen-presenting capacity of dendritic cells and macrophages [60].

The Nba5 susceptibility locus was associated with higher titers of anti-gp70 
autoantibodies [61], while Aia3 with autoimmune hemolytic autoimmunity in a 
linkage analysis of NZB [62].

5.4 Susceptibility loci for systemic lupus on chromosome 17: Lbw1 (MHC)

The contribution of MHC haplotype to disease was first reported in the NZB/
NZW F1 model [63]. These genes are located in chromosome 17. Several studies 
demonstrated a strong association of H2d/z heterozygosity with the development of 
SLE, indicating a co-dominant contribution from each strain, H2d from NZB and 
H2z from NZW [64].

6. Influence of sex

Differences between female and male responses to foreign and self-antigens have 
been well-documented. It was suggested that genes and hormones are involved in 
the differences found in their innate and adaptive immune responses. Generally, 
females mount higher immune responses than males, which can contribute to the 
increased susceptibility to autoimmune diseases in females [65].

Similar to humans, within the NZB/W F1 mouse model lupus develops pri-
marily in females with a lesser percentage and severity in male mice. In female 
mice, lupus signs appear after 6 months of age, with 50% mortality at 8.5 months 
and 90% mortality at 12.8 months. Male mice develop the disease after a year 
of age with 50% mortality at about 15 months of age [66]. Accordingly, early 
studies performed in NZB/W F1 mice showed that estrogen supplementation 
is associated with a worsening disease and shorter lifespan than untreated lit-
termate. In contrast, supplementation of a female with the male sex hormone 
5α-dihydrotestosterone reduce immune complex deposition and prolong survival 
despite the presence of high levels of IgG antibodies to DNA. Additionally, 
castrated or 17β-estradiol-treated NZB/W F1 male mice have an earlier onset of 
lupus and accelerated mortality, suggesting a suppressive effect of androgen [67, 
68]. Data accumulated during the past few years provide evidence that female 
hormones, particularly estrogens, promote lupus pathogenesis. However, some 
opposite results are suggesting that sexual dichotomy is due to protective effects of 
androgens. The mortality induced by estrogens may be due to toxic effects rather 
than accelerated autoimmunity [69].
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Cells of the immune system, including B cells, express the cellular receptors 
for estrogens, estrogen receptor-α (ERα), and estrogen receptor-β [70]. Global 
disruption of the ERα gene in NZB/W F1 causes a significant reduction in the 
concentration of anti-histone/DNA and anti-double-stranded DNA IgG antibod-
ies, which are associated with glomerulonephritis. This loss of tolerance was 
observed in female mice whereas, more modest effects are seen in males [71] 
suggesting that the ability of ERα signaling to enhance autoantibody production 
and lupus pathogenesis is more pronounced in females than in males. Additionally, 
specific deletion of ERα in B cells retards the production of autoantibodies and the 
development of nephritis in NZB/W F1 mice, demonstrating that ERα acts in a B 
cell-intrinsic manner to control B cell activation, autoantibody production, and 
lupus nephritis [72].

B cells with the CD5 marker, which spontaneously produce IgM, are found in 
higher numbers in NZB mice and have been implicated in lupus [73]. Treatment of 
lupus-prone female NZB/W F1 mice with tamoxifen (TAM), a synthetic antiestro-
gen with high affinity for the estrogen receptor, decreases the percentage of B cells 
and CD5+ B cells in the spleen. Also, TAM-treated mice had less severe proteinuria 
and increased survival rate compared to controls [74].

On the other hand, it has been described that NZB/W F1 males have higher 
levels of a population of Gr1highLy-6G + CD11b + myeloid cells that protect 
them against lupus development [75]. This population is testosterone-regulated 
and suppresses autoantibody production in vivo. Additionally, Gr1+ cells from 
NZB/W F1 males suppress the differentiation and effector function of CXCR5+ 
PD-1+ T follicular helper cells, germinal center formation, and plasma cell dif-
ferentiation [76].

Since sex hormones can bind transcription factors, they might affect autoimmu-
nity via their effects on gene transcription. Accordingly, it has been demonstrated 
that estrogen upregulates the expression of IFN-γ through the ERα [71].

Additionally, the expression of interferon regulatory factor 5 (IRF5), a lupus 
susceptibility factor that controls the expression of type I IFNs, is higher in NZB/W 
F1 females than in males. IRF5 expression also depends on ERα expression, because 
of splenic cells from ERα knockout female express lower levels of IRF5 [77]. This 
suggests a (positive) feedback loop between the IFNs and estrogens since activation 
of type I IFNs or IFN-γ signaling upregulates the expression of ERα [78].

Other studies have provided evidence that lupus-associated miRNAs are 
differentially expressed in splenocytes of NZB/W F1 male and female mice. 
Additionally, these miRNAs were upregulated by estrogen treatment [79]. miRNAs 
regulate the expression, mainly at the post-transcriptional level, of some genes 
that are important in the development of the innate and adaptive immune system 
and the maintenance of immune homeostasis. Dysregulation of miRNAs impacts 
the function of different types of immune cells causing a breakdown of immune 
tolerance and ultimately the development of autoimmune-related disorders such as 
SLE [80].

7. Treatment of murine SLE

Different treatments to improve lupus have been evaluated in the NZB/W F1 
murine model. In this section, we will review some well-documented procedures.

Interleukin-6 (IL-6) is a multifunctional cytokine synthetized by macrophages, 
monocytes, and B and T cells. IL-6 is critical for B cell differentiation and matura-
tion, immunoglobulin secretion, cytotoxic T cell differentiation, acute-phase 
protein production, bone marrow progenitor stimulation, renal mesangial cell 
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proliferation, and macrophage/monocyte functions. Lupus mice treated with 
anti-IL-6 mAb reduce B cell proliferation, the ds-DNA antibodies production, 
and kidney damage [81]. Additionally, treatment with antibodies against the IL-6 
receptor (IL6R-mAb) inhibits the production of anti-DNA and anti-TNP IgGs 
antibodies, and consequently, this treatment increases the survival of the mice [82]. 
Tocilizumab, an anti-IL6R-mAb commercialized mainly for the treatment of rheu-
matoid arthritis [83], has been evaluated in SLE patients. This procedure decreases 
anti-dsDNA antibody levels and circulating plasma cells and improves arthritis and 
medical scores [84].

Interleukin-10 (IL-10) is a cytokine produced by subsets of activated T cells and 
macrophages. It mediates a variety of both immunostimulatory and immunosup-
pressive properties. IL-10 neutralization with anti-IL-10 delays the onset of the 
disease, increasing survival from 10 to 80% in mice at 9 months. Autoimmunity 
protection by IL-10 antagonism appeared to be due to an upregulation of endog-
enous tumor necrosis factor alpha (TNF-α) [85].

TNF-α is a pleiotropic cytokine with immunostimulatory and proinflam-
matory activities. TNF-α stimulates T and B cell proliferation, immunoglobulin 
synthesis, enhances natural killer (NK) cell activity, and boosts neutrophil 
activation. The NZB/W F1 mice have reduced levels of TNF-α, and their treat-
ment with recombinant TNF-α increased their survival [86]. Infliximab, a TNF-α 
blocking antibody, was evaluated in short- and long-term therapy in SLE patients 
showing several adverse effects in long-term therapy [87]. Infliximab and 
Etanercept are another TNF-α blockers commercialized mainly to treat rheuma-
toid arthritis [88, 89].

Type I interferons (IFN) are primarily regarded as inhibitors of viral replica-
tion. However, type I IFN, mainly IFN-α, plays a major role in activation of both 
the innate and adaptive immune system [90]. IFN-α signature precedes the onset 
of lupus in NZB/W F1 mice and in humans. Treatment with a vaccine that induces 
the secretion of anti-IFN-α neutralizing antibodies causes a delay in proteinuria 
development, low deposits of immune complexes, and increases survival [91]. 
Two antibodies against IFN-α, Sifalimumab and Rontalizumab, evaluated in SLE 
patients correlate with improvements in disease activity [92, 93].

BAFF is a B cell-activating factor essential for the survival of B cells. BAFF is 
produced predominantly by myeloid cells and binds to three distinct receptors on the 
B cell surface; the transmembrane activator and calcium modulator ligand interactor 
(TACI), the B cell maturation antigen (BCMA), and the BAFF receptor. Treatment 
with soluble TACI-Ig fusion protein inhibits the development of proteinuria and pro-
longs animal survival [94]. Besides, a short course of TACI-Ig and CTLA4-Ig induces 
a profound depletion of splenic B cells, prolong life, and even reverse proteinuria 
in aged NZB/W F1 mice [95]. Atacicept is a recombinant fusion protein that blocks 
activation of B cells by binding to TACI ligands. In SLE patients, the Atacicept treat-
ment favors the reductions in disease activity and severe flares [96].

CD20 is a transmembrane phosphoprotein specifically expressed on B cells. 
Depletion of B cells with a monoclonal antibody against CD20 favors the survival 
of aged NZB/W F1 mice [97]. Rituximab, an anti-CD20 monoclonal antibody fre-
quently used in SLE patients improves lupus nephritis, arthritis, serositis, cutane-
ous vasculitis, mucositis, rashes, fatigue, and neurologic symptoms [98]. Although 
rituximab’s mechanisms of action are not known, its effects are likely mediated by 
antibody-dependent cell-mediated cytotoxicity and the induction of apoptosis on 
B cells [99].

Mammalian target of rapamycin (mTOR) is a protein kinase that regulates 
different cellular processes such as cell proliferation, growth, motility, cell survival, 
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protein synthesis, and transcription. NZB/W F1 mice treated with rapamycin 
(a drug used in rejection prophylaxis in solid organ transplantation) from 12 to 
37 weeks of age inhibit the production of autoantibodies, development of pro-
teinuria, and prolong mouse survival [100]. Moreover, in mice with established 
nephritis, rapamycin suppressed the interstitial infiltration of T cells, B cells, and 
macrophages [101].

Antigen presentation process involves costimulatory molecules CD28, and 
CTLA4 expressed on T cells, representing activation or inhibitory signals to T 
cells. CD28 and CTLA4 bind with medium or high affinity, respectively to B7, 
i.e., expressed on antigen-presenting cells (APCs) [102]. Abatacept is a fusion 
CTLA4-Ig protein that interrupts the interaction of B7 with CD28. NZB/W F1 mice 
that express murine CTLA4-Ig exhibit an improvement in all of lupus symptoms 
increasing survival [103]. In humans, Abatacept is mainly used in rheumatoid 
arthritis [104], although there are some SLE studies, one of them showing improve-
ment in skin lesions in SLE patient [105].

Based on studies done in mouse models, most clinical trials have focused on 
agents that control B and T lymphocytes activations and functions. Figure 1 shows 
some therapeutic targets investigated in mouse models of SLE (as described in  
[82, 85, 91, 95, 97, 103, 106–110]), many of which where then follow up in clinical 
trials [88, 89, 92, 98, 104, 111–118].

Figure 1. 
Immune cells contribution to SLE and potential targets for lupus therapies, as tested in mouse models: 
Defects in phagocytosis of apoptotic cells leads to the presentation of autoantigens by APC to naive CD4 
T cells. Activated T cells help the differentiation of B cell into plasma cells that secrete high levels of 
autoantibodies. These autoantibodies form immune complexes by binding to autoantigens, and engaging Fcγ 
receptors on different cell types. This supports inflammation and tissue destruction through the recruitment 
of inflammatory cells to tissues. APC: Antigen-presenting cell, IC: Immune complexes, mAb: monoclonal 
antibody. Texts on the right side of the figure show the different targets tested for lupus therapy. Drug names 
are shown in brackets
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8. Conclusions

The spontaneous mouse model of lupus NZB/W F1 has been important to 
elucidate the pathogenesis of SLE. In this model, the lupus-like phenotypes include 
lymphadenopathy, splenomegaly, elevated serum antinuclear autoantibodies 
including anti-dsDNA IgG, and immune complex-mediated glomerulone-
phritis that are remarkably similar to the pathology described in human lupus. 
Consequently, it has provided a powerful tool to our knowledge on human lupus 
disease and the development of novel therapies. Additionally, similar to humans, 
lupus develops primarily in female NZB/W F1 mice with lesser percentage and 
severity in male. The female predominance of the disease remains poorly under-
stood; however, hormonal contributions to immune system activation and X 
chromosome gene-dose effect have been proposed to be the important contributor 
to sex bias [66]. On the other hand, unlike SLE patients, NZB/W F1 mice do not 
manifest skin disease or arthritis [3].

Furthermore, human and murine lupus is characterized by a deregulation in 
autoreactive T helper cells, B and DC cells activation, and cytokine production. 
Defective function of regulatory T cells, inefficient clearance of immune complex 
and biological waste, nucleic acid sensing and IFN production pathways are also 
involved in the loss of tolerance and tissue damage associated to lupus [119]. 
The use of mouse models has allowed the study of the mechanisms involved in 
the cellular immune abnormalities, providing a powerful tool to identify novel 
pathways and targets for disease therapies. Several components of the immune 
system, such as cytokines, B cells, T cells, and hormones have been identified as 
potential targets for novel drugs. The side effects, dosage regimens, and response 
to treatment are first tested on murine models of lupus prior they go to clinical 
trials. Murine models of disease represent genetically homogeneous populations 
and in contrast to humans that take chronic doses of immunosuppressant, they 
allow for examination in the absence of any therap. Despite favorable results in 
mouse studies, many therapies have failed to meet clinical end points. This is 
probably because of the complexity of the disease, which involves the contribu-
tion of environmental and genetic susceptibility factors [119]. However, some 
of the therapeutic approaches have been successful recommended for SLE treat-
ment, like Belimumab, a humanized monoclonal antibody directed against B cell 
activating factor. Additionally, other available agents such as rituximab, tacroli-
mus, azathioprine, methotrexate, cyclophosphamide, and mycophenolate mofetil 
are widely used off-label in SLE [9, 120].

The use of murine models has identified several novel candidate genes, and 
some of them have been associated to SLE in humans. An important contribution 
of the genetic studies in NZB/W F1 was the identification, in chromosome 1, of 
Sle1 and Nba2 loci, which are responsible for the production of autoantibodies. 
Sle1 and Nba2 encode members of the FcγR, SLAM, and IFN-inducible receptor 
families.

As sustained above, all the mouse models, and specifically the NZB/W F1, have 
the benefit of having a shorter evolution of the disease, allowing to investigate the 
full progression of the disorder and its pathophysiology and to test for possible 
therapies in a much shorter time period. In spite of their limitations and the fact 
that one cannot readily extrapolate to the human disease, mouse models of lupus 
have significantly helped researchers to advance our knowledge on this syndrome, 
adding relevant data on the pathogenesis of lupus and providing investigators with 
a valuable preclinical model for the design of future therapies. In spite of the vari-
ous differences found between the human and mouse immune systems, there are 
sufficient similarities in the manifestation of the disease to be optimistic regarding 
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the use of this mouse model to further advance in our understanding of the physiol-
ogy of the human disease and the formulation of creative new therapies.
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