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Chapter

Distributed Optimization of
Multi-Robot Motion with
Time-Energy Criterion
Mohamad T. Shahab and Moustafa Elshafei

Abstract

This paper is an application of a special case of distributed optimization prob-
lem. It is applied on optimizing the motion of multiple robot systems. The problem
is decomposed into L subproblems with L being the number of robot systems. This
decomposition reduces the problem to solving a single robot problem. The optimi-
zation problem is solved via a distributed algorithm, utilizing subgradient method.
A global objective function is set as the sum of individual robot objectives in time
and energy. Constraints are divided into two sets, namely, robot-individual con-
straints and robots’ interactions (collision) constraints. The approach is applied for
the case of wheeled mobile robots: we are able to generate in parallel for each robot
an optimized control input trajectory and then illustrate it in simulation examples.

Keywords: distributed algorithms, multi-robot systems, numerical optimal control,
time-energy minimization

1. Introduction

Research in multi-robot systems is motivated by several notions; namely, some
motivation can be put as [1]:

• It is complex for one single robot system to fulfill complex tasks. Instead, more
than one system would simplify the solution.

• Tasks are generally distributed in nature.

• Multiple limited-resource robot systems are more efficient to deal with than a
single powerful robot system.

• Speed of the task process increases through parallelism in multiple robot
systems.

• Robustness increases as redundancy is introduced in multiple systems.

Until recently, the number of real-life implementations of multi-robot systems is
relatively small. The reason is the complexity associated with the field. Also, the
related technologies are relatively new. Emergence of autonomous driving vehicle
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technology and market can push the boundaries in the field. As technology
develops, new venues for application will open for mainstream use rather than only
in research and development labs. Due to its promising applicability, autonomous
cars and vehicles (or various intelligent transportation systems in general) sit at the
forefront [2, 3]. To name a few, benefits include reducing congestions [4], increas-
ing road safety [5], and, of course, self-driving cars [6]. Another application in civil
environments is related to safety and security like rescue missions of searching for
missing people in areas hard for humans to operate in [7] or searching for dangerous
materials or bombs [8] in an evacuated building. Also, another area of application of
multi-robot systems is in military area; research was done heavily in the fields of
unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) [9, 10].

Many approaches are developed to tackle the issue of multiple robot systems.
Under the inspiration of biological systems and the need of technologies, many
problems are defined as cooperative motions. Cooperative motion is discussed in
[11–16]. Optimization in both time and energy has been tackled in the literature
[17–20]. There is an opportunity to incorporate concept of time/energy optimiza-
tion into the paradigm of multi-robot systems.

This paper investigates the solution of a time-energy optimal control problem
for multiple mobile robots; namely, the paper is to study the problem as a nonlinear
programming (NLP) problem. The main idea of the solution used here is to utilize
distributed optimization techniques to solve the overall optimization problem.
Solving for optimal time and energy of more than one robot system adds more
burden on the problem; robot interaction with each other is added to the problem.
This paper will focus more on the distributed aspect of the problem; more details
about the numerical optimal control problem formulation can be found in [21]. In
[21], the problem of controlling the motion of a single mobile robot is solved using
the direct method of numerical optimal control (see [22]); this showed great flexi-
bility in incorporating physical constraints and nonlinear dynamics of the system.

The rest of this section will define the global problem formulation. Discussion
about distributed optimization and associated algorithm is presented in Section 2.
Section 3 will apply the method on the multi-robot problem. Application to wheeled
mobile robots and simulation examples are discussed in Section 4 followed by the
conclusion.

1.1 Global problem formulation

We can present the discrete time global optimization (numerical optimal
control) problem for L robots as follows:

min
ui;tisf g

∀k,∀i

∑
∀i
H xi Nð Þ
� �

þ zi Nð Þ

s:t:

zi kþ 1ð Þ ¼ zi kð Þ þ tis kð Þ � L xi kð Þ; ui kð Þ; tis kð Þ
� �� �

xi kþ 1ð Þ ¼ fD xi kð Þ; ui kð Þ; tis kð Þ
� �

g xi kð Þ; ui kð Þ; tis kð Þ
� �

≤0

Ωi xi kð Þ
� �

∀i
; ui kð Þ
� �

∀i
; tis kð Þ
� �

∀i

� �

≤0

∀k, zi 0ð Þ ¼ 0, xi 0ð Þ ¼ xi0, i ¼ 1, 2,…, L

(1)

with t being the time-independent variable, k being the time index in discrete
domain, tis being the sampling period, and N being the number of time discrete
instants across the time horizon, i.e., k ¼ 0, 1,…, N. The sampling period
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corresponds to the length of time the system input ui tð Þ is kept constant (zero-order
hold): we assume the system input to be

ui tð Þ ¼ ui kð Þ, for tik ≤ t < tikþ1, t
i
kþ1 ¼ tik þ tis kð Þ, ti0 ¼ 0, ∀i

System behavior is governed by the nonlinear dynamic system in

fD xi kð Þ; ui kð Þ; tis kð Þ
� �

with xi kð Þ as the robot i states an initial condition of

xi 0ð Þ ¼ xi0. The above optimal control problem has a final state objective of

H xi Nð Þ
� �

with the Lagrangian L xi kð Þ; ui kð Þ; tis kð Þ
� �

information being embedded

into a dummy state variable zi kð Þ.
The above optimization problem can be viewed as having two sets of control

variables; the first set resembles the discretized system inputs, ui kð Þ
� �

∀k
, and the

other set consists of the variable sampling period, tis kð Þ
� �

∀k
. Let us have the

Lagrangian for the problem be

L ¼ xTQxþ uTRuþ β,

with β being the scalar weight on time. The performance is restricted by a
collection of inequality constraints of robot-specific constraints g :ð Þ≤0 and robot-

interaction constraints of Ωi
:ð Þ≤0. The objective function is just the summation of

individual objectives. In this paper, as it will be explained later, we consider only
collision avoidance as robot-interaction requirement; however, the above formula-
tion can also meet other considerations. It can be shown that the objective function
in (1) corresponds to objective function of the form

min∑
L

i¼1
H xi tf

� �� �

þ

ðtf

t0

x tð ÞTQx tð Þ þ u tð ÞTRu tð Þ þ βdt

� 	

2. Distributed optimization

Here in this section, the concept of distributed optimization is explored. This
area tackles optimization problems with distributed nature. Consider the following
optimization problem:

min
uif g∀i

∑
L

i¼1
Ji ui
� �

s:t: ui ∈Ωi, for i ¼ 1,…, L

(2)

with Ji ui
� �

as the objective function and Ωi the set of constraints. We can easily

separate the problem into its corresponding sub problems. An ith subproblem is
easily put as

min
ui

Ji ui
� �

s:t: ui ∈Ωi
(3)

Observing the global problem in (2), we can see that it is just equivalent to the
combination of all the subproblems; it is easy to see that solving for each subprob-
lem (3) individually will result in the solution for the whole global problem. Now,
however, consider the following problem:
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min
uif g

∑
L

i¼1
Ji ui
� �

s:t: gi u1; u2;…; uL
� �

≤0,∀i

(4)

You see clearly that the above problem cannot be trivially separated into some

subproblems due to the constraint gi u1; u2;…; uL
� �

≤0. This can be called a
complicating constraint or a coupling constraint. In the next subsection, we discuss
an optimization method that will help us in solving this kind of problems.

Decomposition in mathematics is the concept of breaking a mathematical problem
into smaller subproblems that can be solved independently while not violating the
original problem. Primary works of [23, 24] discuss multiple aspects of optimization
in general while exploring specific classes as well; these works are excellent resources
for reading and understanding. Viewing the applications of distributed optimization
will convey the impression that they, however different, are all mostly very similar
theoretically. Terms of networked, distributed, decentralized, cooperative, and the like
are becoming all corresponding to somewhat similar problems. Other works related
to this area and the area of multi-agent systems can be found in [25–29].

2.1 Subgradient method

Before going further, we discuss a method used in solving distributed optimiza-
tion problem which will help us in solving the problem of this paper. This method
is called subgradient methods [30]. These methods are similar to the popular
optimization algorithms using gradient descent. However, they are extended to
escape function differentiation. The works [31–33] also explore the method in the
perspective of multi-agent systems.

Consider the typical problem:

min
u

J uð Þ (5)

This typical problem can be solved using any gradient descent method. At itera-
tion m of an algorithm, a solver, or an optimizer, can be constructed as

u mþ1ð Þ ¼ u mð Þ � α mð Þd mð Þ (6)

with α mð Þ as a predefined step size. For a standard gradient method, the vector

d mð Þ contains the gradient information of the problem. The simplest definition is to

have

d mð Þ ¼ ∇J u mð Þ

� �

(7)

However, for the subgradient method [33], we will have a definition of

d mð Þ ¼ p mð Þ (8)

with p mð Þ, called subgradient of J uð Þ, being any vector that satisfies the following:

J xð Þ � J u mð Þ

� �

≥ p mð Þ
T x� u mð Þ


 �

, ∀x (9)

The subgradient method is a simple first-order algorithm to minimize a possibly
nondifferentiable function. The above definition escapes the requirement of a dif-
ferentiated objective function. It is defined as finding any vector that makes the
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optimization algorithm go to better value in a first-order optimality sense. Of course,
when a gradient ∇J u mð Þ

� �

exists, we can compute the subgradient as the gradient. As

it is a first-order method, it could have a lower performance than other second-
order approaches. However, the advantage here is that it does not require differen-
tiation. Also, and perhaps more importantly, it gives us flexibility to solve problems
in a distributed manner as will be seen later.

Now observe the following constrained optimization problem:

min
u

J uð Þ

s:t: g uð Þ≤0
(10)

Let g uð Þ be a vector of M constraints. Then, we can define the dual problem. Let
us define the dual function of λ and u as

q λ; uð Þ ¼ J uð Þ þ λTg uð Þ (11)

The vector λ of size M corresponds to the multipliers associated with each
constraint. The dual problem relaxes the constraints of the original primal problem
in (10) and solves for λ to maximize the dual function:

max
λ

q λ; uð Þ

s:t: λ≥0
(12)

The dual optimization problem is the pair of two optimization problems,
namely, a maximization in λ as in (12) and a minimization in u. The pair resembles a
maximization-minimization problem. You can visualize the solution of the problem
as attacking the effect of constraint violation while solving for the original minimi-
zation problem concurrently.

Now, an algorithm for solving the dual problem utilizing subgradient method is
discussed. Let us define

u λð Þ ¼ argmin
u

J uð Þ þ λTg uð Þ
� �

(13)

The above definition is to clarify the minimum attained at any value of λ. So,

with the above definition, at iteration m, with also denoting u mð Þ ¼ u λ mð Þ

� �

, we can

safely have

q λ; u mð Þ

� �

¼ J u mð Þ

� �

þ λTg u mð Þ

� �

¼ min
u

J uð Þ þ λTg uð Þ
� �

(14)

Now, it is obvious from (14) that at iteration m, a subgradient of the dual
function in (14) as function of λ can be computed as p mð Þ ¼ g u mð Þ

� �

. At iteration m

of the algorithm, an update for the multipliers is constructed as

λ mþ1ð Þ ¼ Pλ≥0 λ mð Þ þ α mð Þg u mð Þ

� �� �

(15)

The projection operator Pλ≥0 :f g is to ensure that the value of the update
λ mð Þ þ α mð Þp mð Þ is positive or enforced to zero. Also, observe the ascent update with

the “+” sign rather than a descent update as it is a maximization. We can assume an
initial λ 0ð Þ ¼ 0 or any other positive value. An optimal solution to the original

problem in (10) will be attained as m ! ∞, with the optimal solution value of u mð Þ.

5

Distributed Optimization of Multi-Robot Motion with Time-Energy Criterion
DOI: http://dx.doi.org/10.5772/intechopen.85668



2.2 The distributed algorithm

Recall the problem of combination of L subproblems in (2). Now, let us have the
following global problem:

min
uif g

∑
L

i¼1
Ji ui
� �

s:t: ui ∈Ωi, ∀i

gi u1; u2;…; uL
� �

≤0, ∀i

(16)

As mentioned, the constraints gi u1; u2;…; uL
� �

≤0 are the complicating (or cou-
pling) constraints. We can formulate the dual pair problems to be

max
λif g

q λi
� �� �

s:t: λi ≥0,∀i

(17)

Put in mind that λi
� �

¼ λ1; λ2;⋯; λL
� �

. If we define the notations of

u ¼ u1 u2 … uL

 �T

, λ ¼ λ1 λ2 … λL

 �T

,

then we can apply the primal-dual update from (13) and (15) at an iterationm as

u
�
mþ1ð Þ ¼ arg min

uif g∈Ωi
∑
L

i¼1
Ji ui
� �

þ λimð Þ

h iT
gi uð Þ

� 
� 


λ mþ1ð Þ ¼ P λ≥0 λ mð Þ þ α mð Þ � g1 u
�
mð Þ

� �

g2 u
�
mð Þ

� �

… gL u
�
mð Þ

� �h iT
� 


(18)

We can see that the above pair of updates can easily be distributed; after the
relaxing of the constraints, the primal problem can be separated. The facility of
subgradients lets us propose that any iteration m for subproblem i has

uimþ1ð Þ ¼ φmin Ji uimð Þ

� �

þ λimð Þ

h iT
gi u1mð Þ; u

2
mð Þ;…; uLmð Þ

� �

� �

λimþ1ð Þ ¼ P λi ≥0 λimð Þ þ αgi u1mð Þ; u
2
mð Þ;…; uLmð Þ

� �n o

(19)

The function φmin :ð Þ is any algorithm minimizer for the primal problem

constrained by ui ∈Ωi,∀i. Observe that the primal update for each subproblem needs
only the latest values of the other subproblem updates. During the computations of an

iteration, computation of uimþ1ð Þ and λimþ1ð Þ is done independent of each other; the

updates above can be computed in parallel for each subproblem. The only informa-
tion shared after each iteration is u1mð Þ, u

2
mð Þ,…, uLmð Þ among all.

3. Distributed algorithm for multi-robot system

3.1 Problem formulation

Now, in this section we can apply the previous discussion into the problem of
optimizing the motion of multiple robots. Recall the global optimization problem of
motion of L mobile robots from (1)

6
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min
ui;tisf g

∀k,∀i

∑
L

i¼1
H x

i Nð Þ
� �

þ zi Nð Þ

s:t:

zi kþ 1ð Þ ¼ zi kð Þ þ tis kð Þ � L xi kð Þ;ui kð Þ; tis kð Þ
� �� �

xi kþ 1ð Þ ¼ fD xi kð Þ;ui kð Þ; tis kð Þ
� �

gi xi kð Þ;ui kð Þ; tis kð Þ
� �

≤0

Ωi
xi kð Þ

� �

∀i
; ui kð Þ
� �

∀i
; tis kð Þ
� �

∀i

� �

≤0

k ¼ 0, 1,…, N, i ¼ 1,…, L, zi 0ð Þ ¼ 0,xi 0ð Þ ¼ xi
0

(20)

You can see that the problem above is just the combination of L subproblems
with superscript i corresponding to each robot. The objective function is
just the summation of individual objectives. The coupling constraint of

Ωi xi kð Þ
� �

∀i
; ui kð Þ
� �

∀i
; tis kð Þ
� �

∀i

� �

≤0,∀k is the only difference to the single robot

problem. To simplify the notations, let us define

ui ¼ ui kð Þ; tis kð Þ
� �N

k¼0

The above definition is just to reduce the notation of robot input sequence. If we

have, for example, two robot inputs ui ¼ ui1 ui2

 �T

(e.g., wheel torques), thenwe have
a total of 3� L�N control variables of the optimization problem.We can condense
notation of the global problem ofmulti-robot systemwithout loss of generality to be

min
u
if g

∀i

∑
L

i¼1
Ji ui
� �

s:t: ui ∈Ξi

Ωi
u
1
;u

2
;…;u

L
� �

≤0,∀i

(21)

with objectives

Ji ui
� �

¼ H xi Nð Þ
� �

þ zi Nð Þ (22)

which are subject to the set of individual robot i constraints of

Ξi
:

zi kþ 1ð Þ ¼ zi kð Þ þ tis kð Þ � L xi kð Þ; ui kð Þ; tis kð Þ
� �� �

xi kþ 1ð Þ ¼ fD xi kð Þ; ui kð Þ; tis kð Þ
� �

gi xi kð Þ; ui kð Þ; tis kð Þ
� �

≤0

∀k, zi 0ð Þ ¼ 0, xi 0ð Þ ¼ xi0

8

>

>

>

<

>

>

>

:

(23)

3.2 Distributed algorithm

Returning back to the primal-dual problem pair in Section 2, we can establish the
algorithm updates according to the defined updates in (19). At each iteration m, we
update each robot inputs and multipliers according to

u
i
mþ1ð Þ ¼ φmin Ji u

i
mð Þ

� �

þ λimð Þ

h iT
Ωi

mð Þ

h i

� �

λimþ1ð Þ ¼ P λi ≥0 λimð Þ þ αΩi
mð Þ

n o

(24)
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The minimizer update φmin :ð Þ is responsible to solve the single robot optimiza-
tion (primal) problem according to the objective defined in (22) and subject to
constraints in (23). In this paper, the minimizer update φmin :ð Þ is selected to be any
state-of-the-art nonlinear programming (NLP) algorithm. Let us have the step size
α for the dual update to be constant. This is sufficient for converging to a solution of
the original problem [33]. You can read the algorithm updates in (24) at iteration m
as each robot independently optimizes its whole motion throughout the whole time
horizon k ¼ 0, 1,…, N while at the same time puts in mind the extra cost of cooper-

ation/interaction with others introduced by the term λimð Þ

h iT
Ωi

mð Þ

h i

and so on.

3.3 Algorithm convergence

In this brief section, elaboration is put forth about how to practically use the
algorithm. The ultimate goal is to optimize primal problem with no collision viola-
tion, i.e., reaching optimal dual (maximum) solution. At each global iteration, we
only need to improve the primal problem values for the updated extra cost of the

interaction constraint, λi

 �T

Ωi

 �

. In this paper, a perfect solution is to optimize

while maintaining Ωi

 �

∀k
≤0. A logical property is to monitor the M-element vector

of constraints for positive values, i.e., violations. So, a stopping criterion for the
algorithm can be chosen to be some minimum change TolJ in the primal problem
value:

J mþ1ð Þ � J mð Þ

�

�

�

�

�

�≤TolJ with J mð Þ ¼ ∑L
i¼1J uimð Þ

� �

(25)

We can also distribute the stopping decision to individual robots by observing the
change in individual objective values.

With condition (25) on its own, we cannot always be satisfying the collision
requirement. So, this condition can be accompanied by a condition on the collision
constraint violation. For all robots, elements of the complete constraint vector

Ωi

 �

∀k
should be less than a relatively small positive value TolΩ. So, for each robot,

an extra stopping criterion along with criteria in (25) is to have

max Ωi
mð Þ

h i

∀k

� �

≤TolΩ (26)

Specific values of TolΩ and TolJ depend on the nonlinear programming algo-
rithm and/or the global desired requirements. Note that the behavior of the two
tolerance parameters could be competitive with each other.

4. Application to wheeled mobile robots

4.1 System description

Figure 1 shows the individual robot system considered here. Robot state

includes xi ¼ x y ϕ θR θL vR vL½ �T with both position x; yð Þ and orienta-
tion ϕ and θR; θL; vR; vLð Þ as the right and left wheel angular positions and velocities,

respectively. Robot input includes the respective wheel torques ui ¼ τR τL½ �T. You
can have the details of the applied nonlinear dynamic model fD xi kð Þ; ui kð Þ; tis kð Þ

� �

based on the system model developed in [34, 35]. Details of discretization and
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choice of parameters of the robot model can be found in [21]. As mentioned before,
for choices of Q ,R in Section 1, the Lagrangian for the problem is chosen to include
the cost for energy spent by the torques of the wheels, the cost for kinetic energy
spent by robot body, and the weight on time. Individual robot constraints include
final desired configuration tolerance, torque limits, and the ensurance of zero final
velocities (see more details in [36]).

4.2 Collision avoidance

Here, we will discuss the formulation and the structure of the coupling con-
straints. The robots can be designed to perform any cooperative strategy in their
motion. Here, we only consider the global goal of optimizing the motion of each robot
in time and energy while avoiding colliding with each other during the motion. Let us
define the coupling constraint vector across the discrete time indexes as

Ωi kð Þ ¼ Ωi xi kð Þ
� �

∀i
; ui kð Þ
� �

∀i
; tis kð Þ
� �

∀i

� �

:

For the ith robot, it tries to avoid colliding with the rest of L� 1 robots at each of

its time indexes k. Let us label elements of the constraint vector as Ωij kð Þ

 �

. Each
element is corresponding to a definition of constraint at time index k for all other

robots, j 6¼ i. So, for each robot, the constraint vector Ωi

 �

is of size

M ¼ L� 1ð Þ �N; of course, the multiplier vector λi in (24) is of the same size.
We define the collision avoidance by constraining motion of other robots to be

outside a safety circle region around each i robot at the position xi; yi
� �

in the 2D plane:

xi kð Þ � x̂j kð Þ
� �2

þ yi kð Þ � ŷj kð Þ
� �2

≥ p2:

So, we can define each element of the constraint vector as

Ωij kð Þ ¼ p2 � xi kð Þ � x̂j kð Þ
� �2

þ yi kð Þ � ŷj kð Þ
� �2

(27)

The radius of the safety region is chosen as p. Because of the definition of the
sampling period variable, at each of discrete time step k, the actual time variable
does not necessarily imply ti kð Þ ¼ tj kð Þ for all the other L� 1 robots. That is why you

Figure 1.
Wheeled mobile robot.

9

Distributed Optimization of Multi-Robot Motion with Time-Energy Criterion
DOI: http://dx.doi.org/10.5772/intechopen.85668



see that the x- and y- coordinates in (23) of the jth robot are noted as x̂j
; ŷj

� �

which

are chosen to be calculated as linear interpolation of positions according to available
actual times of ti kð Þ and t j kð Þ.

4.3 Simulation examples

You can follow the whole distributed algorithm for the time-energy optimiza-
tion of multi-robot system with collision avoidance in the flowchart in Figure 2.
View the flowchart as the process for each individual robot (subproblem). We
implement the algorithm in Figure 2. For the primal minimizer update in (24), the
nonlinear programming (NLP) function of fmincon in MATLAB is used. We solved
the problem for motion of L ¼ 3 mobile robots. Utilizing the parallel capability in
MATLAB, the distributed steps are solved independently utilizing three parallel
processors. We choose number of instants N ¼ 40; so, we are going to optimize 120
control variables for each robot. More details can be found in [36].

Example 1. In this example, exploration of the behavior of the algorithm is
shown. The problem has the following desired values of initial and final positions
and orientations for the three robots:

x10; y10;ϕ1
0

� �

¼ 0;�8;

π

2

� �

, x1f ; y
1
f ;ϕ

1
f

� �

¼ 0; 5; πð Þ

Figure 2.
Distributed algorithm flowchart to optimize multi-robot motion.
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x20; y20;ϕ2
0

� �

¼ �10;�1;0ð Þ, x2f ; y
2
f ;ϕ

2
f

� �

¼ 8; 5;
π

2

� �

x30; y30;ϕ3
0

� �

¼ 5;0; πð Þ, x3f ; y
3
f ;ϕ

3
f

� �

¼ �8;�1;
π

2

� �

Here, robot 1 has equal objective weights of 5 on both time and energy, robot 2
has weights of 10 on energy and 1 on time, and robot 3 has 10 on time and 1 on
energy. The maximum number of internal NLP iterations (primal update) is set to

Figure 3.
The time-energy objective values throughout global iterations (Example 1).

Figure 4.
Collision avoidance (Example 1).
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only 10. The step size is set to α ¼ 0:1. Maximum global iterations are allowed for
100 iterations. The safety circle radius is chosen to be p ¼ 2.

Figure 3 contains the objective (time-energy) value evolution throughout
iterations. You can see the stable convergence as the algorithm progresses. Figure 4
shows each of the robots’ safety clearances during the optimized motion. In
Figure 5, snapshots of motion of the three robots at different time instants are
depicted. This illustrates the collision avoidance attained throughout the optimized
motion. Observe also how different are the speeds of each robot because of objec-
tive weights; note from Figure 4 that each robot has a different final time for their
motion. The algorithm has shown good performance at eliminating collision con-
straint violations. Figures 4 and 5 show an instant (around t = 12) where robots 1
and 3 violate collision distance with very small value, but no collision occurs. This is
because the maximum number of iterations of the algorithm is exhausted. This

Figure 5.
Snapshots of optimized motions at different instants (Example 1).
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indicates the possibility for the motion to be optimized even more if collision
constraints were relaxed or if more algorithm iterations were allowed. Initialization
of the algorithm also plays a role in algorithm evolution.

Figure 6.
Optimized trajectories of the three robots: each row of plots shows x-coordinate error, y-coordinate error, and
orientation error, respectively; each column of plots show robots 1, 2, and 3 errors, respectively (Example 2).

Figure 7.
Collision avoidance (Example 2).
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Example 2. This example illustrates more the satisfaction of the objectives. In
this example the safety circle radius is put as p ¼ 3. Here we choose the following
initial and final positions and orientations for the three robots:

x10; y10;ϕ1
0

� �

¼ �8;0;

π

2

� �

, x1f ; y
1
f ;ϕ

1
f

� �

¼ 8;0;

π

2

� �

x20; y20;ϕ2
0

� �

¼ 0; 8;0ð Þ, x2f ; y
2
f ;ϕ

2
f

� �

¼ 0;�8;0ð Þ

x30; y30;ϕ3
0

� �

¼ 8;0;�
π

2

� �

, x3f ; y
3
f ;ϕ

3
f

� �

¼ �8;0;�
π

2

� �

After applying our approach, you can see the resulting optimized motions in
Figure 6. In Figure 6, errors in x- and y-coordinates and orientation of each robot
are shown with respect to time. It is clear that errors of zero are achieved. In
Figure 7 for each robot, constraint evaluations, i.e., safety clearance, are displayed
for the other two robots throughout time. You can see that robots come close to
each other sometimes but without violating the safety distance. This result is
attained maybe because of special structure of initial and final positions and orien-
tations. That could have given flexibility for the algorithm.

5. Conclusion

The paper investigated the time-energy minimization onto the multi-robot case.
A global objective function is formulated as the sum of individual robot objectives
in time and energy. Constraints are divided into two sets, namely, robot-individual
constraints and robots’ interaction constraints. The problem is decomposed into L
subproblems with L being the number of robot systems. The subproblems are
coupled with each other by the collision avoidance information. Applying a distrib-
uted algorithm solved the problem iteratively. The overall output gives optimized
motions for all robots in time and energy while adhering and not colliding with each
other. We applied our approach to the case of three wheeled mobile robots: we
generated in parallel for each robot an optimized control input trajectory.

An extension to this study is to generate optimized motion trajectories and apply
them experimentally. A possible area for experimentation is full-scale autonomous
vehicles. Issues related to communication and distributing information during the
parallel algorithm will need to be incorporated and investigated. Also, aspects of
state estimation and localization of the robot system will come into the place which
were not considered in this work. A possible other investigation is to distribute the
problem further onto the time variable k; this will lead the problem to the domain of
distributed model predictive control. This will, possibly, pave the way to faster
deployment into autonomous vehicles.
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