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Chapter

Tortuosity Perturbations Induced
by Defects in Porous Media
Fatma Graja and Claude Depollier

Abstract

In this chapter, we describe the effects of defects in a homogeneous saturated
porous medium. Defects are modelized by inclusions which disturb the motion of
the viscous fluid flowing in the pore space of the medium. The seepage rate of the
fluid in the host medium and in the inclusion is given by the Darcy’s law. Distur-
bances thus produced modify the shape of the stream lines from which we establish
the tortuosity induced by the defects and its implications on the acoustic waves
propagation in saturated porous media.

Keywords: tortuosity, defects, porous media, refractive index

1. Introduction

Among the essential physical parameters to describe the microstructure of
porous media, tortuosity is one of the most important parameters. For a review, we
can refer to the paper of Ghanbarian et al. [1].

Tortuosity was introduced as a correction to the permeability of Kozeny’s model
[2] of porous media defined by the Darcy’s law relating the fluidic characteristics
and pore space of the medium [3]:

v ¼ � k

η
∇p, (1)

where v is the seepage rate of the fluid, η the viscosity coefficient of the fluid, ∇p
is the pressure gradient applied to the medium, and k is its permeability. The
Kozeny’s model was developed in the framework of straight and parallel streamlines
in porous media. Carman has generalized it to neither straight nor parallel stream-
lines by introducing the hydraulic tortuosity τ defined by:

τ ¼ < λ>

L
: (2)

When a fluid flows through a porous medium from point A to point B distant
from L (Euclidean distance) (Figure 1), it follows different paths whose mean
length is < λ> , where λ is the length of the different paths connecting these two
points. In isotropic media, the tortuosity is a scalar number greater than unit
(< λ> ≥L), whereas for the low porous media, its values may be greater than 2;
they range from 1 to 2 for high porosity media such as fibrous materials and some
plastic foams.
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The lengthening of the field paths in porous media due to tortuosity does not
only occur in the flow of fluids in porous media, but is a more general result. So we
meet this concept in processes such as transport phenomena, particles diffusion,
electric conductivity, or wave propagation in fluid saturated porous media.
Researchers have thus developed many theoretical models adapted to their concerns
to introduce the tortuosity, leading to unrelated definitions of this concept. For
instance, Saomoto and Katgiri [4] presented numerical simulations to compare
hydraulic and electrical tortuosities. Thus, using numerical models of fluid flow and
electric conduction in same media, i.e., with the same local solid phase arrange-
ments, the authors show that while electrical tortuosity remains close to the unit
whatever the porosity and the shape of the grains, the stream lines of hydraulic flow
are much more concentrated in some parts of the medium, leading to a much
greater tortuosity.

This example shows that although the physical meaning of this parameter is
obvious, in practice, it is not consistent and its treatment is often misleading. The
conclusion that emerges from these observations is that tortuosity should not be
viewed as an intrinsic parameter of the environment in which the transport process
develops, but rather as a property of this process. This partly explains why there are
different definitions of tortuosity, each with its own interpretation.

In acoustics of porous media, tortuosity has been introduced to take into account
the frequency dependence of viscous and thermal interactions of fluid motion with
the walls of pores. In [5], Johnson uses it to renormalize the fluid density ρf . When

the viscous skin depth is much larger than the characteristic dimensions of the pore,
Lafarge et al. [6] have shown that the density of the fluid is equal to ρf τ0, where τ0 is

the static tortuosity for a constant flow (ω ¼ 0) defined by:

τ0 ¼ <v2
>

<v> 2
, (3)

where < :> denotes averaging over the pore fluid volume Vf . Thereafter, in this

chapter, we adopt this definition of tortuosity.
Through the definition (3), we see that the tortuosity is given as soon as the

permeability of the porous medium is known in each of its points. As it is well
known, many factors can affect the fluid flow in porous media, including pore
shape, distribution of their radii, and Reynolds number to name a few. It follows
that the presence of defects in an initially homogeneous medium (for instance, a
local change of an intrinsic parameter) can be an important disturbance of the fluid
motion, the result being a modification of the shape of the streamlines.

Figure 1.
Some tortuous paths through a porous medium.
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Taking into account the presence of defects that change the permeability of
the porous medium leads to the notion of effective permeability (keff ). In

general, the keff value is not unique but depends on the chosen model for the

homogenization of the porous medium. The homogenization process only makes
sense for lower scales than the spatial variations of incident excitation, which
therefore justifies that mobility is calculated for a low-frequency filtration rate
(quasi-static regime). These considerations lead us to be interested only in the
instantaneous individual response of defects to external solicitations. Since in our
case only media with low levels of defect are considered, it is legitimate to ignore
their mutual interactions.

The present chapter is organized as follows. Section 2 describes the
mathematical model of the defects and gives the solution of the fluid flow in
the presence of homogeneous and layered spherical and ellipsoidal defects.
Then, the results are generalized to anisotropic defects. Finally, the hydraulic
polarizability is introduced. Section 3 is relative to tortuosity. The expression
of effective mobility is given for some particular defects. The induced tortuosity
is deduced from the previous results and its effects on the wave propagation
are given.

2. Defect model

In this chapter, what is called defect is a local change of permeability k. Such a
change is due, for instance, to variations in porosity in the microstructure of the
medium. In this chapter, a defect is modelized as a porous inclusion Ω characterized

by its shape and own parameters: intrinsic permeability k ið Þ and porosity ϕ ið Þ.

Intrinsic permeability is expressed in darcy: 1D ¼ 0:97 � 10�12m2. The porous
media we are interested in have permeabilities of the order of 10D. Moreover, it is
supposed that the fluid saturating the inclusion Ω is the same (with viscosity
coefficient η) as that flowing in the porous medium. Thereafter the mobility of the
fluid defined by κ ¼ k=η is used. This notion combines one property of the porous
medium (permeability) with one property of the fluid (viscosity). The inclusion is

embedded in a porous medium with porosity ϕ oð Þ and permeability k oð Þ. The satu-

rating fluid is subject to action of a uniform pressure gradient ∇p 0ð Þ. In the sequel,
we use indifferently the words defect or inclusion.

2.1 Mathematical formulation

When the fluid flows through the porous medium, its motion is perturbed by the
defects in the microstructure of the medium. Within the porous medium, the
velocity v and the pressure gradient ∇p are related by the Darcy’s law:

v mð Þ xð Þ ¼ k mð Þ xð Þ
η

∇p mð Þ xð Þ, (4)

where m ¼ i if x∈Ω and m ¼ o if x is in the host medium (x∉Ω). These
equations are subject to the following boundary conditions on ∂Ω:

• continuity of fluid flow

ϕ oð Þv oð Þ:n oð Þ ¼ ϕ ið Þv ið Þ:n ið Þ, (5)
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• continuity of normal stress component

τ
oð Þ
ij n

oð Þ
j ¼ τ

ið Þ
ij n

ið Þ
j (6)

where n oð Þ and n ið Þ are unit vectors perpendicular to the interface. The hypothe-
sis that Darcy’s law governs the dynamics of the flow of fluid in a porous excludes
inclusions filled with fluid. Indeed, within such inclusions, the movement of the
fluid is governed by the Navier-Stokes equations, which are impossible to reconcile
with the law of Darcy in the porous medium with the available boundary conditions
[7]. Figure 2 represents an oriented inclusion in a fluid in motion.

A porous medium of infinite extension is considered in which a viscous fluid
flows at a constant uniform velocity U∞ under the action of the pressure gradient
along the Ox axis. We want to determine the local changes of the fluid velocity
when defects are present in the medium.

In the following, we give the solutions of Eqs. (4)–(6) for some particular defects in
such situation. Analytical solutions are possible for homogeneous spherical and ellipsoi-
dal inclusions.We showthat themost important characteristic of these inclusions is their
hydraulic dipolemoment. For layered defects, i.e., when their permeability is a piece-
wise constant function, we give amatrix-basedmethod to get their dipolarmoment.

2.2 Isotropic homogeneous defect

In this section, we assume that the background and the defect (embedded

inclusion) are homogeneous each with its own parameters: porosity ϕ oð Þ and ϕ ið Þ and

permeability k oð Þ and k ið Þ which have constant values. A static incident pressure with
a constant gradient along Ox axis is applied to this system. What we seek is the
pressure perturbation produced by the defect acting as a scatter and the expressions
of the resulting seepage rate of the fluid inside and outside the porous inclusion.

2.2.1 Spherical defect

The simplest type of inclusion is the homogeneous spherical one, and we con-
sider a porous sphere of radius r ¼ a, centered at the origin of axes with a constant

permeability k oð Þ. Using the spherical coordinates (r, θ, φ), Eqs. (4)–(6) become

Figure 2.
Oriented inclusion in a porous medium.
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v mð Þ ¼ k mð Þ

η
∇p mð Þ where

m ¼ i if r< a

m ¼ o if r> a

�

(7)

with the boundary conditions at r ¼ a:

ϕ ið Þvr
ið Þ r ¼ að Þ ¼ ϕ ið Þvr

ið Þ r ¼ að Þ, τ oð Þ
rr r¼a ¼ τ ið Þ

rr

�

�

�

�

r¼a
∀θ, (8)

where

τrr ¼ ϕ �pþ 2η
∂vr
∂r

� �

, (9)

vr being the radial component of the velocity. For an incompressible fluid,
Eq. (4) becomes

Δp mð Þ ¼ 0 m ¼ i, o: (10)

In spherical coordinates, this equation is written as:

Δp ¼ ∂

∂r
r2

∂p

∂r

� �

þ 1

sin θ

∂p

∂θ
sin θ

∂p

∂θ

� �

þ 1

sin 2θ

∂
2p

∂
2φ

: (11)

The spherical symmetry of the problem (Figure 3) implies that the solution does
not depend on φ. It follows that its solution is:

p mð Þ r; θð Þ ¼ ∑
l

A
mð Þ
l rl þ B

mð Þ
l r� lþ1ð Þ

� �

Pl cos θð Þ, (12)

Pl xð Þ being the Legendre polynomial of degree l. The coefficients A
mð Þ
l and B

mð Þ
l

are related by the boundary conditions (8), those at r ¼ 0 and when r ! ∞. Inside

the inclusion, the pressure must be finite at r ¼ 0. This condition leads to B
ið Þ
l ¼ 0

for all l. So p ið Þ becomes:

p ið Þ r; θð Þ ¼ ∑
l

A
ið Þ
l rlPl cos θð Þ: (13)

Figure 3.
Spherical inclusion in a fluid flow.
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Outside, far from the inclusion, the pressure is:

p oð Þ � � 1

κ oð Þ U∞rcosθ: (14)

It follows that the condition

p oð Þ r ¼ a; θð Þ ¼ p ið Þ r ¼ a; θð Þ ∀θ, (15)

which implies that only the term with l ¼ 1 remains in the sum. Thus, we get:

A
oð Þ
1 ¼ � 1

κ oð Þ U∞: (16)

The expressions of the pressure are then:

p ið Þ ¼ A
ið Þ
1 rcosθ if r< a, (17)

p oð Þ ¼ �U∞

κ oð Þ rcosθ þ B
oð Þ
1 r�2cosθ if r> a, (18)

A
ið Þ
1 and B

oð Þ
1 been given by the conditions (8). Finally, these expressions are:

p ið Þ r; θð Þ ¼ �ϕ oð Þ

ϕ ið Þ
U∞

κ oð Þ
3þ 12 k oð Þ

a2

2þ k ið Þ

k oð Þ þ 12 k ið Þ

a2

0

@

1

Ar cos θ, r< a (19)

p oð Þ r; θð Þ ¼ �U∞

κ oð Þ r cos θ þ
U∞

κ oð Þ
a3

r2

k ið Þ

k oð Þ � 1

2þ k ið Þ

k oð Þ þ 12 k ið Þ

a2

0

@

1

A cos θ, r> a (20)

For defects with radius r � 10�2, 10�3m, the quantities k ið Þ=a2 and k oð Þ=a2 are

very small compared to unit (≃ 10�5, 10�6) and can be neglected.
The velocity is deduced from the pressure due to Darcy’s law.

• The pressure inside the inclusion (19) describes a constant velocity field. When
the porosities of host medium and inclusion are substantially equal, then the
fluid velocity is uniform (constant and aligned with the applied pressure
gradient) with value

v ið Þ ¼ U∞
3

1þ 2 κ oð Þ

κ ið Þ

: (21)

If κ ið Þ
> κ oð Þ, then v ið Þ

>U∞. In this case, the fluid passes preferentially through
the inclusion and in the vicinity of the inclusion, the streamlines in the host medium

are curved toward the inclusion. We have the inverse conclusion if κ ið Þ
< κ oð Þ. When

κ oð Þ ! 0, i.e., for low permeability k oð Þ, then v ið Þ � 3U∞. If κ ið Þ ! 0, then v ið Þ ! 0.
Eq. (21) can also be written in the form:

v ið Þ ¼ U∞
κ ið Þ

κ oð Þ þ 1
3 κ ið Þ � κ oð Þð Þ (22)

which will be generalized for the ellipsoidal inclusion.
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• Outside the inclusion, the pressure is the sum of the applied pressure plus a
dipolar contribution due to a induced dipole centered at the origin, the dipolar
moment Psph of which is

Psph ¼ 4πa3U∞κ
ið Þ

k ið Þ

k oð Þ � 1

2þ k ið Þ

k oð Þ

0

@

1

A: (23)

The corresponding density of induced “hydraulic” surface charges is

σsph θð Þ ¼ 4πa3U∞κ
ið Þ

k ið Þ

k oð Þ � 1

2þ k ið Þ

k oð Þ

0

@

1

A cos θð Þ: (24)

In the host medium (r> a), the components of the seepage rate are:

v oð Þ
r ¼ �U∞ cos θ 1þ 2

a3

r3

κ ið Þ

κ oð Þ � 1

2þ κ ið Þ

κ oð Þ

 ! !

, (25)

v
oð Þ
θ ¼ U∞ sin θ 1� a3

r3

κ ið Þ

κ oð Þ � 1

2þ κ ið Þ

κ oð Þ

 ! !

: (26)

Figure 4 represents the seepage rate in the porous medium for κ ið Þ
> κ oð Þ.

Figure 4a shows the levels of the amplitude of the velocity, while Figure 4b shows
its stream lines.

So the response developed by a defect when submitted to a pressure gradient is
an induced dipole P. When dealing with linear phenomena (low filtration speed),
this response is proportional to its cause, the proportionality factor depending only
on the shape of the defect, its volume, and on the ratio of its mobility to that of the
host medium. In our case, the dipole moment is

Psph ¼ α �U∞ð Þ, (27)

where α is a susceptibility which assesses the polarizability, i.e., the capacity of

the porous inclusion to induce a dipole Psph under the action of excitation �U∞=κ
oð Þ.

For a spherical inclusion of volume V, the susceptibility α is:

Figure 4.

Fluid flow through an inclusion in a porous medium: (a) velocity levels and (b) streamlines (κ ið Þ=κ oð Þ
> 1).
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α ¼ 3Vκ ið Þ
k ið Þ

k oð Þ � 1

2þ k ið Þ

k oð Þ

0

@

1

A: (28)

Often, the quantity χ ¼ α=κ ið ÞV which does not depend on the volume of the

inclusion is more relevant. Its variations as function of the ratio κ ¼ κ ið Þ=κ oð Þ are

shown in Figure 5. They range from �3/2 when κ ið Þ
<< κ oð Þ to 3 when κ ið Þ

>> κ oð Þ. In
the following, it is convenient to put the external pressure in the form:

p oð Þ r; θð Þ ¼ �U∞

κ oð Þ rcosθ þ
Psph

4π

cosθ

r2
(29)

2.2.2 Ellipsoidal defect

In addition to the interest that ellipsoidal inclusion has an exact analytical solu-
tion, its study (its study) allows us to understand the effects of the shape of the
defects on the fluid motion. Indeed, ellipsoidal surface can be seen as a generic
element of a set of volumes comprising the disc, the sphere, and the oblong shape
(needle) and so the nonsphericity can be appreciated through the values of its
polarizability. The general ellipsoidal inclusion having semiaxes a, b, and c aligned
with the axes of the Cartesian coordinates system and centered at the origin is
described by the following equation:

x2

uþ a2
þ y2

uþ b2
þ z2

uþ c2
¼ 1, (30)

where x, y, and z are the position coordinates of any point on the surface of the
ellipsoid. Eq. (30) has three roots ξ, η, and ζ which define the surfaces coordinates:
surfaces with constant ξ are ellipsoids, while surfaces with constant η or ζ are
hyperboloids. Surfaces of confocal ellipsoids are described by adjusting the scalar u.
So, two ellipsoids defined by (30) with u ¼ u1 and u ¼ u2 are called confocal if their
semi axes obey to the conditions

Figure 5.

Hydraulic polarizability χ ¼ α=κ ið ÞV of a spherical inclusion vs log (k).
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a21 � a22 ¼ b21 � b22 ¼ c21 � c22 (31)

where ai, bi, and ci are their respective semiaxes. Some results related to the
ellipsoid are given in Appendix A.

Let p rð Þ be the pressure with a constant gradient directed along the Ox axis
applied to the porous medium (Figure 6). In absence of defect, its expression is:

p rð Þ ¼ p0 xð Þ ¼ Ex ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ξð Þ a2 þ ηð Þ a2 þ ζð Þ
b2 � a2
	 


c2 � a2ð Þ

s

(32)

where E ¼ �U∞=κ
oð Þ. In this relation, ξ, η, and ζ are the ellipsoidal coordinates

given in Appendix A. Here, the field p0 xð Þ can be viewed as an “incident pressure.”
When the inclusion is embedded in the porous medium, it produces perturba-

tions in the fluid motion giving rise to the “scattered” pressure. When the filtration
rate is low, the scattering by the inclusion is a linear phenomenon, leading to the
following expression of the scattered pressure:

psc rð Þ ¼ p0 xð ÞF ξð Þ: (33)

where F ξð Þ is a proportional coefficient. For psc rð Þ to be a solution of the Laplace
equation, it must verify the differential equation:

d2F

dξ2
þ dF

dξ

d

dξ
ln R ξð Þ ξþ a2

	 
� �	 


¼ 0 (34)

where R σð Þ ¼ a2 þ σð Þ b2 þ σ
	 


c2 þ σð Þ. F ξð Þ is then the sum of the two functions
F1 ξð Þ þ F2 ξð Þ, where F1 xð Þ ¼ A is a constant and F2 xð Þ is

F2 ξð Þ ¼
ð∞

ξ

dσ

σ þ a2ð ÞR σð Þ : (35)

Thus, the pressure outside the inclusion is

p rð Þ ¼ p0 xð Þ A� B

2

ð∞

ξ

dσ

σ þ a2ð ÞR σð Þ


 �

: (36)

Figure 6.
Ellipsoidal inclusion in a fluid flow.
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The two constants A and B are determined by the boundary conditions at the
surface ξ ¼ 0 of the inclusion:

1. continuity of fluid flow at ξ ¼ 0:

ϕ eð Þκ eð Þ 1

hξ

∂p eð Þ

∂ξ
¼ ϕ ið Þκ ið Þ 1

hξ

∂p ið Þ

∂ξ
, (37)

2. continuity of the stress component τξξ in fluid at ξ ¼ 0:

ϕ eð Þ �p eð Þ þ 2η
1

hξ

∂v
eð Þ
ξ

∂ξ

 !

¼ ϕ ið Þ �p ið Þ þ 2η
1

hξ

∂v
ið Þ
ξ

∂ξ

 !

(38)

where vξ is the normal component of the seepage flow to the surface ξ ¼ 0 given
by the Darcy’s law:

vλi ¼ �κ
1

hλi
∂λip, λi ¼ ξ, η, ζ: (39)

In these relations, the coefficients hλi are the scale factors of ellipsoidal
coordinates given in Appendix A. We obtain the values of the pressure such that:

1. within the inclusion:

p ið Þ xð Þ ¼ κ oð Þ

κ oð Þ þNx κ ið Þ � κ oð Þð Þ p0 xð Þ, (40)

2. outside the inclusion:

p oð Þ xð Þ ¼ p0 xð Þ þ psc xð Þ ¼ p0 xð Þ � abc κ ið Þ � κ oð Þ	 


κ oð Þ þNx κ ið Þ � κ oð Þð Þ p0 xð ÞF2 ξð Þ: (41)

Far from the center of the inclusion, ξ≈ r2, the scattered pressure can be
approximate by:

psc xð Þ≈ abc κ ið Þ � κ oð Þ	 


κ oð Þ þNx κ ið Þ � κ oð Þð Þ p0 xð Þ
ð

r2

dr

r5=2

≈
abc κ ið Þ � κ oð Þ	 


κ oð Þ þNx κ ið Þ � κ oð Þð Þ
x

3r3
E:

(42)

The right-hand side of Eq. (42) is the expression of pressure produced by a
dipole aligned with the axis Ox. From the expression of the speed within the
inclusion:

v ið Þ ¼ U∞
κ oð Þ

κ oð Þ þNx κ ið Þ � κ oð Þð Þ , (43)

the dipole moment is then

Pelli,a ¼ �VU∞κ
ið Þ κ ið Þ � κ oð Þ	 


κ oð Þ þNx κ ið Þ � κ oð Þð Þ : (44)

10
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Here, V is the volume of the ellipsoidal inclusion. The factor Nx,

Nx ¼
abc

3

ð∞

0

dσ

σ þ a2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ þ a2
p

Þ σ þ b2
	 


σ þ c2ð Þ
, (45)

describes how the dipole moment of the inclusion changes with its shape and its
orientation in relation with the incident pressure field. The geometric parameters
Nx, Ny, and Nz appear for the first time in hydrodynamics [8] to describe the
disturbance brought by a solid immersed in an infinite fluid in uniform motion.
Their values were computed by Stoner [9] and Osborn [10]. The name “depolari-
zation factors” comes from electromagnetism (see, for example, Landau and
Lifchitz [11]).

From Eq. (163), it is possible to find the values of the depolarization factors of
some particular inclusions such as:

• spherical inclusion Nx ¼ Ny ¼ Nz ¼ 1=3,

• inclusion in disc form (axis Oz) Nx ¼ Ny ¼ 0, Nz ¼ 1, and

• oblong inclusion Nx ¼ Ny ¼ 1=2, Nz ¼ 0.

Figure 7 is a plot of depolarization factors of a ellipsoidal inclusion having two
equal semiaxes according to their ratio.

The expression of psc xð Þ given by (42) is not exact since it is a result of the

approximation ξ � r2, i.e., far from the inclusion, where only the dipolar effects are
relevant.

In the case of an ellipsoidal inclusion, the polarizability is no longer a scalar but is
a tensor. Its eigenvalues are polarizabilities along the axes of the ellipsoid. So, we
can write the dipole moment (44) as Pelli,a ¼ αaU∞, where αa is the eigenvalue of
the tensor polarizability along its principal direction Ox which defines the polariz-
ability along this axis. In Figure 8, we depict the variations of the susceptibility χ as

Figure 7.
Depolarization factors for a ellipsoidal inclusion with semiaxes (a, a, b) as functions of a/b.
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function of κ ið Þ=κ oð Þ for different sets of the depolarization factors when incident
pressure is along Ox.

The pressure outside the inclusion is then:

p oð Þ r; θð Þ ¼ �U∞

κ oð Þ r cos θ þ
Pelli,a

4π

cos θ

r2
: (46)

This relation is similar to (29), differing from it only by the expression of the
dipole moment. The fundamental difference between the spherical and ellipsoidal
inclusions is that the pressure scattered by the sphere contains only a dipolar field,
whereas in strictness, the ellipsoid also scatters high-order multipolar fields. We can
then deduce from this remark that the more the shape of the inclusion is distant
from that of the sphere, the more the scattered pressure contains high-order
multipolar terms.

The result obtained in (42) does not show these terms since the calculation of the
integral F2 is an approximate computation when ξ=r≫ 1. When we move away from
the ellipsoidal inclusion, the multipolar terms of order greater than 2 decrease very
quickly, leaving only the contribution of the incident pressure and the dipole term
of the scattered pressure.

2.3 Inhomogeneous defect

In fact, defects rarely exhibit homogeneous structure. The parameter that char-
acterizes the defect (in our case the permeability) is generally a variable varying
according to a law which depends on the way in which the defect develops.

For the spherical defect, the simplest situation is the radial variation of the
permeability. The fundamental difference between homogeneous and

Figure 8.

Hydraulic polarizability χ ¼ αx=V of an ellipsoidal inclusion vs. log κ ið Þ=κ oð Þ	 


for different values of the
depolarization factors (Nx, Ny, Nz) (�•�: Nx ¼ 0:1, Ny ¼ 0:1, Nz ¼ 0:8); (�⋄�: Nx ¼ 0:2, Ny ¼ 0:2,
Nz ¼ 0:6); (�◀�: Nx ¼ 0:4, Ny ¼ 0:4, Nz ¼ 0:2); (�■�: Nx ¼ 0:45, Ny ¼ 0:45, Nz ¼ 0:1); (– – –:
Nx ¼ 1=3, Ny ¼ 1=3, Nz ¼ 1=3).
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inhomogeneous spherical inclusions is that in the latter case, the velocity field loses
its uniformity. The determination of the dipole moment requires a different
approach from that previously developed. Two cases are considered: (i) the perme-
ability is a piecewise constant function and (ii) the permeability is a continuously
varying function.

2.3.1 Layered spherical defect

Consider an inhomogeneous sphere of porous medium embedded in a homoge-
neous host medium. We assume that the permeability of the sphere depends only
on the radius and is a piecewise constant function, i.e., the sphere is a set of

nested spherical layers. The permeability of the background medium is k oð Þ,

that of the outermost layer is k 1ð Þ, and so on to the central sphere whose

permeability is k ið Þ.
To calculate the perturbation of the incident pressure due to the sphere seen as a

scatter, we proceed the following: the pressure field is calculated in each layer of the
sphere. The pressure field in the layer number n is related to those in the layer
number nþ 1 and n� 1 by the boundary conditions. It is assumed that the defect is
a set of N concentric spherical layers in which the value of permeability is constant

k nð Þ. Let κ nð Þ denotes the ratio k nð Þ=η in the layer number n delimited by the spheres
of radii rn and rnþ1 such that rn > rnþ1. The core of the sphere has index i ¼ N
(Figure 9). The determination of pressure and velocity in this type of inclusion

consists in solving the Laplace equation Δp nð Þ ¼ 0 in each layer and in connecting
the solutions using the boundary conditions: continuity of fluid flow and that of the
radial component of the stress.

In the layer number n, the pressure is noted:

p nð Þ ¼ A nð Þr cos θ þ B nð Þr�2 cos θ: (47)

The coefficients A and B of two consecutive layers are connected by the follow-
ing conditions in r ¼ rnþ1:

ϕ nð Þv nð Þ
r r ¼ rnþ1ð Þ ¼ ϕ nþ1ð Þv nþ1ð Þ

r r ¼ rnþ1ð Þ, (48)

τ nð Þ
rr r ¼ rnþ1ð Þ ¼ τ nþ1ð Þ

rr r ¼ rnþ1ð Þ: (49)

Figure 9.
Layered sphere.
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Transfer matrix: The linearity of the problem makes it possible to write that the
pairs of coefficients (An, Bn) and (Anþ1, Bnþ1) are linked by a matrix equation such
that:

A nð Þ

B nð Þ

 !

¼ Tn,nþ1
A nþ1ð Þ

B nþ1ð Þ

 !

, (50)

where Tn,nþ1 is the transfer matrix between the two consecutive layers n and
nþ 1, the entries of which are:

T11 ¼
ϕ nþ1ð Þ

ϕn

k nþ1ð Þ

kn
þ 2

1� k nþ1ð Þ

kn

3þ 12knr�2
n

 !

, (51)

T12 ¼ 2
ϕ nþ1ð Þ

ϕn r�3
n � knþ1

kn
þ 1þ 2 k nþ1ð Þ

kn þ 12k nþ1ð Þr�2
n

3þ 12knr�2
n

 !

, (52)

T21 ¼
ϕ nþ1ð Þ

ϕn r3n
1� k nþ1ð Þ

kn

3þ 12knr�2
n

 !

, (53)

T22 ¼
ϕ nþ1ð Þ

ϕn

1þ 2 k nþ1ð Þ

kn þ 12k nþ1ð Þr�2
n

3þ 12knr�2
n

 !

: (54)

From A0 ¼ �U∞=κ
oð Þ and B ið Þ ¼ 0, it is possible to get the pressure in each layer

of the sphere.
The effects of two consecutive layers are obtained by the product of the transfer

matrices of each of these layers. So from the matrix equations:

A nð Þ

B nð Þ

 !

¼ Tn,nþ1
A nþ1ð Þ

B nþ1ð Þ

 !

, (55)

A nþ1ð Þ

B nþ1ð Þ

 !

¼ Tnþ1,nþ2
A nþ2ð Þ

B nþ2ð Þ

 !

, (56)

we get:

A nð Þ

B nð Þ

 !

¼ Tn,nþ2
A nþ2ð Þ

B nþ2ð Þ

 !

, (57)

where Tn,nþ2 ¼ Tn,nþ1Tnþ1,nþ2.
Scattering matrix: Another way of linking the coefficients A and B of two

consecutive layers is the use of the scattering matrix Sn,nþ1. The scattering matrix
is sometimes more efficient than the transfer matrix for calculating the amplitudes
of the waves reflected and transmitted by an object subjected to incident waves. It is
such that:

B nð Þ

A nþ1ð Þ

 !

¼ Sn,nþ1
A nð Þ

B nþ1ð Þ

 !

: (58)

Its entries are:
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Sn,nþ1 ¼
1

κ nþ1ð Þ þ 2κ nð Þ
κ nþ1ð Þ � κ nð Þ	 


r3nþ1 3κ nþ1ð Þ

3κ nð Þ 2 κ nþ1ð Þ � κ nð Þ	 


r�3
nþ1

 !

: (59)

The scattering matrix of two consecutive layers is given by their Redheffer
product. From

B nð Þ

A nþ1ð Þ

 !

¼ Sn,nþ1
A nð Þ

B nþ1ð Þ

 !

, (60)

B nþ1ð Þ

A nþ2ð Þ

 !

¼ Snþ1,nþ2
A nþ1ð Þ

B nþ2ð Þ

 !

, (61)

we get:

B nð Þ

A nþ2ð Þ

 !

¼ Sn,nþ2
A nð Þ

B nþ2ð Þ

 !

, (62)

where Sn,nþ2 ¼ Sn,nþ1
∗ Snþ1,nþ2. In this relation, the right-hand side is the

Redheffer star product. For more details about the Redheffer star product, we can
refer to [12].

2.3.2 Spherical inclusion with continuously variable permeability

When κ is a continuous function of the variable r, the matrix Eq. (50) becomes
the system of differential equations:

d

dr

r3κ2dA=dr

dκ=dr

� �

þ r2κA ¼ 0 (63)

d

dr

κ2dB=dr

r3dκ=dr

� �

� 2κ

r4
B ¼ 0: (64)

2.3.3 Layered ellipsoidal inclusion

The generalization of the radial variation of the permeability of the spherical
inclusion to the ellipsoidal requires that the permeability only depends on ξ. This is
true in orthogonal directions at its surface. This condition entails that inside the
ellipsoid, the strata are limited by confocal ellipsoidal surfaces ξ ¼ ξk, i.e., having
the same foci as the surface ξ; hence, their semiaxes are related by the following
relations:

a2 � a2k ¼ b2 � b2k ¼ c2 � c2k: (65)

Consider a porous inhomogeneous ellipsoidal inclusion having the permeability

k ið Þ embedded in a background medium of homogeneous mobility κ oð Þ. We assume
that the mobility of the inclusion is stratified, i.e., it is a constant piecewise function

and each layer has its own mobility κ nð Þ. The mobility in the outermost layer is κ 1ð Þ,

that of the next layer is κ 2ð Þ, etc. to the central layer whose the mobilty is κ ið Þ. The
layers are limited by the confocal surfaces ξ ¼ ξk whose semiaxes obey (65) and are
numbered from 1 to i ¼ N from the outside to the inside, such that the strata n and
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nþ 1 have the common boundary ξ ¼ ξnþ1 (Figure 10). In each of these strata, the
pressure is the solution of the Laplace equation given by:

p jð Þ rð Þ ¼ �Ex A jð Þ � B jð Þ

2

ð∞

ξ

dσ

ð σ þ a2ð ÞR jð Þ σð Þ

" #

(66)

where

R jð Þ σð Þ ¼ a2j þ σ
� �

b2j þ σ
� �

c2j þ σ
� �

: (67)

In the layers n and nþ 1, the solutions of the Laplace equations are:

p nð Þ rð Þ ¼ �Ex A nð Þ � B nð Þ

2

ð∞

ξ

dσ

ð σ þ a2ð ÞR nð Þ σð Þ

" #

, (68)

p nþ1ð Þ rð Þ ¼ �Ex A nþ1ð Þ � B nþ1ð Þ

2

ð∞

ξ

dσ

ð σ þ a2ð ÞR nþ1ð Þ σð Þ

" #

(69)

with the boundary condition at ξ ¼ ξnþ1:

ϕ nð Þ 1

hξ nð Þ

∂p nð Þ

∂ξ
¼ ϕ nþ1ð Þ 1

hξ nþ1ð Þ

∂p nþ1ð Þ

∂ξ
, (70)

and

ϕ nð Þ �p nð Þ þ 2η
∂v

nð Þ
ξ

hξ nð Þ∂ξ

 !

¼ ϕ nþ1ð Þ �p nþ1ð Þ þ 2η
∂v

nþ1ð Þ
ξ

hξ nþ1ð Þ∂ξ

 !

: (71)

By proceeding in the same way as for the spherical cavity, one finds the transfer
matrix and the scattering matrix.

Transfer matrix: The transfer matrix of the ellipsoidal inclusion is:

Tn,nþ1 ¼
1

κ nð Þ
κ nð Þ þNx,nþ1 κ nþ1ð Þ � κ nð Þ	 
 Nx,nþ1 1�Nx,nþ1ð Þ

anþ1bnþ1bnþ1
κ nþ1ð Þ � κ nð Þ
� �

anþ1bnþ1cnþ1 κ nþ1ð Þ � κ nð Þ	 


κ nþ1ð Þ þNx,nþ1 κ nð Þ � κ nð Þ	 


0

B

@

1

C

A
: (72)

Figure 10.
Layered ellipsoidal inclusion.
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Scattering matrix: The scattering matrix of the ellipsoidal inclusion is:

Sn,nþ1 ¼
1

κ nð Þ þNx,nþ1 κ nþ1ð Þ � κ nð Þð Þ
κ nþ1ð Þ � κ nð Þ	 


Vnþ1 κ nþ1ð Þ

κ nð Þ Nx,nþ1 1�Nx,nþ1ð Þ κ nþ1ð Þ � κ nð Þ	 


V�1
nþ1

 ! (73)

where Vn ¼ anbncn.
Dipole moment:When we are only interested in the scattered far field, the

inclusion can be replaced by an equivalent dipole. When r is large in front of the
lengths of the axes of the ellipsoid (r≫ a, b, c), ξ is of the order of r2:

ξ≃ r2 (74)

and the dipolar term is

B oð Þ

2

ð∞

ξ

dσ

σ þ a2ð ÞR σð Þ ≃
B oð Þ

2

ð∞

r2

dσ

σ5=2
¼ B oð Þ

3r3
(75)

The component Pelli,a of dipole moment along the direction of the fluid flow is

obtained by identification of the terms in r�2 in relations (46) and (75), namely:

Pelli,a ¼
4π

3
U∞B

oð Þ: (76)

2.3.4 Inclusion with continuously variable permeability

For ellipsoidal inclusion, we assume that mobility depends only on the variable
ξ. From (33), the problem comes down to finding of the differential equation of the
function F ξð Þ. Eq. 33 is then:

d

dξ
κ ξð Þ ξþ a2

	 


R ξð Þ dF
dξ

� �

þ dκ ξð Þ
dξ

R ξð Þ
2

F ξð Þ � dκ ξð Þ
dξ

R ξð Þ
2

E ¼ 0: (77)

It is easy to verify that when κ is constant, we find the case of the homogeneous
inclusion, and that if we put a ¼ b ¼ c, then we find the result of spherical
inclusion.

2.4 Anisotropic defects

Often the defects occurring in porous media are anisotropic, i.e., some of their
physical parameters like permeability are no longer scalar quantities but are tensors.
For an anisotropic porous medium, assuming the Einstein convention, the Darcy’s
law is

vi ¼ � kij
η
∂jp where ∂jp ¼ ∂p

∂xj
: (78)

The permeability is then defined by nine components kij, i.e., it has different
values in different directions of the space. Liakopoulos [13] had shown that the
permeability is a symmetric tensor of second rank. This leads to great simplifica-
tions for the study of such porous media. If in isotropic media the fluid velocity is
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aligned with the hydraulic gradient, in anisotropic media, this is true only along the
principal directions of the tensor. It is therefore not surprising that the flow move-
ment of the fluid is seriously disturbed by this type of defects.

In a 3D space, the permeability tensor has three principal directions perpendic-
ular to each other and for which the permeability corresponds to the tensor eigen-
values. In the coordinates system defined by these directions, the permeability
tensor is diagonal:

k ¼
k1 0 0

0 k2 0

0 0 k3

0

B

@

1

C

A
: (79)

By its definition, mobility inherits properties of symmetry of permeability and is
therefore a symmetric tensor such that κij ¼ kij=η.

The principal directions of the permeability tensors of the host medium and of
the inclusion define coordinate systems which generally do not coincide. The sys-
tem linked to the host environment is called the primary system, while that of the
inclusion is called the secondary system.

In this part, the study of the effects of an anisotropic spherical inclusion in a
porous medium explores three different configurations:

1. the host medium is isotropic and the defect is anisotropic,

2. the host medium is anisotropic and the defect is isotropic, and

3. the host medium and the defect are anisotropic.

2.4.1 Anisotropic defect in isotropic medium

In this configuration, the primary system is such that the incident pressure gradi-
ent is along the Oz axis and the secondary coordinate system is defined by the
principal directions of the permeability tensor. Then, let (θ0, φ0) and (θ, φ) be the

angular directions of the incident pressure gradient∇p oð Þ and of the observation vector
OM ¼ r in the primary system.We note β as the angle between these two directions.

The external pressure verifies the classical Laplace equation, while the internal
one is solution of the following equation:

κ
ið Þ
1

∂p ið Þ

∂x2
þ κ

ið Þ
2

∂p ið Þ

∂y2
þ κ

ið Þ
3

∂p ið Þ

∂z2
¼ 0: (80)

This one is transformed into a Laplace equation as follows: at first, we

dimensionalize the mobilities κ ið Þ
j by introducing the scalar quantity κ0 ið Þ. Eq. (80)

then becomes

κ0
ið Þ

κ
ið Þ
r,1

∂p ið Þ

∂x2
þ κ

ið Þ
r,2

∂p ið Þ

∂y2
þ κ

ið Þ
r,3

∂p ið Þ

∂z2

� �

¼ 0, (81)

where κ ið Þ
r, j ¼ κ

ið Þ
j =κ0 ið Þ. Using the linear transformation:

∂

∂x0i
¼

ffiffiffiffiffiffiffi

κ
ið Þ
r, i

q

∂

∂xi
, (82)
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Eq. (80) takes the form:

κ0
ið Þ ∂

2p ið Þ

∂
2x0

þ ∂
2p ið Þ

∂
2y0

þ ∂
2p ið Þ

∂
2z0

� �

¼ 0: (83)

The solutions p ið Þ and p oð Þ, respectively, are:

p ið Þ r; θ;φð Þ ¼ ∑
m, n

A ið Þ
m,nr

nPm
n cos θð Þ cos mφð Þ þ ∑

m,n
B ið Þ
m,nr

nPm
n cos θð Þ sin mφð Þ, (84)

p oð Þ r; θ;φð Þ ¼ ∑
m, n

A oð Þ
m,nr

n þ
B oð Þ
m,n

rnþ1

 !

Pm
n cos θð Þ cos mφð Þ

þ ∑
m, n

C oð Þ
m,nr

n þ
D oð Þ

m,n

rnþ1

 !

Pm
n cos θð Þ sin mφð Þ:

(85)

In (84), only the finite terms at r ¼ 0 appear.

The amplitudes A oð Þ
m,n, B

oð Þ
m,n, C

oð Þ
m,n, and D oð Þ

m,n, are determined by the boundary

conditions at r ¼ a and when r ! ∞.

When r ! ∞, p oð Þ is:

p oð Þ ! E∞r cos β, with E∞ ¼ �U∞

κ oð Þ , (86)

where β is the angle between vector E∞ and the direction of the observer
OM ¼ r. If (θ, φ) resp. (θ0, φ0) are the angular coordinates of the observer (resp. of
the incident pressure gradient), then

cos β ¼ sin θ sin θ0 cos φ� φ0ð Þ þ cos θ cos θ0: (87)

The expressions (86) and (87) show that, in the expansion (85), only nonzero
terms are those for which n ¼ 1. Taking into account the relations

P0
1 cos θð Þ ¼ P1 cos θð Þ ¼ cos θ and P1

1 cos θð Þ ¼ sin θ, we obtain:

p oð Þ r; θ;φð Þ ¼ A
oð Þ
0,1r cos θ þ A

oð Þ
1,1r sin θ cosφþ C

oð Þ
1,1r sin θ sinφ

þ ∑
m, n

B oð Þ
m,n

rnþ1
Pm
n cos θð Þ cos mφð Þ þ ∑

m, n

D oð Þ
m,n

rnþ1
Pm
n cos θð Þ sin mφð Þ:

(88)

By identification with (86) with help of (87), we find:

A
oð Þ
0,1 ¼ E∞ cos θ0, (89)

A
oð Þ
1,1 ¼ E∞ sin θ0 cosφ0, (90)

C
oð Þ
1,1 ¼ E∞ sin θ0 sinφ0: (91)

The boundary conditions at r ¼ a (continuity of the stress component τrr and
conservation of the fluid flow through the inclusion surface) are:

p oð Þ
r¼a ¼ p ið Þ�

�

�

�

r¼a
(92)
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κ oð Þ ∂p
oð Þ

∂r
r¼a ¼ κ

ið Þ
11

∂p ið Þ

∂r
þ κ

ið Þ
12

∂p ið Þ

r∂θ
þ κ

ið Þ
13

∂p ið Þ

r sin θ∂φ

� ��

�

�

�

�

�

�

�

r¼a

: (93)

In these equations, κ
ið Þ
nm are the components of the tensor κ ið Þ in the spherical

coordinates given in Appendix D. These relations lead to the following expressions
of the pressure:

p ið Þ r; θ;φð Þ ¼ 3Aκ oð Þ

2κ oð Þ þ κ
ið Þ
3

r cos θ þ 3Bκ oð Þ

2κ oð Þ þ κ
ið Þ
1

r sin θ cosφþ 3Dκ oð Þ

2κ oð Þ þ κ
ið Þ
2

r sin θ sinφ,

(94)

p oð Þ r; θ;φð Þ ¼ Ar cos θ þ Br sin θ cosφþDr sin θ sinφþ Aa3

r2
κ oð Þ � κ

ið Þ
3

2κ oð Þ þ κ
ið Þ
3

cos θ

þ Ba3

r2
κ oð Þ � κ

ið Þ
1

2κ oð Þ þ κ
ið Þ
1

sin θ cosφþDa3

r2
κ oð Þ � κ

ið Þ
2

2κ oð Þ þ κ
ið Þ
2

sin θ sinφ,

(95)

where

A ¼ E∞ cos θ0, B ¼ E∞ sin θ0 cosφ0, D ¼ E∞ sin θ0 sinφ0: (96)

The first three terms of the right-hand side of (95) are due to the pressure
gradient applied to the porous medium. The last three terms are the pressure
induced by the hydraulic dipoles directed along the principal directions of the
anisotropic sphere.

When E∞ is along the Oz axis and for φ0 ¼ 0, θ0 ¼ 0 and κ
ið Þ
1 ¼ κ

ið Þ
2 ¼ κ

ið Þ
3 ¼ κ ið Þ,

we find the internal and external pressures of isotropic spherical inclusions (19)
and (20).

Moreover, from the relations (94) and (95), it is possible to obtain the directions
of the pressure gradient and of the velocity field inside the defect.

The inside fluid velocity results from (94); its components are given by

v
ið Þ
j ¼ �κ

ið Þ
j ∂jp

ið Þ, from which we obtain:

v ið Þ ¼ � 3Bκ ið Þ
1

2κ oð Þ þ κ1
i� 3Dκ

ið Þ
2

2κ oð Þ þ κ2
j� 3Aκ

ið Þ
3

2κ oð Þ þ κ3
k: (97)

This is the generalization to the 3D case of the result obtained for the spherical
inclusion when the pressure gradient is along the axis Ox (19).

The inner product of v ið Þ and of the incident field U∞, gives the angle γ whose
the internal fluid velocity is deflected by the anisotropy of the inclusion:

cos γ ¼ U∞ � v ið Þ

∥U∞∥∥v ið Þ∥
, (98)

¼
sin 2θ0 sin

2φ0κ
ið Þ
1

2κ eð Þþκ
ið Þ
2

þ sin 2θ0 cos
2φ0κ

ið Þ
2

2κ eð Þþκ
ið Þ
1

þ cos 2θ0κ
ið Þ
3

2κ eð Þþκ
ið Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin 2θ0 sin 2φ0κ
ið Þ
1

2κ eð Þþκ
ið Þ
2ð Þ2

þ sin 2θ0 cos 2φ0κ
ið Þ
2

2κ eð Þþκ
ið Þ
1ð Þ2

þ cos 2θ0κ
ið Þ
3

2κ eð Þþκ
ið Þ
2ð Þ2

s : (99)
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2.4.2 Isotropic defect in anisotropic porous medium

Consider an isotropic sphere of radius r whose mobility is κ ið Þ which is included

in an anisotropic host medium with its own mobility κ
oð Þ. The incompressibility

of the saturating fluid imposes that the outside pressure is the solution of the
equation:

∂i κ
oð Þ
ij ∂jp

� �

¼ 0: (100)

In the system of Cartesian coordinate defined by the principal directions of the

tensor κ oð Þ, this equation is written as:

κ0
oð Þ κ

oð Þ
x

κ0 oð Þ
∂
2p oð Þ

∂x2
þ κ

oð Þ
y

κ0 oð Þ
∂
2p oð Þ

∂y2
þ κ

oð Þ
z

κ0 oð Þ
∂
2p oð Þ

∂z2

 !

¼ 0, (101)

where κ
oð Þ
j are the eigenvalues of the mobility tensor and κ0 oð Þ is an arbitrary

scalar such that the ratio κ
oð Þ
r, j ¼ κ

oð Þ
j =κ0 oð Þ is a dimensionless quantity. Using the linear

transformation of coordinates:

x0 ¼ x
ffiffiffiffiffiffiffiffi

κ
oð Þ
r,x

q , y0 ¼ y
ffiffiffiffiffiffiffi

κ
oð Þ
r,y

q , z0 ¼ z
ffiffiffiffiffiffiffi

κ
oð Þ
r,z

q , (102)

Eq. (101) becomes a Laplace equation. Correspondingly, the sphere is

transformed into an ellipsoid with the semiaxes ax ¼ r=

ffiffiffiffiffiffiffiffi

κ
oð Þ
r,x

q

, ay ¼ r=
ffiffiffiffiffiffiffi

κ
oð Þ
r,y

q

,

and az ¼ r=

ffiffiffiffiffiffiffi

κ
oð Þ
r,z

q

. Since the principal directions of the inside permeability κ ið Þ

coincide with the axes of the ellipsoid, for each direction j, we find, for each of the
components of the pressure gradient, the result of the ellipsoidal inclusion (40).
The internal pressure gradient is then:

∂jp
ið Þ ¼ κ0 oð Þ

κ0 oð Þ þNj κ ið Þ=κ oð Þ
rj � κ0 oð Þ

� � ∂jp
oð Þ, (103)

or

∂jp
ið Þ ¼

κ
oð Þ
j

κ
oð Þ
j þNj κ ið Þ � κ

oð Þ
j

� � ∂jp
oð Þ: (104)

In this equation, the depolarization factor Nj is

Nj ¼
axayaz

2

ð∞

O

ds

sþ a2j

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ a2x
	 


sþ a2y

� �

sþ a2z
	 


r for j ¼ x, y, z: (105)

Thus, the anisotropy induced in the sphere by the change of variables appears
through the depolarization factor Nj.
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2.4.3 Anisotropic defect in anisotropic porous medium

We assume now that the host medium and the defect have their own anisotropic

microstructure with the mobilities tensors κ oð Þ
ij and κ

eð Þ
ij . The velocity of the fluid

flowing in each part of the porous medium is given by equations:

v
oð Þ
i ¼ �κ

oð Þ
ij ∇jp

oð Þ, v
ið Þ
i ¼ �κ

ið Þ
ij ∇jp

ið Þ: (106)

Without restricting the generality of the problem, the first relation of (106) can
be written as:

v
oð Þ
i ¼ �κ

oð Þ
i

∂p oð Þ

∂xi
, (107)

where κ oð Þ
j , j ¼ 1; 2; 3, are the eigenvalues of the tensor κ oð Þ and v

oð Þ
i and ∂p oð Þ

∂xi
are

the components of the velocity and of the pressure gradient along the principal
directions of this tensor.

The incompressibility of the fluid implies the condition:

∇iv
oð Þ
i ¼ 0, (108)

or

κ
oð Þ
1

∂
2p oð Þ

∂x21
þ κ

oð Þ
2

∂
2p oð Þ

∂x22
þ κ

oð Þ
3

∂
2p oð Þ

∂x23
¼ 0: (109)

To transform this equation into a Laplace equation, we proceed as before by
using the change of variables

∂

∂x0i
¼

ffiffiffiffiffiffiffi

κ
oð Þ
r, i

q

∂

∂xi
: (110)

Then, the external environment becomes an isotropic medium and the outside
pressure is the solution of the Laplace equation:

∂p oð Þ

∂x021
þ ∂p oð Þ

∂x022
þ ∂

2p oð Þ

∂x023
¼ 0: (111)

The new x0i variables constitute a new coordinate system. The host medium is
transformed into an isotropic medium, while the inclusion medium becomes aniso-
tropic. In the new coordinate system, the pressure gradient is transformed
according to:

∇
0p ¼

ffiffiffiffiffiffiffi

κ
oð Þ
r, j

q

∇p, (112)

while the components of the position vector become:

r0i ¼ κ
oð Þ
r, i

� ��1=2
ri: (113)
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Using the Darcy’s law and (112), the incompressibility of the fluid inside the
inclusion

∇i κ
ið Þ
ij ∇jp

ið Þ
� �

¼ 0 (114)

implies the new equation:

∇0
i κ

oð Þ
i

� ��1=2
κ

ið Þ
ij κ

oð Þ
j

� ��1=2
∇0

jp
ið Þ


 �

¼ 0: (115)

In the new coordinates system, the mobility in the inclusion defined by the
equation:

∇0
i κ

ið Þ0
ij ∇0

ip
ið Þ
j

� �

¼ 0 (116)

is such that:

κ
ið Þ0
ij ¼ κ

oð Þ
r, i

� ��1=2
κ

ið Þ
ij κ

oð Þ
r, j

� ��1=2
: (117)

In the coordinates x0i, the semiaxes of the inclusion can be calculated from the
equation of the ellipsoidal inclusion surface written in matrix form as RtAR, where
R is the position vector of a point of this surface (Rt ¼ x; y; zð Þ) and A is the diagonal
matrix whose entries are the lengths of the half-axes:

A ¼
a1 0 0

0 a2 0

0 0 a3

0

B

@

1

C

A
: (118)

Then, the linear transformation (113) changes A into A0:

A0 ¼
a01 0 0

0 a02 0

0 0 a03

0

B

@

1

C

A
, (119)

with

a0
2
i ¼¼ κ

oð Þ
r, i

� ��1=2
a2i κ

oð Þ
r, i

� ��1=2
: (120)

Thus, theoperation that transforms theanisotropichostmediumintoan isotropic one
transforms the ellipsoidal inclusionwith the semiaxes (a1, a2, a3) into another onewith

the new semiaxes (a01, a
0
2, a

0
3) and the newmobility κ ið Þ0

ij given respectively by (120) and.

We recover the previous case where the outer medium is isotropic and the inner
medium is anisotropic. So, in accordance with (104):

∂jp
ið Þ ¼ κ0 oð Þ

κ0 oð Þ þN0
j κ ið Þ=κ oð Þ

rj � κ0 oð Þ
� � ∂jp

oð Þ, (121)
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where the depolarization factors of the new inclusion are given by:

N0
i ¼

detA0

2

ð∞

0

dσ

a0i þ σ
	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det A02 þ σI
� �

r : (122)

2.5 Hydraulic polarisability

As mentioned above, the reaction of a saturated porous inclusion subject to a
pressure gradient is to induce a hydraulic dipole whose dipole moment is P. This
dipole results from the appearance of pressure discontinuities at the inclusion-host
interface. They have different signs depending on whether the flow is incoming or
outgoing, but have the same absolute value. They are the hydraulic analogues of
electrostatic charges induced by an electric field in a dielectric medium. The
resulting hydraulic polarization is only nonzero if the contrast between the mobility
of the host environment and that of inclusion is itself nonzero.

P ¼
ð

Ω

κ ið Þ rð Þ � κ oð Þ
� �

κ ið Þ
∇p ið Þ rð ÞdV: (123)

For spherical or ellipsoidal inclusions and for low filtration rates, we have seen
that the internal pressure gradient is proportional to the incident one. For this type
of inclusions, the dipole moment is written as:

P ¼ αv oð Þ, (124)

where the value of the susceptibility α measures the ability of the inclusion
to induce a dipole under the action of a pressure gradient. α can be seen as the
“hydraulic polarisability” of the defect. For a spherical defect of volume V, we have:

P ¼ α �U∞ð Þ (125)

with

α ¼ 3Vκ ið Þ
k ið Þ

k oð Þ � 1

2þ k ið Þ

k oð Þ

0

@

1

A: (126)

For an ellipsoidal inclusion, hydraulic polarisability is not a scalar since the response
of the inclusion is a function of the direction of pressure incidence, but a second rank
tensor whose eigenvalues are the susceptibilities along the three axes of the ellipsoid:

Figure 11.
Sketch of polarization surface “charge” density σpol for a spherical inclination and an ellipsoidal inclusion with
different orientations with respect to the incident flow.
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αi ¼ Vκ ið Þ κ ið Þ � κ oð Þ

κ oð Þ þNi κ ið Þ � κ oð Þð Þ , i ¼ x, y, z: (127)

Figure 11 represents the surface hydraulic charges induced by the hydraulic
polarization on a spherical inclusion and on ellipsoidal inclusions with different
orientations with respect to the direction of the incident flux. The red areas
represent the surface “hydraulic charge” density σpol. Its expression depends on

the direction of the incident pressure gradient and is written as the sum of the
contributions of the dipoles along the three axes of the ellipsoid.

When the permeability of the inclusion is stratified, the dipole moment is given

by the dipolar term (B oð Þ) of the external pressure field obtained by the transfer
matrix method or by the scattering matrix method.

3. Tortuosity induced by defects

In this section, we determine the hydraulic effects of defects on the permeability
of porous media. As mentioned above, the shape of the defects is one of the most
important factors for the modification of the current lines of the seepage rate in the
whole porous medium and thus contributes to its acoustic properties.

3.1 Homogenization: generalities

Experiments show that a nonhomogeneous medium subject to excitation
behaves in the same way as its different components, but with different parameter
values. The homogenization of an inhomogeneous porous medium consists in
replacing it with an effective homogeneous medium with the permeability keff. This
operation is only possible at a fairly large observation scale. Determining the value
of the effective permeability from the mobility values of the structure components
and their relative positions is not a simple averaging operation. The calculation of
the global mobility of a mixture of porous inclusions immersed in a homogeneous
medium is a topic widely addressed in many research fields such as hydrology, oil
recovery, chemical industry, etc. As a consequence, a considerable number of works
deal with this problem based on various methods: renormalization theory, varia-
tional methods, T-Matrix method, field theory methods, nonperturbative approach
based on Feynman path integral. To quote some of authors, we can refer to the
works of Prakash and Raja-Sekhar [14], King [15, 16], Drummond and Horgan [17],
Dzhabrailov and Meilanov [18], Teodorovich [19, 20], Stepanyants and
Teodorovich [21], and Hristopulos and Christakos [22].

In the case of media subject to a variable field action, homogenization requires
defining a length below which it is no longer relevant. For example, for a periodic
field, acting on a medium whose average distance between inhomogeneities is a,
this length is the wavelength λ if λ=a≫ 1. In our case, effective mobility being
essentially a low-frequency concept, this remark justifies that the effective mobility
should then be calculated from a steady filtration velocity.

3.2 Effective mobility

Darcy’s law is often used as the definition of the mobility of a porous medium,
and the easiest way to introduce the effective mobility κeff is to use it as follows:
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<v> ¼ κeff <E> , (128)

where E ¼ �∇p and < � > is the averaging operation. The mean values of the
filtration rate and the pressure gradient are given by:

<v> ¼ f < κ ið ÞE ið Þ
> þ 1� fð Þ< κ oð ÞE oð Þ

> , (129)

<E> ¼ f <E ið Þ
> þ 1� fð Þ<E oð Þ

> , (130)

where f is the volumic fraction of the defect. Putting E ið Þ ¼ AE oð Þ we show that:

κeff ¼
fAκ ið Þ þ 1� fð Þκ oð Þ

fAþ 1� fð Þ : (131)

For spherical defects, A ¼ 3κ oð Þ= 2κ oð Þ þ κ ið Þ	

, Eq. (131) leads to the result:

κeff ¼ κ oð Þ f
3κ ið Þ

2κ oð Þþκ ið Þ þ 1� fð Þ
f 3κ oð Þ

2κ oð Þþκ ið Þ þ 1� fð Þ
: (132)

When f ! 0, then κeff � κ oð Þ, and when f ! 1, then κeff � κ ið Þ. Finally when

f < < 1, then

κeff � κ oð Þ þ 3f κ oð Þ κ ið Þ � κ oð Þ

κ ið Þ þ 2κ oð Þ : (133)

For anisotropic inclusion, mobility is a second rank tensor defined by the rela-
tionship:

< vi > ¼ κeff , ij <Ej > : (134)

As a result, for each main direction, we have:

< vj > ¼ κeff , j <Ej > , j ¼ x, y, z, (135)

where κeff , j are the eigenvalues of κeff . Taking into account that E ið Þ
j ¼ AjE

oð Þ
j ,

Eq. (135) shows that:

κeff , j ¼
fAjκ

ið Þ þ 1� fð Þκ oð Þ

fAj þ 1� fð Þ , (136)

with

Aj ¼
3κ oð Þ

2κ oð Þ þ κ
ið Þ
j

, j ¼ 1; 2; 3: (137)

When the environment has several defects, the calculation of keff is more
complicated because their mutual influence must be taken into account. The
excitation pressure gradient Ee defined from the filtration rate is introduced by
the equation:
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κ oð ÞEe ¼ κ oð ÞEþ L � P: (138)

In this relationship, L is an operator that takes into account the shape of the
defect and its orientation with respect to the fluid flow, and P is due to the induced
polarization in the inclusion. P defined by (123) is related to the dipole moment
induced by the interaction between the fluid moving in the porous medium and the
defect. When the medium contains n identical defects per unit volume, P ¼ np, p
being the dipole moment of each defect, and since p is proportional to the applied
field (p ¼ αEe), we have P ¼ nαEe. For an ellipsoidal defect, L is reduced to depo-
larization factors, i.e., L ¼ Nk, k ¼ x, y, z, which takes into account the direction of
fluid flow. In this case, the excitation field is:

Ee ¼ E

1� nαNk=κ oð Þ , (139)

leading to the following κeff expression:

κeff ¼ κ oð Þ þ nα

1� nαNk=κ oð Þ , (140)

leading, for spherical defects, to expression:

κeff ¼ κ oð Þ þ nα

1� nα=3κ oð Þ : (141)

It is then possible to calculate the effective mobility of a set of ellipsoidal inclu-
sions in different geometries (Figure 12):

• the ellipsoids are aligned with the direction x of the fluid flow:

κeff ¼ κ oð Þ þ nαx
1� nαxNx=κ oð Þ : (142)

Figure 12.
Sets of ellipsoidal inclusions: (a) aligned and (b) randomly oriented.
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• the ellipsoids are randomly oriented:

κeff ¼ κ oð Þ þ
1=3∑i¼x, y, z nαi

1�∑i¼x, y, z nαiNi=κ oð Þ : (143)

3.3 Induced tortuosity

We restrict ourselves here to the calculation of the tortuosity induced by homoge-
neous spherical inclusions (Figure 13). Since the dipole moment is the essential ele-
ment for this calculation element for this calculation, it is easy to generalize the results
obtained with other types of inclusions: inhomogeneous spherical, ellipsoidal, etc.

The tortuosity induced by the presence of defects τd is defined by:

τd ¼
< v oð Þ2

>

< v oð Þ
>

2
(144)

where v oð Þ is the perturbation of filtration rate due to the defects. When the ratio
k=a2 where a is the characteristic size of the defects is small relative to the unity, it is
legitimate to neglect the volume of the defects for the calculation of < v2 > , whereas
it is taken into account for that of < v> .

With the pressure scattered field by the inclusions being limited to the dipolar

terms, the expression of < v oð Þ2
> is then:

< v oð Þ2
> ¼ < v oð Þ2

r > þ < v
oð Þ2
θ > (145)

where

v oð Þ
r ¼ �κ oð Þ ∂p

oð Þ

∂r
, and v

oð Þ
θ ¼ �κ oð Þ ∂p

oð Þ

r∂θ
: (146)

Figure 13.

Domains used in numerical simulations for the evaluation of < v oð Þ2
> .
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For ellipsoidal inclusion, the external pressure is:

p oð Þ r; θð Þ ¼ �U∞

κ oð Þ r cos θ þ
Pd

4π

cos θ

r2
(147)

¼ �U∞

κ oð Þ r� α

r2

� �

cos θ (148)

where Pd and α are, respectively, the dipol moment and the polarisability of the
inclusion. By keeping only the terms greater than or equal to r�2, one obtains:

v oð Þ2 ≈
U∞

κ oð Þ

2

1� 2α

r3
2 cos 2θ � sin 2θ
	 



 �

(149)

The average value < v oð Þ2
> is calculated by integration on the volume between

two spheres of radius a (characteristic size of the defect) and R sufficiently large so
that the dipolar effects are negligible. For a spherical inclusion, it results:

< v oð Þ2
> ¼ U2

∞ þ U2
∞ 1� a3

R3

� � κ ið Þ

κ oð Þ � 1

2þ κ ið Þ

κ oð Þ

 !2

: (150)

< v oð Þ
>

2 is calculated from the definition of effective mobility:

< v> ¼ κeff <E> (151)

where κeff and <E> are given by (131) and (130). When f << 1, we have

κeff ≈ κ oð Þ þ fA κ ið Þ � κ oð Þ
� �

and <E> ≈
U∞

κ oð Þ 1þ fAð Þ: (152)

Figure 14.
Evaluation of the tortuosity induced as a function of the distance to the defect.
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From these two relations, we obtain the expression of the induced tortuosity:

τd ¼ 1þ 1� a3

R3

� � κ ið Þ

κ oð Þ � 1

2þ κ ið Þ

κ oð Þ

 !2
2

4

3

5 1� 2f
3 κ ið Þ

κ oð Þ

2þ κ ið Þ

κ oð Þ

" #

: (153)

Results of numerical simulations: The results of a numerical simulation for

κ ið Þ=κ oð Þ ¼ 10 and κ ið Þ=κ oð Þ ¼ 100 are shown in Figure 14. The tortuosity value is
calculated on square domains around the inclusion (Figure 13). Inside the inclusion,
τb ¼ 1. As x increases, the tortuosity increases to reach its maximum value at x ¼ 1:7

for κ ið Þ=κ oð Þ ¼ 10 and x ¼ 1:6 when κ ið Þ=κ oð Þ ¼ 10. For larger values of x, it decreases
toward 1 since, far from inclusion, the field lines again become parallel to the
direction of the incident pressure gradient. This result confirms the behavior of the
field lines of Figure 4b.

4. Conclusion

In this chapter, we studied the effect of defects on the circulation of the
fluid saturating a porous medium. We have shown that the modification of the
stream lines of the filtration velocities leads to a modification of the value of the
tortuosity and thus on the local velocity of the waves susceptible to propagate
in such media. The induced tortuosity was calculated from the pressure field
scattered by the inclusions. The model used is based on the Darcy’s law. in addition
to being general, its major interest is to lead to a very practical mathematical
expression of tortuosity
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A. Ellipsoidal coordinates

The ellipsoidal coordinates (ξ, η, ζ) are the solutions of the cubic equation:

x2

a2 þ u
þ y2

b2 þ u
þ z2

c2 þ u
¼ 1: (154)

They are connected to the Cartesian coordinates (x, y, z) by the relations:

x2 ¼ a2 þ ξð Þ a2 þ ηð Þ a2 þ ζð Þ
b2 � a2
	 


c2 � a2ð Þ
, (155)

y2 ¼ b2 þ ξ
	 


b2 þ η
	 


b2 þ ζ
	 


a2 � b2
	 


c2 � b2
	 
 , (156)

30

Acoustics of Materials



z2 ¼ c2 þ ξð Þ c2 þ ηð Þ c2 þ ζð Þ
a2 � c2ð Þ b2 � c2

	 
 , (157)

subject to the conditions �ξ< c2 < � η< b2 < � ζ< a2.
The scalar factors are the vector norms:

hqi ¼ ∥
∂r

∂qi
∥ òu qi ¼ ξ, η, ζ: (158)

Their values are:

hξ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η� ξð Þ ζ � ξð Þ
a2 � ξð Þ b2 � ξ

	 


c2 � ξð Þ

s

, (159)

hη ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ� ηð Þ ζ � ηð Þ
a2 � ηð Þ b2 � η

	 


c2 � ηð Þ

s

, (160)

hζ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η� ζð Þ ξ� ζð Þ
a2 � ζð Þ b2 � ζ

	 


c2 � ζð Þ

s

: (161)

B. Depolarization factors

The depolarization factors are important quantities for the expression of solu-
tions of the Laplace equation. They take into account the form of the domain in
which this solution is sought and its orientation in relation to the excitation field.
Their expression is:

Nk ¼
abc

3

ð∞

0

dσ

σ þ q2k
	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ þ a2ð Þ σ þ b2
	 


σ þ c2ð Þ
q (162)

where k ¼ x (resp. y, z) et qk ¼ a, (resp. b, c) and satisfy the relation:

Nx þNy þNz ¼ 1: (163)

C. Relations between two spherical coordinates systems

Consider the rectangular coordinate systems (x, y, z) and (x0, y0,z0). We are
looking for the relations between the spherical coordinates (r, θ, φ) and (r0, θ0, φ0)
associated with each of them. From

x0 ¼ r0 sin θ0 cosφ0 x ¼ r sin θ cosφ, (164)

y0 ¼ r0 sin θ0 sinφ0 y ¼ r sin θ sinφ, (165)

z0 ¼ r0 cos θ0 z ¼ r sin θ, (166)
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one deduces

r0
2 ¼ x0

2 þ y0
2 þ z0

2

¼ x2

κ1
þ y2

κ2
þ z2

κ3

¼ r2
sin 2θ cos 2φ

κ1
þ sin 2θ sin 2φ

κ2
þ cos 2θ

κ3

� �

or

r0 ¼ rΔ o ̀u Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin 2θ cos 2φ

κ1
þ sin 2θ sin 2φ

κ2
þ cos 2θ

κ3

s

: (167)

From (164) and (165), one has:

x0 ¼ x

κ1
) r0 sin θ0 cosφ0 ¼ r

κ1
sin θ cosφ

y0 ¼ y

κ2
) r0 sin θ0 sinφ0 ¼ r

κ2
sin θ sinφ:

By eliminating φ, one finds:

sin θ0 ¼ sin θ
δ

Δ
avec δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos 2φ

κ1
þ sin 2φ

κ2

s

: (168)

In the same way, from (166), one can establish

cos θ0 ¼ 1

Δ

cos θ
ffiffiffiffiffi

κ3
p : (169)

Similar relationships between angles φ and φ0 are deduced from (164) and (165):

sinφ0 ¼ 1

δ

sinφ
ffiffiffiffiffi

κ2
p , (170)

cosφ0 ¼ 1

δ

cosφ
ffiffiffiffiffi

κ1
p : (171)

D. Tensor

Let κ be a tensor of rank 2. We denote by κr, its expression in the system of
rectangular coordinates defined by its principal directions, and κs, its expression in
the corresponding spherical coordinates system. So we have

κr ¼
κ1 0 0

0 κ2 0

0 0 κ3

0

B

@

1

C

A
κs ¼

κ11 κ12 κ13

κ21 κ22 κ23

κ31 κ32 κ33

0

B

@

1

C

A
(172)
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with

κ11 ¼ κ1 sin
2θ cos 2φþ κ2 sin

2θ sin 2φþ κ3 cos
2θ, (173)

κ12 ¼ κ1 cos θ sin θ cos
2φþ κ2 cos θ sin θ sin

2φ� κ3 cos θ sin θ, (174)

κ13 ¼ κ2 � κ1ð Þ sin θ cosφ sinφ, (175)

κ22 ¼ κ1 cos
2θ cos 2φþ κ2 cos

2θ sin 2φþ κ3 sin
2θ, (176)

κ23 ¼ κ2 � κ1ð Þ cos θ cosφ sinφ, (177)

κ33 ¼ κ1 sin
2φþ κ2 cos

2φ, (178)

κ21 ¼ κ12, (179)

κ31 ¼ κ13, (180)

κ32 ¼ κ23: (181)

Or, alternatively in the matrix form:

k ¼ κ1Iþ κ2 � κ1ð ÞAþ κ3 � κ1ð ÞB, (182)

where I is the unit matrix 3� 3 and A and B are given by:

A ¼
sin 2θ sin 2φ cos θ sin θ sin 2φ sin θ cosφ sinφ

cos θ sin θ sin 2φ cos 2θ sin 2φ cos θ cosφ sinφ

sin θ cosφ sinφ cos θ cosφ sinφ cos 2θ

0

B

@

1

C

A
, (183)

B ¼
cos 2θ � cos θ sin θ 0

� cos θ sin θ sin 2θ 0

0 0 0

0

B

@

1

C

A
: (184)
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