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Abstract

This chapter provides an overview of key topics in the area of radiation safety. Three clinical 
vignettes will serve to frame the review of the literature around both diagnostic radiation 
exposure and the risk of radioisotope contamination. Advancement in medical technology 
is rarely innocuous, and the use of radiation as both means to diagnose and treat certain 
conditions is not an exception. It is very important for clinicians to review the basics of 
harmful medical radiation exposure since, although seldom encountered, treatment, and 
outcomes are time sensitive. The advent of newer technology and the widespread avail-
ability of equipment will only serve to increase the prevalence of potentially harmful medi-
cal radiation exposure. Moreover, this chapter aims to explore current multidisciplinary 
endeavors to provide safe and efficient use of radiation in medicine. Solely relying on the 
medical profession for development of safeguards against harmful medical radiation expo-
sure would be an impossible task. This is why it is crucial for professionals such as health 
physicists, radiation safety enforcement officers, and policy-makers at the state, national, 
and international level to establish consensus guidelines aimed toward safe, reliable uti-
lization of radiation in medicine. Part of this interdisciplinary approach needs to focus on 
accurate education of patients. A thorough assessment of acute radiation syndrome, includ-
ing diagnosis, treatment, and prognostic indicators is also part of this chapter. Furthermore, 
principles of screening for, and protection from, radiation contamination are outlined. 
Finally, areas for further research are identified throughout the chapter. The discussion 
takes into account both US-based and International research and practice guidelines.

Keywords: diagnostic radiation exposure, patient safety, radiation exposure, radiation 
safety, radioisotope contamination, safety protocols
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1. Introduction

Because of its low incidence, the risk of patient exposure to ionizing radiation is often under-

estimated—and underappreciated—as a patient safety (PS) threat across various healthcare 
settings. Consequently, the Joint Commission mandates that hospitals prepare for managing 
radiation-related risks in terms of protecting patients from unnecessary exposure, limiting 
any associated potential damage, monitoring the types and extent of radiation, and maintain-

ing proficiency in decontamination procedures in cases of direct radioactive isotope contact 
[1, 2]. In terms of everyday healthcare facility functioning, there is a dual focus to ensure 
that radiation safety standards are met: (a) avoidance of unnecessary exposure including 
improper dosing and (b) assurance that radioactive material will be properly handled and 
disposed [2].

Regardless of the details or the mode of delivery, the intent of the treating team should always 
be the reduction in both short- and long-term radiation exposures [3]. It has been recom-

mended by different organizations and authors that radiation exposure reduction (RER) 
efforts encompass both pre-procedural and procedural phases of treatment [4, 5]. The use of 
radiation for diagnostic or therapeutic indications (RDTI) has clear benefits when appropri-
ately directed and supervised. However, serious errors, prolonged or repeated exposures, and 
lack of supervision can be associated with significant adverse consequences, including the 
risk of acute radiation sickness, malignancy, and death [6–10]. Table 1 [top section] lists the 

Side effect Frequency Minimum exposure amount (Rads)

Hyperpigmentation/erythema >50% 50–200

Mild fatigue >50% 50–200

Mild myelosuppression >50% 50–200

Skin desquamation <10% 100

Mild nausea/vomiting/diarrhea <10% 100–400

Intractable vomiting/diarrhea 90% >400

Comparison of alternative units of measure Conversion factor

1 Rad 0.01 Joule/kg; 0.01 Gray; 0.01 Sv

1 Millirad 0.00001 Joule/kg; 0.00001 Gray; 0.00001 Sv

1 Milligray; 1 Centigray; 1 Decigray; 1 Dekagray 0.1; 1; 10; 1000 Rads, etc. (respectively)

1 Coulomb/kg 3876 Roentgen; 3875 Parker; 3875 Rep

1 Millicoulomb/kg 3.876 Roentgen*

1 Microcoulomb/kg 0.003876 Roentgen*

1 Tissue Roentgen 1 Roentgen

kg = kilogram; Sv = Sievert; * = same applies for Parker and Rep units.

Table 1. Approximate incidence of adverse effect at different radiation exposures measured in Rads.
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approximate incidence of adverse effects at various levels of radiation exposure (measured in 
Rads). In addition, comparative descriptions of alternative radiation units of measure are pro-

vided for the reader in the lower section of Table 1. The latter measure is intended to reduce 
the confusion often encountered due to multiple naming conventions in this area of science.

An important distinction must be made between radiation exposure and radioactive contami-
nation. Radiation exposure refers to a person receiving energy in the form of waves or par-

ticles from an external source or from internal contamination [9, 10]. To prevent harm to the  
patient, the duration of exposure is carefully controlled. To prevent harm to the radiology 
technician, distance and shielding from source are employed [11, 12]. In contrast, a contami-
nated person has radioactive material on (or inside) the body secondary to ingestion, inha-

lation or deposition on the body surface. Thus, contamination can be classified as internal 
or external. Most patients exposed to radiation are not contaminated [13]. Radiation can 

be measured in SI unit Gray (Gy), which represents the absorption of one joule of radia-

tion energy per kilogram of matter. In order to reflect the degree of radioactive contamina-

tion in human tissue, the unit of Sievert (Sv) us usually employed. The following clinical 

vignettes will illustrate both radiation exposure (#1) and contamination (#2 and #3). For 
the purposes of our chapter, the reader should be familiar with the three general types of 
radiation, including the associated energetic characteristics and shielding capacity (Table 2).  
In addition, various levels of radiation exposure (measured in millisieverts) including the 
typical associated contextual settings are shown in Figure 1.

1.1. Clinical vignette #1

Over a period of months, numerous patients who underwent computed tomography (CT) 
perfusion scans of the brain at different hospitals across a wide geographic area reported 
vague complaints of oddly shaped patterns of unexpected hair loss. Reportedly, the mostly 
band-like areas of alopecia appeared within 1–2 weeks following each patient’s CT study. 
Some patients began complaining of new onset memory loss and/or difficulty keeping bal-
ance while walking. Given the unusual pattern of clinical signs and symptoms, as well as 
the isolated nature of occurrences, it took months before the connection was made between 
CT perfusion scans and what turned out to be significant radiation overdoses. When the 
true scope of the problem became evident, hundreds of patients were identified as having 
received approximately eight times the expected levels of radiation. It appeared that the 
root cause for the above occurrences may be faulty programming of CT scanner devices. A 
nationwide statement of caution was issued by the FDA, urging hospitals across the US to 

Type of radiation Penetrating energy Penetrating capacity in human body Shielding capacity

Alpha (α) Low Epidermis Dissipates in air

Beta (β) Intermediate Soft tissue Sheet of paper

Gamma (γ) High Bones and organs Lead

Table 2. Types of ionizing radiation, with corresponding levels of penetration and preferred shielding characteristics.
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review institutional CT scan logs to check radiation dosage levels and data regarding appli-
cable adherence to established dosing protocols [14, 15]. In response to the above events, 
the first state law in the US aimed at protecting patients from excessive radiation exposure 
during CT scans was signed into law by Gov. Arnold Schwarzenegger of California [16]. In 

addition to providing an accreditation mandate for CT scanners, the bill also requires that 
radiation dose be recorded on the scanned image in a patient’s medical record, and that 
radiation overdoses be reported to patients, treating physicians, and the state Department 
of Public Health [16].

1.2. Clinical vignette #2

In 1987, improperly abandoned hospital radiation equipment in Goiania, Brazil, led to the 
contamination of a large number of people. During the post-incident review, it was discov-

ered that an unused irradiation machine was left behind when a privately owned healthcare 
facility moved. The device was subsequently stolen by a group of young men who sold it to 
a scrap metal dealer. During the disassembly of the medical equipment, a broken capsule 

Figure 1. Different levels of radiation exposure, measured in millisieverts (mSv) and the associated biological manifestations.
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of the highly radioactive cesium-137 was accidentally smashed, along with its lead enclo-

sure, liberating “shiny bluish dust which glowed in the dark” [17]. Unaware of the danger, 
numerous individuals associated with the scrap metal yard owner came into contact with 
the radioactive powder. The most seriously affected victims developed alopecia, cutaneous 
burns, vomiting and diarrhea. The governmental response was slow at first, due mainly to 
the lack of recognition of the magnitude and the urgency of the situation. Experts from the 
Soviet Union and the US were involved in the subsequent management and containment of 
the radioactive risk. The incident was thought to be the most serious of its kind at the time, 
with 240 documented cases of contamination, 20 hospitalizations, and 4 fatalities [17, 18].

1.3. Clinical vignette #3

In 1992, an unexpected discovery of radioactive waste was made by a regional disposal 
company in Indiana, Pennsylvania [9, 19]. Subsequent investigation by the US National 
Regulatory Commission (NRC) found that in November of 1992, a local clinic in Indiana, 
Pennsylvania treated a patient with high-dose brachytherapy using an iridium-192 radioac-

tive source [20]. It was determined that the treatment was not completed due to equipment-
related issues. Unknown to the operators, the source wire became fractured and remained 
in the patient. Investigators discovered that the required radiation survey at the end of the 
treatment was not performed. The patient was discharged to a nursing home and died 5 days 
later. Unaware of the danger, nursing home staff removed the source-containing catheter and 
disposed of it as biohazardous waste [9]. The source was identified during routine radiation 
surveillance by the waste disposal company. In addition to being a contributor to the index 
patient’s death, more than 90 individuals may have been exposed to the radioactive material, 
with doses ranging from <0.05 to >2.55 rem [20].

2. The magnitude of the “silent” problem

Difficult to identify at the time of the initial exposure, radiation injury tends to present in a 
delayed fashion. Radiation injury also tends to be low on a typical differential diagnosis list 
as most cases tend to involve unintentional (and unrecognized) exposure. As demonstrated 
by our three vignettes, the uncommon occurrence of harmful medical radiation exposure 
(HMRE) can originate as a result of various types of PS error; both of omission and of commis-

sion [21]. In addition, radiation-related PS issues can result from lack of adequate oversight 
at both institutional level (e.g., absent safety procedures) and governmental level (e.g., lack of 
applicable laws, regulations, or enforcement) [9, 22, 23].

Complexities associated with HMRE prompted an important discussion regarding the nature 
and the content of the informed consent process, specifically as it relates to medical radiation 
exposure [24]. The true gravity of such considerations is exemplified by the known associa-

tion between cumulative radiation exposure and the incremental risk of malignancy follow-

ing repeated CT imaging episodes [25]. Moreover, compared to the adult population, the 
overall risk is significantly greater for pediatric patients [26].
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3. Biological manifestations of HMRE

Two broad categories of clinical (e.g., biologic) effects of radiation, specific to the con-

texts of radiation therapy or accidental isotope exposure, include deterministic injuries 
and stochastic injuries. Deterministic injuries manifest as radiation-induced escalation of 
normal physiologic apoptosis resulting in increased death of essential cells with resultant 
tissue and organ dysfunction [27]. These types of injuries occur when large numbers of 
cells become damaged and, as a result, die immediately or shortly after irradiation [28]. 

Dermatoligic post-exposure injury can range from “local erythema” to “skin necrosis” 
[28]. Estimation of dosage is measured in the units of Gy, with 0–2 Gy associated with 
no biological effects; 2–5 Gy causing transient erythema (<2 weeks), followed by epilation 
(2–8 weeks) and recovery (6–52 weeks); 5–10 Gy associated with prolonged erythema (up 
to 8 weeks), epilation (2–8 weeks), and recovery (6–52 weeks); 10–15 Gy exposure causes 
transient erythema (<2 weeks), dry/moist desquamation (2–8 weeks), followed by per-

manent epilation (6–52 weeks) and finally atrophy (>40 weeks); and >15 Gy being associ-
ated with acute ulceration (<2 weeks), moist desquamation (2–8 weeks), dermal necrosis 
(6–52 weeks), and eventual surgery (>40 weeks) [28]. Table 3 outlines the above exposure 
levels in a systematized fashion.

Stochastic effects manifest as cellular carcinogenesis and result from radiation induced 
mutations in genetic material of cells including germ cells [27]. For stochastic injuries, post-
radiation damage becomes the key determinant of clinically apparent, usually long-term 
manifestation [28]. Such effects also depend on the type/activity of the isotope involved. 
More specifically, these kinds of injuries have a linear nonthreshold dose that may lead 
to radiation-induced malignancy and/or heritable genetic defects [28]. Estimation of dos-

age from radiologic studies utilizes the units of Sieverts (Sv), with procedures such as 
dual-isotope SPECT (24 mSv) and CT angiography (19 mSv), carrying the highest effective 
radiation doses [28]. Of note, victims of the Chernobyl disaster were exposed to a maxi-
mum radioactivity of 300–450 mSv/h within a 15 km radius. The individuals that had suf-
fered from radiation are suspected to have received a minimum of 0.8–2 Gy (80–200 Rad) 
dose [28].

Radiation dose 

(Gy)

Possible adverse reaction Timeline

0–2 No effect

2–5 Transient erythema <2 weeks

5–10 Prolonged erythema <8 weeks

10–15 Dry/moist desquamation leading to permanent epilation 2–8 weeks → 6–52 weeks

>15 Acute ulceration leading to desquamation and dermal 
necrosis

<2 weeks → 6–52 weeks

Table 3. Post-exposure deterministic injury shown with radiation dose in Gray units and the typical timeline associated 
with the appearance of adverse effects.
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4. Regulatory mechanisms and safety enforcement

The first line of ensuring safety is the presence of organizational policies and procedures 
pertaining to HMRE as well as the handling of radioisotope-containing medical materials, 
both at the departmental and institutional levels [29–31]. In addition to applicable poli-
cies and procedures that are harmonized to prevailing laws and regulations, organizations 
also employ radiation safety experts in the role of Radiation Safety Officer (or functional 
equivalent thereof) to ensure the maintenance of appropriate legal and procedural compli-
ance  [31–33]. Any HMRE events that are deemed reportable to appropriate local, regional, 
or national authorities are handled by the Radiation Safety Officer. In addition, employees 
who work around radiation equipment and/or interact with medical radioisotopes must wear 
radiation monitoring badges that help quantify levels of healthcare worker exposure [34, 35]. 

Some general considerations of how appropriate policies and procedures can help protect the 
well-being of both patients and healthcare workers include [7, 32, 36–38]:

• In diagnostic radiography, the use of hardwired “safety prompts” helps facilitate double-
checking of the expected radiation dosage; also, it is important to ensure the presence of 
appropriate warning lights, such as “X-ray in progress” and sufficiently labeled facilities 
with caution signs

• Ensuring that the delivery process of therapeutic radiation is appropriately structured, 
including thorough planning, simulated application, and the presence of built-in cross-
checks (e.g., two or more experts sign-off on the final therapeutic plan, including the 
physician, the physicist, and a dosimetrist)

• Monitoring of cumulative monthly radiation exposure and limiting further exposure for 
those employees who exceeded established thresholds

• Protocolized monitoring of medical waste for the presence of radioactivity, both at the site 
of origin (e.g., the hospital) and at the destination (e.g., landfill)

In the European Union and associated countries, the Euratom Treaty recommends that a 
patient examination and clinical justification are provided before a referral is made to a radi-
ologist or a nuclear medicine expert. Moreover, nonionizing radiation is preferred whenever 
it will provide comparable information to that obtained by means of ionizing radiation [39]. 

For example, an ultrasound or magnetic resonance imaging (MRI) may provide the same 
desired information as a CT, without the need for ionizing radiation [40]. Additional safety 
enforcement strategies include: safety checklists to verify the patient and study being per-

formed; radiation dose customization utilizing the patient’s weight, age, medical history, and 
intended body segment to be scanned/imaged; and decision support systems which provide 
ordering physicians an opportunity to answer questions regarding their patients and consider 
alternatives to ionizing diagnostics [40].

The US Food and Drug Administration (FDA) has partnered with other organizations to promote 
education and communication regarding radiation safety to patients and medical professionals 
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[41]. Among their resources, the FDA collaborated with the National Council on Radiation 
Protection and Measurement to communicate the risk of radiation exposure with patients, par-

ticularly imaging involving young children [41, 42]. The FDA advocates for patient and health-

care provider awareness via the Image Wisely and Image Gently radiation risk campaigns, as 
well as with the International Atomic Energy Agency’s “Radiation Protection of Patients” web-

site [41, 43, 44]. The FDA has also advocated for patient and healthcare provider tools to reduce 
radiation exposure. One particular innovative safety tool is the “Patient Medical Imaging Record 
Card”, which was developed by the FDA in collaboration with Image Wisely [41, 43]. The card 

can be used to track patient imaging studies by date, type, and location to prevent unnecessary 
repeat ionizing radiation exposures [41]. Looking toward the future, this card would ideally be 
integrated into the patient’s electronic health record and stored in a nationally accessible data-

base for healthcare providers, such as the Federal Data service Hub, which is established by the 
Affordable Care Act and backed by the Health and Human Services department [45].

The US Nuclear Regulatory Commission was established with The Energy Reorganization 
Act of 1974 to license and regulate the civilian use of radioactive materials to protect public 
health and safety and the environment. It is in charge of overseeing nuclear reactors, security, 
and materials as well as radioactive waste. The commission sets rules and licensing, enforces 
those rules, evaluates facilities, and provides support and logistics for incident response. Some 
aspects of management and regulation of certain radioactive materials have been granted to 
Agreement States [46].

5. Radiation injury

Although most individuals exposed to radiation contamination are not symptomatic, the con-

sequences of such exposures tend to result in long-term sequelae [47–50]. Providers should 
be aware of signs and symptoms of radiation injury so that such occurrences can be readily 
recognized, contained, and victims treated promptly [51, 52]. As demonstrated in our Clinical 

Vignette #1, acute HMRE tends to have organ-specific, regional anatomic manifestations (e.g., 
pneumonitis, lung fibrosis, gastric ulceration, and radiation proctitis) [52–54]. Systemic mani-
festations (e.g., acute radiation syndrome) are extremely rare in the healthcare setting and usu-

ally involve direct exposures of patients, workers, or otherwise unsuspecting individuals, to 
the radioactive isotope material, as outlined in our clinical vignette #2 [18, 55] and clinical vignette 
#3 [9, 19, 20].

Acute radiation syndrome (ARaS), unlike radiation injury, is a systemic entity that occurs 
very rarely in the healthcare setting. It usually involves some form of equipment failure, 
radioactive isotope release, criminal activity/theft, or inappropriate disposal of equipment 
or isotope(s) [9, 18–20, 55]. Because ARaS may be the only overt “manifestation” of a major 
radioactive breach, it is critical that it is promptly recognized, and that it leads to a thorough 
investigation into associated events. Symptoms of ARaS evolve over time in distinct phases. 
The duration of each phase and the time of its onset will be approximately inversely propor-

tional to the dose [56]. An initial prodromal phase, with symptoms such as nausea, vomit-
ing, weakness, and fatigue, typically develops within hours to days after exposure of the 
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whole body to radiation exceeding 0.7 Gray (Gy). ARaS manifests most acutely and severely 
in the hematopoietic, gastrointestinal, and cardiovascular/neurovascular systems [27, 57]. 

Radiation-induced gastrointestinal manifestations of ARaS manifest as nausea, vomiting, 
and bloody diarrhea. Severe dermatological injury with burns, desquamation, epilation, and 
ulceration can occur after significant radiation exposure even in the absence of ARaS [58], as 
exemplified by our clinical vignette #1. The above manifestations are summarized in Table 4.

6. Protection from and screening for radiation contamination

The general principles of protection from radiation injury depend upon four factors: dis-

tance, time, shielding, and removal or containment of contamination [27]. When caring for 
potential radiation contaminated patients, healthcare personnel must minimize the duration 
of exposure to a source, maximize the distance from source, and establish effective shielding 
from the source. Identification of the presence of radioactive contamination on or within a 
patient mandates early removal/containment in order to forestall further damage and con-

tamination [27]. In cases similar to the Goiania incident, hand-held Geiger counters must be 
utilized in order to focus on accurately identifying anatomic areas of contamination unique 

Syndrome Hematopoietic Gastrointestinal Cardiovascular/neurovascular

Dose >0.3–0.7 Gy >6–10 Gy >20–50 Gy

Prodromal stage 
(minutes—2 days)

Anorexia, nausea/vomiting Anorexia, severe 
nausea, vomiting, 
cramps, and 
diarrhea

Extreme nervousness and 
confusion, severe nausea, 
vomiting, watery diarrhea, loss 
of consciousness and burning 
sensation of the skin

Latent stage Patient appears well for 1–6 weeks Patient appears and 
feels well for less 

than a week

Patient may return to partial 
functionality (often lasts less than 
several hours)

Manifest illness 
stage

Anorexia, fever, and malaise

Drop in all blood cell counts

Primary cause of death is infection 
and hemorrhage

Most deaths within a few months

Survival rate is inversely proportional 
to dose

Malaise, anorexia, 
severe diarrhea, 
fever, dehydration, 
and electrolyte 

imbalance

Death occurs within 
2 weeks after 

exposure

Watery diarrhea, convulsions, 
and coma

Onset occurs 5–6 hours after 
exposure

Death occurs within 3 days of 
exposure

Recovery Full recovery for large percentage of 
patients from a few weeks to 2 years 
after exposure

Death may occur in some individuals 
at 1.2 Gy

The LD50/60 is 2.5 to 5 Gy

The LD
100

 is about 
10 Gy

No recovery expected

Table 4. Acute radiation syndrome: most common manifestations [13].
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to each individual [1]. Substantial exposure of emergency responders and clinicians car-

ing for potentially heavily contaminated patients may occur. Emergency medical services 
and clinicians must use caution and adhere to strict precautions for managing hazardous 
materials to prevent inadvertent contamination of themselves and others [27]. Personnel 
should wear radiation dosimeters, sealed in clear, airtight plastic bags, and worn outside 
the clothing to allow rapid assessment and early detection of contamination. Workers and 
work areas should undergo repeated surveillance with radiation detectors at appropriate 
intervals [1, 27].

7. Laboratory evaluation of acute radiation injury

In cases of more significant exposure, ARaS manifests initially through the hematopoietic 
system as blood marrow tissues are highly radiosensitive [27]. Of all the components of 
hematopoiesis, circulating lymphocytes have the most radiosensitive cell lines and provides 
a useful laboratory tool to screen for the severity of the radiation sickness early in observation 
(Figure 2) [56]. After whole body exposure above 0.5 Gy, the rapid fall in lymphocyte number 
starts within hours, and the lymphocyte depletion is proportional to the dose between 1 and 
10 Gy [56]. GM-CSF may be helpful for the recovery of the bone marrow function after clini-
cally significant radiation exposure [57]. Lymphocyte depletion kinetics serves as the single 
best estimator of radiation exposure and clinical outcome [27]. A decrease in absolute lympho-

cyte levels may be observed at whole-body doses as low as 100 mSv, but clinically significant 
response may not be seen below 1–2 Sv. Depending on the absorbed dose, such changes can 
begin within hours of exposure, so it is recommended that an immediate complete blood count 
with differential is performed as a baseline and then every 6–12 hours thereafter for 2–3 days 
[27]. An elevated serum amylase provides a supplementary piece of information that may also 
be an early sign of serious radiation exposure involving the head and neck. The results of this 
test are nonspecific; however, and they may also reflect alcohol intake, a stress response, trauma 

Figure 2. Time-dependent lymphocyte depletion kinetics following either severe or moderate radiation exposures. As 
early as 6–12 hours following exposure, there may be some indication of the severity of the exposure [35].

Vignettes in Patient Safety - Volume 464



to the face or abdomen, or other factors [27]. In addition, the presence of nausea and vomiting 
within several (usually around 4) hours of exposure may also be diagnostically helpful.

8. Measuring severity of radiation dose

Similar to other toxicological phenomena, determining the potential harm of radiation expo-
sure mandates consideration of three factors: dose of radiation exposure, tissue or surface 
area exposed, and duration of exposure. Whole body radiation exposure to 4 or 5 Sv (or Gy) 
imparts potentially lethal effects, while an extremity can tolerate several times that exposure 
[27]. General measures of radiation exposure (e.g., fluoroscopy time) have low utility and 
accuracy [28]. At this juncture, it is important to introduce the concept of KERMA, or “Kinetic 
Energy Released in Matter”, which is a measure of energy delivered (or dose) [28]. Air-KERMA 
is the KERMA measured in air (e.g., low scatter environment) [28]. More useful methods of 
determining radiation administered include: (a) total air-KERMA (exposure) at pre-specified 
reference point, (b) air-KERMA area product, and (c) peak skin dose or the maximum dose 
received by any local area of patient skin [28, 59]. See Figures 3–5 for further information.

Figure 3. Timeline for post exposure injury for dosage of 2–5 Gy.

Figure 4. Timeline for post exposure injury for dosage of 10–15 Gy.

Figure 5. Timeline for post exposure injury for dosage >15 Gy.
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Relative radiation 

level

Adult effective 
dose estimate 

range (mSv)

Pediatric effective 
dose estimate range 

(mSv)

Example examinations

O 0 0 Ultrasound; MRI

☢ <0.1 <0.03 Chest X-ray; hand X-rays

☢☢ 0.1–1 0.03–0.3 Pelvis X-ray; mammography

☢☢☢ 1–10 0.3–3 Abdomen CT; nuclear medicine bone scan

☢☢☢☢ 10–30 3–10 Abdomen CT with and without contrast; whole 
body PET

☢☢☢☢☢ 30–100 10–30 CTA chest abdomen pelvis with contrast; 
transjugular intrahepatic portosystemic shunt 
placement

Table 5. Relative radiation level designations along with associated effective adult and pediatric doses, as well as 

imaging examinations that correspond to said levels [65].

9. Patient exposure to radiation

A point of concern among care providers and parents is the risk of radiation exposure from 
medical imaging, especially in the pediatric population. Epidemiologic studies have shown 
that in utero exposure to radiation is associated with higher incidence of pediatric cancers, but 
data related to rates of pediatric and adult cancers are relatively scarce [60]. In recent years, 
CT scanning has become the favored imaging modality in many clinical scenarios and is likely 
to see even further increases in use going forward [61–63]. As such, CT utilization in pediat-
rics has increased markedly over the last 20 years. Over 85 million CT scans are performed 
annually in the United States, with 5–11% of these performed on children [64]. Before we 

embark on further discussion, important dose-related information in the context of diagnostic 
testing is provided in Table 5.

A typical CT scan of the head of a child carries an average dose of 2–2.5 millisieverts (mSv) 
of radiation. CT imaging of the chest and abdomen carries doses averaging 3–4 and 5–6 mSv, 
respectively. The actual dose administered differs from the more nebulous effective dose, as 
other factors make the amount of radiation exposure more meaningful in children than adults. 
The effective radiation doses received by children are about 50% higher than those received 
by adults for similar imaging studies due to smaller body sizes and radiation attenuation [66, 
67]. Up to an age of 10, children are approximately three times more sensitive to radiation than 
adults, which is why longer life expectancy coupled with organ systems that are still develop-

ing disproportionately increases the relative burden of pediatric radiation exposure [67–69].

Several studies have attempted to answer questions regarding specific childhood cancer risks 
associated with radiation exposure. Two studies showed increased incidence of pediatric 
leukemia in children with medical radiation exposure; however, these studies used retro-

spective questionnaire data and their result as inconsistent with older data [70, 71]. Certain 
genetic phenotypes might make some children more sensitive to the effects of radiation and 
risk of acute lymphocytic leukemia [72]. Very limited data exist on CT-attributable risk of 
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solid tumors in children. There is weak evidence regarding the association between radiation 
exposure and such occurrences (e.g., pediatric astrocytoma and Ewing’s sarcoma), but this 
connection is in no way definitive [60].

Data regarding the lifetime risk of cancers appear to be more robust. A large retrospective 
cohort study reviewed >175,000 patients from the NHS registry in England [26]. The authors 
noted a positive association between dose of radiation from CT imaging and leukemia and 
brain tumors. They found relative risk of leukemia to be 3.18 in patients who received more than 
30 mSv of cumulative radiation. Similarly, they found an increased relative risk of brain cancer to 
be 2.82 in pediatric patients who received cumulative dosing of 50 mSv or more [26]. The caveat 

to these data, however, is that these are rare cancers to begin with, thus the absolute relative risk 
increase is very small. Although the relative risk of brain cancer may nearly triple with signifi-

cant cumulative radiation exposure, the absolute risk is still exceedingly small. Based on robust 
statistical models, for every 100,000 skull/brain CT scans in 5-year-old children, eight brain/
central nervous system cancers and four cases of leukemia would result [73]. The same study 
estimates that 100,000 chest CT scans would lead to an excess of 31 thyroid cancers, 55 breast 
malignancies, and 1 leukemia case [73]. Consequently, the lifetime risk of cancers, although 
small, should be discussed with parents of children undergoing CT scanning. Although these 
studies are largely safe in children, unnecessary exposure to radiation should still be avoided, 
and diagnostic tests not utilizing ionizing radiation should be used whenever possible. The 
medical necessity of imaging should be weighed against the relatively small risk of harm when 
determining the appropriateness of these studies. Again, the greatest risk of cancer appears to 
exist when children are exposed to cumulative doses of radiation greater than 30–50 mSv.

10. Pregnancy and reproductive health considerations

According to the American College of Radiology, no single diagnostic X-ray study or pro-

cedure results in radiation exposure sufficient to threaten the well-being of the pregnant 
patient, the developing embryo, or the fetus [74]. In fact, diagnostic radiation exposures 
during pregnancy may be safer than the frequent concerns over in utero radiation exposure 
suggest [75]. Moreover, the utilization of diagnostic radiological imaging may entail more 
benefit than risk in the evaluation of certain maternal injuries or illnesses [76]. As much atten-

tion should focus on limiting diagnostic radiation exposure of the gravid woman’s breast 
tissue, to prevent carcinogenesis, as on limiting radiation exposure of the fetus [77, 78]. In 

the setting of pregnancy, radiation exposure should be limited to 1 mGy during the first tri-
mester, with teratogenicity risk being elevated at 5 mGy [79]. In addition, iodine-containing 
contrast media may lead to hypothyroidism in the fetus, an additional consideration when 
performing radiographic studies utilizing contrast material [79]. Counseling of the patient 
by the referring clinician and by the radiologist is essential in providing informed consent as 
the benefits and risks of procedures can be opaque and the decision may impart lasting con-

sequences [80]. Impacting 5–7% of all pregnancies, trauma represents an important cause 
of nonobstetric maternal morbidity and mortality [81]. Consequently, the risk-benefit equa-

tion regarding diagnostic imaging in this particular setting is somewhat different, with the 
mantra that the best way to ensure fetal wellbeing is to aggressively treat the mother [82].
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11. Radiation exposure as low as reasonably achievable (ALARA)

Literature suggesting that accrual of cumulative radiation exposures from diagnostic radiolog-

ical studies, such as CT scans or fluoroscopy, over the course of patients’ lifetimes puts them 
at risk for the potential carcinogenic risks of radiation [83, 84]. One example here comes from 
the area of endovascular interventional procedures. Since the introduction of endovascular 
therapy in the late 1980s, there has been incredible growth in this group of procedural modali-
ties. In fact, endovascular procedures have increased approximately 400% over the past decade 
[85]. The applicability and medical advancements of this form of therapy have revolutionized 
treatment of our patients. However, there has been an associated cost, including substantial 
risk of ionizing radiation exposure [86]. Some of the pioneers of endovascular therapy have 
succumbed to the deleterious consequence of ionizing radiation [87]. Radiation safety prac-

tices have made tremendous advances since the discovery of Roentgen’s X-rays over 120 years 
ago. Early practitioners were focused on patient outcomes and providing minimally invasive 
methods to treat complex disease processes. These sacrifices of early practitioners led to our 
awareness and knowledge that now allows us to perform truly remarkable treatments to ben-

efit our patients. A number of very practical steps can be taken to reduce radiation exposure 
to patients, operators, and staff [88, 89]. Awareness itself can be an effective first step in reduc-

ing exposure. Once awareness of the problem exists, we can then work to educate and enact 
training and methodology to achieve maximal safety to our patients and ourselves. However, 
despite the available data, there remains a significant safety deficit. In 2014, a survey of US vas-

cular surgery trainees found 45% had no formal radiation safety training, 74% were unaware 
of the radiation safety policy for pregnant females, 48% did not know their radiation safety 
officer’s contact information, and 43% were unaware of the acceptable yearly levels of radia-

tion exposure [90]. However, an important observation was that the trainees who felt their 
attendings were applying ALARA techniques were much more likely to do so themselves. 
Therefore, it is incumbent on those of us providing training to the next generation of caregiv-

ers to set an example of excellence and expect the same from our trainees. Only by expecting 
excellence can we hope to achieve superior safety for our patients and ourselves.

Advocates for radiation safety recommend exposing patients, especially children, to as little 
radiation as possible. This is embodied within the concept of “as low as reasonably achievable” 
(ALARA) in the context of radiation exposure [84]. As such, ALARA addresses the role for 
healthcare providers, particularly those caring for children, in reducing exposure to radiation 
while maintaining the reliability of the diagnostic radiology modality [91]. Multiple methods 

can be used to achieve ALARA including: adjusting the amount of radiation in the diagnostic 
study based on patient weight, considering alternative modalities such as sonography or mag-

netic resonance imaging, enhancing shielding with thyroid or breast shields, focusing on the sus-

picious area with focused or limited view diagnostic imaging, and discouraging repeat CT scan 
studies [91]. In one example, although noninvasive multi-slice cardiac-computed tomography 
angiography (CCTA) can accurately screen for coronary ischemia, its widespread utilization has 
generated concern because of potential diagnostic radiation exposure. Utilization of a radiation 
dose reduction program in concert with limiting the image acquisition window for CCTA has 

demonstrated marked reduction, more than 50%, in estimated radiation doses in a statewide 
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registry without impairment of image quality [83]. In another example, appendicitis represents 

the most common disease process resulting in increased CT scan utilization in children over the 
last two decades. Clinical practice guidelines advocating for “abdominal sonography first” for 
the evaluation of appendicitis have demonstrated comparable diagnostic accuracy to CT scan 
imaging, while reducing CT scan utilization and thus radiation exposure [91]. The Pediatric 
Emergency Care Applied Research Network collaborative development of a clinical decision 
guideline for pediatric head trauma is another example of research helping to reduce the medi-
cal radiation footprint by reliably identifying patients at low risk for clinically important trau-

matic brain injuries, for whom CT can routinely be obviated [92].

12. Safety protocols

Careful adherence to existing PS protocols, including active surveillance for any signs and/or 
symptoms of HMRE, is among the most important considerations for facilities/departments 
providing diagnostic and/or therapeutic radiation services [28]. In addition to direct radia-

tion, the formation of X-ray image is inherently associated with some degree of “scattered 
radiation” that is the principal source of exposure to the patient and medical staff [28]. This 

“scatter” increases with both intensity of the X-ray beam and the size of the exposed field [28]. 

Any hospital employing medical radiation needs to have an infrastructure to support proto-

cols for every step of the way throughout the application of said radiation including patient 
and healthcare worker safety, proper identification and dosing, and waste management of 
materials in order to prevent contamination.

13. Conclusions

The power to harness ionizing radiation for medical uses has a history spanning more than 
a century. Although its positive impact on the modern-day prowess of the diagnostician is 
unquestionable, great care must be taken in order to not abuse this technology. Diagnostic 
imaging with ionizing radiation seems poised to be part of the medical armamentarium for 
the foreseeable future. Further research is required in all aspects of this field, including more 
efficient protocols for delivery, custom-tailoring therapy which takes into account the patients’ 
makeup, potential short-term and long-term harmful effects, the prediction and prevention of 

harm and better safeguards for dosimetry not only for patients but also for healthcare workers. 
Greater strides must be achieved in the realm of oversight and standardization of practice, as 
well as a comprehensive, nonpunitive reporting system for adverse events. A multidisciplinary 
approach from health physicists, radiation safety personnel, and clinicians is paramount for 
the management of contamination events and for the safe and accurate use of both diagnostic 
and therapeutic medical radiation. The key for this technology going forward is for education 
to be widespread among all levels of healthcare, from patients and their families to healthcare 
providers and policy makers. Research and public health information dissemination will go 
hand-in-hand throughout the next century of medical radiation use.
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