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Chapter

Self-Calibration of Precision XYθz
Metrology Stages
Chuxiong Hu, Yu Zhu and Luzheng Liu

Abstract

This chapter studies the on-axis calibration for precision XYθz metrology stages
and presents a holistic XYθz self-calibration approach. The proposed approach uses
an artifact plate, specially designed with XY grid mark lines and angular mark lines,
as a tool to be measured by the XYθz metrology stages. In detail, the artifact plate is
placed on the uncalibrated XYθz metrology stages in four measurement postures or
views. Then, the measurement error can be modeled as the construction of XYθz
systematic measurement error (i.e. stage error), artifact error, misalignment error,
and random measurement noise. With a new property proposed, redundance of the
XYθz stage error is obtained, while the misalignment errors of all measurement
views are determined by rigid mathematical processing. Resultantly, a least square-
based XYθz self-calibration law is synthesized for final determination of the stage
error. Computer simulation is conducted, and the calculation results validate that
the proposed scheme can accurately realize the stage error even under the existence
of various random measurement noise. Finally, the designed artifact plate is devel-
oped and illustrated for explanation of a standard XYθz self-calibration procedure to
meet practical industrial requirements.

Keywords: XYθz stage, self-calibration, measurement system, least square,
stage error

1. Introduction

PrecisionXYθzmotion stages are ubiquitously utilized in industrial mechanical
systems tomeet the requirement of high-performancemanufacture [1].As automatical
servo systems, these stages have both precision linear encoders and angle encoders for
measurement andmotion feedback control [2–7]. In practice, themeasurement accu-
racy inevitably suffers from surface non-flatness and un-roundness, axis nonortho-
gonality, scale graduation nonuniformity, encoder installation eccentricity, read-head
misalignment, and so on, which resultantly generate systematic measurement error,
i.e. stage error. The stage error can in principle be eliminated through calibration
technology [8–10]. Due to the difficulty on finding amore accurate standard tool in
traditional calibration technologies, self-calibration technology has been developed
with utilization of an artifact withmark positions not precisely known. As an alterna-
tive of intelligent calibration processes, self-calibration is an effective and economical
approach especially for micro-/nano-level mechanical systems [11–14].

Existing self-calibration technologies were developed for X, XY, XYZ, and angu-
lar metrology stages, respectively. For example, Takac studied one-dimensional
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self-calibration and developed a scheme that made a set of tool graduation marks
appear to have identical spacing with relative scale [15]. In [16], self-calibration
method for single-axis dual-drive nanometer positioning stage was presented. In
[17], an XY self-calibration strategy was presented for two-dimensional metrology
stages, which used an artifact plate as assistance measured by three views to con-
struct equations of stage error, misalignment error, and artifact error. Fourier
transformation was employed in the scheme to meet the challenge of random
measurement noise. This method is popularly followed by many engineers and
researchers [18–21]. In [18], a self-calibration algorithm was developed to test the
out-of-plane error of two-dimensional profiling stages. The algorithm suppresses
artifact-related errors in consideration of the geometrical congruence of three pro-
file measurement views. Computer simulation and experimental results both
showed that the calibration accuracy was free from artifact imperfection and only
minimally affected by random measurement errors. In [19], a self-calibration
method was proposed for mapping the errors in XY plane and the squareness error
between Z-axis and XY plane of the scanning probe microscopes. In [22, 23], self-
calibration approach for three-dimensional metrology stages was completely pro-
vided with experimental validation.

On the other hand, lots of self-calibration technologies have been developed for
angular metrology systems [14, 24] in US National Institute of Standards and
Technology (NIST), National Metrology Institute of Japan (NMIJ), Germany’s
National Metrology Institute the Physikalisch-Technische Bundesanstalt (PTB),
Korea Research Institute of Standards and Science, etc. Specifically, circle closure
principle was frequently used to cross-calibrate index tables in NIST [25, 26]. A
high-precision rotary encoder self-calibration system was built based on equal-
division-averaged method and had been adopted as the angular national standard
system in NMIJ [27, 28]. The equal-division-averaged method was also expanded
for self-calibration of the scale error in an angle comparator [29]. In addition, a
known prime factor algorithm-based method was presented for self-calibration of
divided circles in PTB [30, 31].

In summary of previous self-calibration strategies, a systematic self-calibration
strategy for calibration of XYθz metrology stage is seldom published up to present.
To address this problem, we have proposed a preliminary framework to self-
calibrate the XYθz stage error in [32], assuming that the angular coordinate and the
XY coordinate are uncorrelated while the XY stage error and θz stage error are
solved separately. This assumption leads to the final XYθz calibration being not in a
uniform coordinate, which means that it is not a complete and accurate XYθz
self-calibration strategy. In this chapter, we further study the self-calibration of
precision XYθz metrology stages and present a complete and accurate on-axis self-
calibration approach. Specifically, a new artifact plate is designed as the assistant
tool, and four measurement views of the designed artifact plate on the uncalibrated
XYθz metrology stage are constructed to provide measurement information. The
detailed specification of the artifact plate on the XYθz stage is shown in Figure 1.
Combining with symmetry, transitivity, and circle closure principle, certain
redundance of the XYθz stage error is established, while the misalignment errors of
all measurement views are determined by rigid mathematical manipulation. Resul-
tantly, a least square-based XYθz self-calibration law is proposed for the final deter-
mination of the stage error. Computer simulation is conducted, and the calculation
results validate that scheme proposed in this paper can figure out the stage error
rather accurately in the absence of random measurement noise. The self-calibration
accuracy of the proposed scheme is also tested to meet the challenge of various
random measurement noises, and the calibration results validate that the scheme
can effectively alleviate the effects of random measurement noise. Finally, the
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designed artifact plate is manufactured, and a standard on-axis XYθz self-calibration
procedure following the proposed scheme is introduced.

The proposed scheme mainly features the following two benefits: (1) Departing
from previous self-calibration technologies, the proposed scheme first solves the on-
axis self-calibration problem of XYθz metrology stages and (2) complicated mathe-
matical manipulations, especially the calculations of misalignment errors in previ-
ous XY self-calibration schemes, are significantly avoided in the proposed strategy.
The remainder of this chapter is organized as follows. In Section II, the stage error of
XYθz metrology stage is explained, and a newly designed artifact plate and related
artifact error are also described. The principle of the developed XYθz self-calibration
scheme with four measurement views is presented in Section III. In Section IV,
computer simulation is conducted to show the calibration performance of the pro-
posed method. And the procedure for performing a standard XYθz self-calibration is
presented in Section V. Finally, the conclusion is provided in Section VI.

2. Self-calibration problem formulation

2.1 Stage error

For a XYθz metrology system, linear encoders are employed for measuring
movement along X and Y axes, and a rotary encoder for measuring rotation along θz
axis. Thus, the systematic errors along X-axis, Y-axis, and θz axis are independent.
And once the metrology system is set, the geometric relationship among X-axis, Y-
axis, and θz axis is also determined, which will be described in detail later. In the
Cartesian grid, define Gl x; yð Þ as the linear stage error at x; yð Þ where x; yð Þ is the
true location. And Gr θzð Þ is the rotary stage error at θz where θz is the true angle
value. Herein, the uncalibrated XYθz field consists of XY with L� L and θz with
360°, while the XYθz origin point is set as the same at the center of the L� L field. In
the following, we define

Gl x; yð Þ � Gx x; yð Þex þGy x; yð Þey

Gr θzð Þ � Gθz θzð Þeθz
(1)

Figure 1.
An artifact plate with mark lines on an XYθz metrology stage.
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where ex, ey, and eθz are the unit vectors of the stage axes. For notation, we
combine linear and rotary stage errors and define G x; y; θzð Þ is the stage error at
x; y; θzð Þwhere x; yð Þ is the true location and θz is the true angle in the Cartesian grid:

G x; y; θzð Þ � Gl x; yð Þ þGr θzð Þ

¼ Gx x; yð Þex þ Gy x; yð Þey þ Gθz θzð Þeθz
(2)

Suppose the X-Y sample sites are in an N �N square array (N is odd) covering
the L� L field and the θz sample lines are in a K array (K is a multiple of 4) covering
the 360° field. Then in the Cartesian grid, the positions of the sample sites are

xm ¼ mΔ, yn ¼ nΔ, θk ¼ k⊖ (3)

where m ¼ � N�1
2 , � N�3

2 ,…, N�1
2 , n ¼ � N�1

2 , � N�3
2 ,…, N�1

2 , and Δ ¼ L=N
which is called sample site interval; k ¼ 0; 1; 2,…, K � 1 and ⊖ ¼ 360=K∘. For nota-
tion simplicity, through Eq. (2), we can denote

Gm,n,k � Gx,m,nex þGy,m,ney þGθz,keθz (4)

where Gθz,k � Gθz θkð Þ, Gx,m,n � Gx xm; yn
� �

, and Gy,m,n � Gy xm; yn
� �

.
Similar to the detailed explanation in [17], to define the coordinates’ origin,

orientation, and grid scale of the XY axes stage, there are no translation property, no
rotation property, and no magnification property for Gx,m,n and Gy,m,n, which can
be expressed mathematically as

∑m,nGx,m,n ¼ ∑m,nGy,m,n ¼ 0

∑m,n Gy,m,nxm �Gx,m,nyn
� �

¼ 0

∑m,n Gx,m,nxm þ Gy,m,nyn
� �

¼ 0

(5)

For X-Y axes, two dimensionless parameters O and R are defined as the XY
nonorthogonality and the XY scale difference of Gx,m,n and Gy,m,n, respectively. As
a result, Gx,m,n and Gy,m,n are

Gx,m,n ¼ Oyn þ Rxm þ Fx,m,n

Gy,m,n ¼ Oxm � Ryn þ Fy,m,n
(6)

Therefore, one can obtain Gx,m,n and Gy,m,n by the first calculation of the first-
order components O and R, and the later determination of the residual error Fx,m,n
and Fy,m,n. Noting that the origin of XY axes is the center of the sample array, we also
can get the following properties of Fx,m,n and Fy,m,n which is also detailed in [17, 20]:

∑m,nFx,m,n ¼ ∑m,nFx,m,nxm ¼ ∑m,nFx,m,nyn ¼ 0

∑m,nFy,m,n ¼ ∑m,nFy,m,nxm ¼ ∑m,nFy,m,nyn ¼ 0
(7)

Besides, for rotary self-calibration, an important property, i.e. the circle closure
principle, could directly bridge the gap between GkþK and Gk, i.e. GkþK ¼ Gk for
k ¼ 0; 1; 2,…, K � 1, which significantly facilitates the self-calibration process. To
calculate the stage error components at θz, i.e. Gθz,k, a new property must be
pointed out as follows:

Gθz,k is definitely related to the errors of XY orientations. In other words, the
expected value of angle deviation of points is exactly the θz orientation error of the
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radius vector where the points lie in. Angle deviation of points here means the angle
between position vector of actual point and that of ideal point. Take Gθz,0 as an

example. For the point m;0ð Þ on +X-axis, m ¼ 1; 2;⋯; N�1
2

� �

, define ϕm as the angle
deviation of the point m;0ð Þ, i.e.

ϕm ¼ < xm þGx,m,0; y0 þ Gy,m,0
� �

, xm; y0
� �

>

¼ < xm þGx,m,0;Gy,m,0
� �

, xm;0ð Þ>

where < a,b> is the angle between vectors a and b and, then,

Gθz,0 ¼ E ϕmð Þ

where E ϕmð Þ is the expectation of ϕm.
Noting that Gy,m,0 ≪ xm and Gx,m,0 ≪ xm, one can obtain

ϕm ¼ < xm þ Gx,m,0;Gy,m,0
� �

, xm;0ð Þ>

¼ arctan
Gy,m,0

xm þGx,m,0

� �

≐ arctan
Gy,m,0

xm

� �

≐
Gy,m,0

xm

which subsequently results in

Gθz,0 ¼ E
Gy,m,0

xm

� �

(8)

Similarly, along X-axis and Y-axis, we can obtain the following four equations:

Gθz,0 ¼ E
Gy,m,0

xm

� �

m ¼ 1; 2;⋯;
N � 1

2

� �

Gθz,K4
¼ E �

Gx,0,n

yn

� �

n ¼ 1; 2;⋯;
N � 1

2

� �

Gθz,K2
¼ E

Gy,m,0

xm

� �

m ¼ �1;�2;⋯;�
N � 1

2

� �

Gθz, 3K4
¼ E �

Gx,0,n

yn

� �

n ¼ �1;�2;⋯;�
N � 1

2

� �

(9)

The goal of the proposed self-calibration method is to determine Gm,n,k through
different measurement postures, through which the measurement accuracy can be
compensated directly.

2.2 Artifact error

In this chapter, an artifact plate which possesses mark lines different from
previous researches in [17, 20] is designed specifically for XYθz self-calibration.
Figure 2 shows the details of artifact plate on the stage. In detail, an N �N grid
mark array is on the artifact plate with the same size as the stage sample site array.
Furthermore, it has K mark lines with equal angle interval. The plate XYθz coordi-
nate axis’ origin is located on the center of the mark array. During the plate
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movement, the plate axis will move with the plate. The locations of the nominal
mark in the plate coordinate system are totally the same with that of the sample site
in the stage coordinate system. Due to the unavoidable imperfection of the artifact
plate, all the actual marks at m; n; kð Þ deviate from their nominal location by Am,n,k
which is defined as artifact error expressed by

Am,n,k � Ax,m,nepx þ Ay,m,nepy þ Aθz,kepz

Ax,m,n � Ax xm; yn
� �

, Ay,m,n � Ay xm; yn
� �

,

Aθz,k � Aθz θkð Þ

(10)

where m ¼ � N�1
2 , � N�3

2 ,…, N�1
2 , n ¼ � N�1

2 , � N�3
2 ,…, N�1

2 , and
k ¼ 0, 1,…, K � 1; epx, epy, and epz are the unit vectors of the plate axes.

It should be noted that every mark on the artifact plate has an identification
number (m, n, k). During the motions of the plate on the stage, the identification
number of the mark will not change. This characteristic is also utilized to identify
each physical mark of the plate in the following comparison of different measure-
ment views. Ax,m,n and Ay,m,n also have no translation property and no rotation
property [17, 20], which essentially have defined the axis origin and axis orienta-
tion, i.e.

∑m,nAx,m,n ¼ ∑m,nAy,m,n ¼ 0

∑m,n Ay,m,nxm � Ax,m,nyn
� �

¼ 0
(11)

3. XYθz self-calibration principle

3.1 The measurement views

The self-calibration method is based on four different postures or views of the
designed artifact plate on the uncalibrated XYθz metrology stage, which is shown in
Figure 3. As shown in Figure 3, the XYθz stage is the gray part, while the artifact
plate is the white part. The 3-D specification can also be found in Figures 1 and 2.

Without the loss of generality, for each view, there inevitably exists a
misalignment error; for that these coordinate axes cannot be aligned completely,

Figure 2.
A designed artifact plate with mark lines for XYθz self-calibration.
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which will be considered as a misalignment error, which consists of a small rotation
between their orientations and a small offset between their origins. Besides, random
measurement noise also exists in the measurement process, but the effects of noise
can be assumed to be completely attenuated by repeated measurements:

a. In View 0, which is the initial view, the XYθz axes of the plate are aligned as
closely in line with those of the stage as possible; in this view, both grid and
angular marks are measured.

b.In View 1, the artifact plate is rotated 90°, around the origin from View 0 on
the stage; in this view, both grid and angular marks are measured.

c. In View 2, the artifact plate is rotated 360/K°, i.e., ⊖, around the origin from
View 0 on the stage; in this view, only angular marks are measured.

d.In View 3, the artifact plate is translated by one sample site, i.e., Δ, along
þX-axis from View 0 on the stage; in this view, both grid and angular marks
are measured.

For each measurement view, the artifact plate is firmly fixed on the stage, and a
mark alignment system is needed to help the XYθz metrology stage to precisely
measure the mark lines. The detailed instruments are presented later.

In the following, we would present the measurement and mathematical manip-
ulations of each measurement view and then the reconstruction of the stage error
map, in which V stands for the measured deviation for a mark from its nominal
position in the stage coordinate.

Figure 3.
Independent measurement views for XYθz self-calibration.
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For View 0,

V0,x,m,n ¼ Gx,m,n þ Ax,m,n � φ0yn þ t0x

V0,y,m,n ¼ Gy,m,n þ Ay,m,n þ φ0xm þ t0y

V0,θz,k ¼ Gθz,k þ Aθz,k þ φ0

(12)

where m ¼ � N�1
2 , � N�3

2 ,…, N�1
2 , n ¼ � N�1

2 , � N�3
2 ,…, N�1

2 , and k ¼ 1, 2,…, K.
For View 1,

V1,x,m,n ¼ Gx,�n,m � Ay,m,n � φ1xm þ t1x

V1,y,m,n ¼ Gy,�n,m þ Ax,m,n � φ1yn þ t1y

V1,θz,k ¼ Gθz,kþK
4
þ Aθz,k þ φ1

(13)

where m ¼ � N�1
2 , � N�3

2 ,…, N�1
2 , n ¼ � N�1

2 , � N�3
2 ,…, N�1

2 , and k ¼ 1, 2,…, K.
For View 2,

V2,θz,k ¼ Gθz,kþ1 þ Aθz,k þ φ2 (14)

where k ¼ 1, 2,…, K.
For View 3,

V3,x,m,n ¼ Gx,mþ1,n þ Ax,m,n � φ3yn þ t3x

V3,y,m,n ¼ Gy,mþ1,n þ Ay,m,n þ φ3xm þ t3y

V3,θz,k ¼ Gθz,k þ Aθz,k þ φ3

(15)

where m ¼ � N�1
2 , � N�3

2 ,…, N�3
2 , n ¼ � N�1

2 , � N�3
2 ,…, N�1

2 , and k ¼ 1, 2,…, K.
It shall be pointed out that φ0 and t0 ¼ t0x; t0y

� �

are the rotation and offset of the
misalignment error of View 0 and the notations of other views are similar. And φ0 is
a small angle, for which the ‘small angle’ approximation can be adopted. For the
rotation misalignment error of other views, this approximation is still tenable.

Similar to the presentation of [17], combining (5) and (11), summing over all the
sites of (12) and (13), we can obtain the misalignment error, i.e. the offset compo-
nents t0x, t0y, t1x, t1y, and the rotation components φ0,φ1, i.e.

t0x ¼
∑m,nV0,x,m,n

N2 , t0y ¼
∑m,nV0,y,m,n

N2

t1x ¼
∑m,nV1,x,m,n

N2 , t1y ¼
∑m,nV1,y,m,n

N2

φ0 ¼
∑m,n V0,y,m,nxm � V0,x,m,nyn

� �

∑m,n x2m þ y2n
� �

φ1 ¼
∑m,n �V1,y,m,nyn � V1,x,m,nxm

� �

∑m,n x2m þ y2n
� �

(16)

Noting Eqs. (5), (11), and (12), summing over all sites of (14) and (15), φ2 and
φ3 can be determined, and the detailed result is
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φ2 ¼
∑kV2,θz,k �∑kV0,θz,k

K
þ
∑m,n V0,y,m,nxm � V0,x,m,nyn

� �

∑m,n x2m þ y2n
� �

φ3 ¼
∑kV3,θz,k �∑nV0,θz,k

K
þ
∑m,n V0,y,m,nxm � V0,x,m,nyn

� �

∑m,n x2m þ y2n
� �

(17)

After elimination of the misalignment error in View 0, View 1, and View 2,
combining Eq. (6), the measurement data are to be rearranged as:

U0,x,m,n ¼ V0,x,m,n � t0x þ φ0yn ¼ Fx,m,n þ Ax,m,n þ Oyn þ Rxm

U0,y,m,n ¼ V0,y,m,n � t0y � φ0xm ¼ Fy,m,n þ Ay,m,n þOxm � Ryn

U0,θz,k ¼ V0,θz,k � φ0 ¼ Gθz,k þ Aθz,k

(18)

U1,x,m,n ¼ V1,x,m,n þ φ1xm � t1x ¼ Fx,�n,m � Ay,m,n þ Oxm � Ryn

U1,y,m,n ¼ V1,y,m,n þ φ1yn � t1y ¼ Fy,�n,m þ Ax,m,n �Oyn � Rxm

U1,θz,k ¼ V1,θz,k � φ1 ¼ Gθz,kþK
4
þ Aθz,k

(19)

U2,θz,k ¼ V2,θz,k � φ2 ¼ Gθz,kþ1 þ Aθz,k (20)

And to keep the notation consistent with the previous views, we define

U3,x,m,n ¼ V3,x,m,n þ φ3yn ¼ Fx,mþ1,n þ Ax,m,n þ Oyn þ Rxm þ ξx

U3,y,m,n ¼ V3,y,m,n � φ3xm ¼ Fy,mþ1,n þ Ay,m,n þ Oxm � Ryn þ ξy

U3,θz,k ¼ V3,y,m,n � φ3

(21)

where ξx ¼ t3x þ RΔ and ξy ¼ t3y þ OΔ.
Comparing Eq. (18) of View 0 with Eq. (19) of View 1, with the same procedure

in [17], the stage error components O and R can be calculated out as:

O ¼
1

2

∑m,n U0,x,m,nyn þ U0,y,m,nxm
� �

∑m,n x2m þ y2n
� � þ

∑m,n U1,x,m,nxm � U1,y,m,nyn
� �

∑m,n x2m þ y2n
� �

" #

R ¼
1

2

∑m,n U0,x,m,nxm �U0,y,m,nyn
� �

∑m,n x2m þ y2n
� � þ

∑m,n �U1,x,m,nyn � U1,y,m,nxm
� �

∑m,n x2m þ y2n
� �

" #

(22)

3.2 XYθz self-calibration algorithm

A least square-based self-calibration algorithm is synthesized to determinate
Gm,n,k. In this algorithm, the computation of the misalignment error components ξx
and ξy is unnecessary, while φ3 is determined by Eq. (17). Because O and R are

known by Eq. (22), the algorithm is constructed to just calculate out Fx,m,n, Fy,m,n,
and Gθz,k.

Comparing Eq. (18) with (19), one obtains

Fx,m,n � Fy,�n,m ¼ U0,x,m,n �U1,y,m,n � 2Oyn � 2Rxm
Fy,m,n þ Fx,�n,m ¼ U0,y,m,n þ U1,x,m,n � 2Oxm þ 2Ryn

(23)
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Then combining Eqs. (18) and (21), define

Lx,m,n ¼ U3,x,m,n �U0,x,m,n ¼ Fx,mþ1,n � Fx,m,n þ ξx

Ly,m,n ¼ U3,y,m,n �U0,y,m,n ¼ Fy,mþ1,n � Fy,m,n þ ξy
(24)

Consequently, we can obtain

Fx,mþ2,n � 2Fx,mþ1,n þ Fx,m,n ¼ Lx,mþ1,n � Lx,m,n

Fx,mþ1,nþ1 � Fx,mþ1,n � Fx,m,nþ1 þ Fx,m,n ¼ Lx,m,nþ1 � Lx,m,n

Fy,mþ2,n � 2Fy,mþ1,n þ Fy,m,n ¼ Ly,mþ1,n � Ly,m,n

Fy,mþ1,nþ1 � Fy,mþ1,n � Fy,m,nþ1 þ Fy,m,n ¼ Ly,m,nþ1 � Ly,m,n

(25)

From previous subsections, Eqs. (7), (23), and (25) can yield

∑m,nFx,m,n ¼ ∑m,nFx,m,nxm ¼ ∑m,nFx,m,nyn ¼ 0

∑m,nFy,m,n ¼ ∑m,nFy,m,nxm ¼ ∑m,nFy,m,nyn ¼ 0

Fx,m,n � Fy,�n,m ¼ U0,x,m,n �U1,y,m,n � 2Oyn � 2Rxm

Fy,m,n þ Fx,�n,m ¼ U0,y,m,n þ U1,x,m,n � 2Oxm þ 2Ryn
Fx,mþ2,n � 2Fx,mþ1,n þ Fx,m,n ¼ Lx,mþ1,n � Lx,m,n

Fx,mþ1,nþ1 � Fx,mþ1,n � Fx,m,nþ1 þ Fx,m,n ¼ Lx,m,nþ1 � Lx,m,n

Fy,mþ2,n � 2Fy,mþ1,n þ Fy,m,n ¼ Ly,mþ1,n � Ly,m,n

Fy,mþ1,nþ1 � Fy,mþ1,n � Fy,m,nþ1 þ Fy,m,n ¼ Ly,m,nþ1 � Ly,m,n

(26)

which actually can determinate Fx,m,n and Fy,m,n with certain redundancy. Then
a least square estimation law for Fx,m,n and Fy,m,n can be synthesized through a least
square solution of the set of Fx,m,n and Fy,m,n equations to meet the challenge of
random measurement noise [17, 20, 21]. Thus, combining the solved parameters O
and R, we can obtain Gx,m,n and Gy,m,n.

Afterward, according to (9), we can obtain the determination of Gθz,0, Gθz,K4
,

Gθz,K2
, and Gθz, 3K4

with certain redundancy. Here we use the method of least squares

as follows:

Gθz,1 ¼
∑M

m¼1Gy,m,0xm �
1

M
∑M

m¼1Gy,m,0∑
M
m¼1xm

∑M
m¼1x2m �

1

M
∑M

m¼1xm
� 	2

Gθz,1þK
4
¼ �

∑M
n¼1Gx,0,nyn �

1

M
∑M

n¼1Gx,0,n∑
M
n¼1yn

∑M
n¼1y2n �

1

M
∑M

n¼1yn
� 	2

Gθz,1þK
2
¼

∑�1
m¼�MGy,m,0xm �

1

M
∑�1

m¼�MGy,m,0∑
�1
m¼�Mxm

∑�1
m¼�Mx2m �

1

M
∑�1

m¼�Mxm
� 	2

Gθz,1þ3K
4
¼ �

∑�1
n¼�MGx,0,nyn �

1

M
∑�1

n¼�MGx,0,n∑
�1
n¼�Myn

∑�1
n¼�My2n �

1

M
∑�1

n¼�Myn
� 	2

(27)
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where M ¼ N�1
2 . Noting Eqs. (18), (19), and (20), we consequently obtain

Gθz,kþK
4
�Gθz,k ¼ U1,θz,k �U0,θz,k

Gθz,kþ1 � Gθz,k ¼ U2,θz,k �U0,θz,k

(28)

where k ¼ 1, 2,…, K and Gθz,kþK ¼ Gθz,k.
Combining (27) and (28), the stage error Gθz,k can be determined through a least

square solution as the above equation group has K unknowns and 2K + 4 equations.
The proposed method features certain benefits remarked as follows:

• In previous self-calibration schemes for XY stages and XYZ stages [17, 18,
20–23], the properties of no translation and no rotation for the stage error
cannot be used in View 3. Resultantly, it needs complicated algebraic
manipulations to determine the misalignment error component φ3. In this
chapter, Eq. (17) directly determines the value of φ3, and it is so convenient
that complicated algebraic manipulations are significantly avoided.

• We propose a new property to construct connection between XY orientation
and θz orientation. By a least square method, values of Gθz,1, Gθz,K4

, Gθz,K2
, and

Gθz, 3K4
are determined by Eq. (27), which is quite important for the calculation

algorithm of Gθz,k. With full utilization of the measurement of View 0, View 1,
and View 2, we can construct a simple algorithm with strong robustness.

4. Computer simulation

In this section, we use MATLAB software to simulate the self-calibration pro-
cess. First, arbitrary stage linear error maps on a 11 � 11 sample site array with
the sample site interval Δ ¼ 10 mm are generated using the command ‘normrnd’
with a mean of 0 and standard deviation of 0.2 μm, which are utilized as the
nominal Gx,m,n and Gy,m,n. Besides, any stage rotary error is mapped within a
revolution, while the sample site internal is Δ ¼ 15∘. And the nominal Gθz,k is
generated by mean value of 0 and standard deviation of 0:01∘. And minor modifi-
cation has been made to the data to satisfy the relevant requirements like Eqs. (5),
(9), and (11). Then, arbitrary artifact linear error maps are generated with mean
of 0 and standard deviation of 0.3 μm, which are employed as the nominal Am,n,
and arbitrary artifact rotary error maps are generated with a mean of 0 and
standard deviation of 0:01∘, which are utilized as the nominal Aθz,k. The nominal
stage error component Gm,n is shown in Figure 4 where the red lines are
Gm,n � 10000. The nominal stage error component Gθz,k is shown in Figure 5
where Gθz,k between the actual measurement system and perfect measurement
system has been zoomed in for 360/π times. In addition, for each view, we add a
random misalignment which is made up of a rotation and an offset. And the
standard deviation value in the misalignment is 0.3° for rotation and 30 μm for
offset. Since Eq. (26) has some redundance, it is clear that Gm,n,k can be figured out
rather accurately if there is no random measurement noise. In addition, as there are
no reported complete on-axis XYθz self-calibration strategies in published papers,
we just test their own effectiveness of the proposed strategy. Herein, we focus on
testing the calibration accuracy of the proposed strategy in various random
measurement noises.
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Figure 4.
Gm,n � 10000 with max(Gm,n) = 0.5494 μm, min(Gm,n) = �0.5806 μm.

Figure 5.
Gθz,k � 360=π∘ with max(Gθz,k) = 0:0243∘, min(Gθz,k) = �0:01282∘.
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4.1 Simulation with random measurement noise of standard deviation 0.02 μm
for Gx,m,n and Gy,m,n and standard deviation 0.001° for Gθz ,k

For the simulation in this subsection, we add an independent random Gaussian
measurement noise to every grid mark’s each measurement and independent angu-
lar measurement noise to every angular mark’s each measurement. Gx,m,n and
Gy,m,n’s random measurement noise is generated by a mean value 0 and standard
deviation 0.02 μm, and Gθz,k’s random measurement noise is generated by a mean
value 0 and standard deviation 0.001°. The reconstructed stage error Gm,n,k can
thus be determined according to the proposed four measurement views and
self-calibration algorithm. So as to test the robustness of the algorithm, the calibra-
tion errors EGx, EGy, and EGθ are calculated, which are defined as the deviation

between the actual and the recalculated stage error, i.e. EGx ¼ Gx,m,n � Ĝx,m,n,

EGy ¼ Gy,m,n � Ĝy,m,n, and EGθ ¼ Gθ,k � Ĝθ,k. In Table 1, the maximum, the mini-
mum, and the standard deviation for EGx, EGy, and EGθ are all listed. It is obvious
that the stage error can be accurately recalculated by the proposed method even in
the case of random measurement noise—when there is measurement noise by
standard deviation 0.02 μm and 0.001° and the standard deviations of the calibra-
tion errors are smaller than 0.02 μm and 0.001°, respectively.

In addition, the algorithm’s accuracy is also tested to meet the challenge of
various random measurement noises. We generate the random measurement noises
for 20 times. As a result, the calibration errors’ standard deviations are shown in
Figures 6 and 7. All the results illustrate that all the 20 standard deviations keep in
the same level with the measurement noises themselves. The simulation results
demonstrate that the algorithm is robust and accurate. In addition, it can deal with
the challenge of random measurement noise effectively.

4.2 Simulation with random measurement noise of standard deviation
0.002 μm for Gx,m,n and Gy,m,n and standard deviation 0.0001° for Gθz ,k

The simulation in this subsection is set up exactly the same way as in the
previous subsection, except for adding a different random Gaussian measurement
noise to every site’s measurement, which is to test the consistency of the proposed
scheme’s robustness to random measurement noise. The random measurement
noise for Gx,m,n and Gy,m,n is generated with a mean of 0 and standard deviation of
0.002 μm, and the random measurement noise for Gθz,k is generated with a mean of
0 and standard deviation of 0.0001°. Through the proposed scheme, the
reconstructed stage error Gm,n,k can be calculated out, and the maximum value
max(�), the minimum value min(�), and the standard deviation std(�) of EGx, EGy,
and EGθ are detailed in Table 2. Furthermore, the algorithm’s accuracy and robust-
ness are tested for arbitrary 20 times; the results are shown in Figures 8 and 9. It
can be observed that the calibration error is also about the same size as the random
measurement noises themselves. All these results further verify that the proposed

max(�) min(�) std(�)

EGx (μm) 0.0541 �0.0490 0.0195

EGy (μm) 0.0511 �0.0506 0.0196

EGθ (°) 1.5877e�003 �1.2065e�003 7.1184e�004

Table 1.
Calculation performance indexes (with random measurement noise std = 0.02 μM).
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Figure 7.
Standard deviation of calibration error EGθ for arbitrary 20 times (with random measurement noise
std = 0.001°).

Figure 6.
Standard deviation of calibration error EGx & EGy for arbitrary 20 times (with random measurement noise
std = 0.02 μm).

max(�) min(�) std(�)

EGx (μm) 0.0051 �0.0051 0.0020

EGy (μm) 0.0051 �0.0053 0.0020

EGθ (°) 2.9963e�004 �6.9733e�004 7.6657e�005

Table 2.
Calculation performance indexes (with random measurement noise std = 0.02 μm).
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strategy can accurately determine the stage error even under the existence of
random measurement noise.

4.3 The artifact plate and the procedure for performing a standard XYθz
self-calibration

Based on the proposed theory principle, we design and manufacture an artifact
plate for XYθz self-calibration. The specification of the practical artifact plate is
shown in Figure 10. Specifically, the artifact plate is made in square shape with

Figure 8.
Standard deviation of calibration error EGx & EGy for arbitrary 10 times (with random measurement noise
std = 0.002 μm).

Figure 9.
Standard deviation of calibration error EGθ for arbitrary 20 times (with random measurement noise
std = 0.0001°).
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material of optical glass. The thickness is 3 mm. The origin of the plate is located at
the center. The radius or the circle in the plate is 80 mm. The circle of 360° is
divided into 72 sectors by 72 lines with a width of 5 μm and accuracy of 5". The
21 � 21 sample site array is with the sample site interval Δ = 5 mm. The accuracy of
the circle lines and the straight lines is �1 μm and the width is 5 μm.

For presentation, convenience, and clarity, an example of an artifact plate on a
XYθz stage is also provided and shown in Figure 11. In the following, we list the
procedure of performing a standard XYθz self-calibration following the proposed
scheme, which may be useful for engineers in practical implementations:

Step 0: As shown in Figures 3 and 11, put the artifact plate shown in Figure 10 in
the XYθz stage. The artifact plate’s array marks are consequently at the stage’s origin

Figure 10.
A designed artifact plate for XYθz self-calibration.

Figure 11.
An artifact plate on a XYθz stage for self-calibration.
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reference location, which is named as View 0 of Figure 3. The artifact plate’s mark
locations are measured in the XYθz metrology stage with the help of some mark
alignment system such as those in [21, 23]. The mark alignment system should be
designed to obtain the measurement data of each mark position accurately. Get
V0,x,m,n, V0,y,m,n, and V0,θz,k for P (e.g. P ¼ 5) times, and average the results, and
then obtain U0,x,m,n, U0,y,m,n, and U0,θz,k by Eq. (18).

Step 1: After rotating 90° around the origin shown as View 1 in Figure 3, the
artifact plate is replaced to the rotated reference location on the stage. The XYθz
metrology stage is utilized to measure the artifact plate mark locations. Obtain
V1,x,m,n, V1,y,m,n, and V1,θz,k for P (e.g. P ¼ 5) times and average the results. Get
U1,x,m,n, U1,y,m,n, and U1,θz,k by Eq. (19). And calculate out O and R by Eq. (22).

Step 2: After rotating 360=K∘ around the origin shown as View 2 in Figure 3, the
artifact plate is replaced to the rotated reference location in the stage. The XYθz
metrology stage is utilized to measure the angles of the artifact plate mark lines, and
get V2,θz,k for P (e.g. P ¼ 5) times, and average the results, and then obtain U2,θz,k
by Eq. (20).

Step 3: After translating one grid interval Δ along +X-axis of the stage shown as
View 3 in Figure 3, the artifact plate is replaced to the translated reference location
in the stage. The XYθz metrology stage is used to measure the location of the marks
of the artifact plate, and get V3,x,m,n, V3,y,m,n, and V3,θz,k for P (e.g. P ¼ 5) times,
and average the results. Obtain U3,x,m,n, U3,y,m,n, and U3,θz,k by Eq. (21).

Step 4: After above steps, the equation groups (26), (27), and (28) can be
obtained. Therefore, a least square solution can be used for the determination of
Fx,m,n, Fy,m,n, and Gθz,k. Then Gx,m,n and Gy,m,n can be determined by Eq. (6) as O
and R are previously computed in Step 1, which completes the final determination
of Gm,n,k.

5. Conclusions

In this chapter, an on-axis self-calibration approach has been first developed for
precision XYθz metrology stages to solve the calibration problem. The proposed
scheme uses a new artifact plate designed with special mark lines as the assistant
tool for calibration. In detail, the artifact plate is placed on the uncalibrated XYθz
metrology stages in four measurement postures or views. Then, the measurement
error can be modeled as the construction of XYθz systematic measurement error
(i.e. stage error) and other errors or noise. Based on the redundance of the XYθz
stage error, a least square-based XYθz self-calibration law is resultantly synthesized
for final determination of the stage error. Computer simulations have been
conducted to verify that the proposed method can figure out the stage error rather
accurately even under existence of various random measurement noises. Finally, a
standard on-axis XYθz self-calibration procedure with the designed artifact plate is
introduced. As an integration of XY self-calibration and θ self-calibration, the pro-
posed scheme solves the XYθz self-calibration problem without complicated mathe-
matical processing for misalignment errors. The developed approach has essentially
provided a fundamental principle for on-axis self-calibration of precision XYθz
metrology stages in practical applications.

The proposed scheme has pros and cons. It provides a significant theory funda-
mental for self-calibration of XYθz metrology or motion stages. However, the cali-
bration accuracy is seriously affected by the mark alignment systems which may be
a little complex. Therefore, the proposed self-calibration scheme is very suitable for
standard calibration in national standard institutes but a little limited for wide
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industrial applications. In the next step, the development of this calibration system
is an important topic, which will do help for wide applications of the proposed
scheme.
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