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Chapter

Hot Compression Tests Using
Total Lagrangian SPH Formulation
in Energy-Based Framework
Kadiata Ba

Abstract

Limitations of the finite element method (FEM) in some cases involving large
deformations as in forging or high compression tests are overcome nowadays by
meshless methods such as the smoothed particle hydrodynamic (SPH) method. This
paper presents a corrected total Lagrangian SPH formulation for problems encoun-
tering large deformations in solid mechanics. The continuum is modeled as a Ham-
iltonian system of particles (energy-based framework). The total Lagrangian
formulation proposed overcomes some problems faced by standard SPH in simu-
lating solid mechanic problems such as tensile instability. Numerical applications
compared with experimental results are presented to show the capabilities of this
novel formulation.

Keywords: SPH, Hamiltonian system, total Lagrangian, thermomechanical,
solid mechanics

1. Introduction

The use of the smoothed particle hydrodynamic (SPH) method [1–5] (Figure 1)
in solid mechanics is quite recent (in the 1990s) compared to the SPH fluid
formulation. Libersky and Petschek [6] and Libersky et al. [4] are cited as the first
to use SPH in solid mechanics, for impacts modeling at high speeds and phenomena
of rupture, perforation, and fragmentation. As SPH is a meshless method, there
is no mesh to distort; it can efficiently handle large deformations. SPH is an efficient
numerical method for applications in forging processes [7], machining [8–10], and
welding [11]. Classical approach is widely used to describe SPH equations but faces
drawbacks such as lack of completeness and tensile instability (numerical
fragmentation). Total Lagrangian corrected SPH formulation is then used to fix the
cited problems. In this paper, a Hamiltonian formulation is proposed for dynamic
and steady-state problem simulation focusing on numerical efficiency such as accu-
racy and simulation time. The governing equations are derived following a
Lagrangian variational principle leading to a Hamiltonian system of particles
[12–14]. With the Hamiltonian SPH formulation, local conservation of momentum
between particles is respected, and they remain locally ordered during the process
as wanted in solid mechanic problems.

Total Lagrangian formulation reduces also the computational time by avoiding
the search for neighboring particles for the construction of the kernel function at
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each time step. Through axial and lateral compression tests, the accuracy of the new
formulation is shown. Results are compared to a classical formulation based on
differential equations for solid mechanic applications.

2. Discrete equations of motion from energy-based formulation

The governing equations are derived following a Lagrangian variational
principle leading to a Hamiltonian system of particles (energy-based) [12, 17–19]
where the motion of each particle is given by the classical Lagrange equations.
Therefore, as explained by Bonet et al. [18], constants of the motion such as linear
and angular momentum are conserved.

For each particle, the physical quantities are calculated through interpolation
over neighbor particles. Every particle is considered as a moving thermodynamic
subsystem [12]. The volume of each particle is given by

V i ¼ mi=ρi (1)

Figure 1.
(a) Schematic representation of the discretization of the domain Ω by a set of points i [15] and (b) seen in
the space of a B-spline [16].
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where mi is the mass of the particle and ρi its density.
To proceed with a variational formulation of the equations of motion of the

continuum, the kinetic K, internal
Q

int, and external energy
Q

ext of the system need
to be defined.

With dissipative effects such as plasticity, the equations of motion of the system
of particles representing the continuum can be evaluated following the classical
Lagrangian formalism. For more details, readers can refer to Ba and Gakwaya [12]:

d

dt

∂L

∂vi
�

∂L

∂xi
¼ �

∂Πdis

∂vi
(2)

where xi and vi are the spatial position and velocity of the particle i, Πdis is the
dissipative energy, and L is the Lagrangian given by

L xi;við Þ ¼ K við Þ � Πext xið Þ � Πint xið Þ (3)

By substituting Eq. (3) into Eq. (2), it leads to

d

dt

∂K

∂vi
¼ �

∂Πext

∂xi
�

∂Πint

∂xi
�

∂Πdis

∂vi
(4)

The total kinetic energy of the system can be approximated as the sum of the
kinetic energy of each particle:

K ¼
1
2
∑
i
mi vi:við Þ (5)

For a common case where the external forces result from a gravitational field g,
the total external energy is

Πext ¼ �∑
i
mi xi:g
� �

(6)

The total internal energy can be expressed as the sum of the products of particle
masses by the amount of energy accumulated per unit mass π that depends on the
deformation, density, or other constitutive parameters:

Πint ¼ ∑
i
miπ ρi;…ð Þ (7)

The dissipative energy can also be expressed as

Πdisp ¼ ∑
i¼1

miπdisp dð Þ (8)

where πdisp is the dissipative energy per unit mass and d is the rate of deforma-
tion tensor.

d ¼
1
2

∇vþ ∇vT
� �

(9)

with the velocity gradient given by

∇vi ¼ ∑
j

mj

ρj
vj � vi

� �

∇W xi � xj; h
� �

(10)
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where W xi � xj; h
� �

is the SPH kernel function and h is the smoothing length.

3. Corrected total Lagrangian SPH formulation for solid mechanics

Total Lagrangian formulation [20, 21] is well suited for solid mechanic problems
as the SPH particles change less often their neighbors than in fluid mechanics [12].
The SPH kernels and their gradients are then expressed in the initial configuration
(material coordinates X are used). The proposed corrected kernel is to address the
lack of completeness and interpolation consistency; the smoothing length h is con-
sidered as a functional variable in the calculation of the gradient of the kernel
function ∇W [19].

Lagrangian and spatial coordinates are connected through the gradient of defor-
mation tensor F:

F ¼
∂x

∂X
¼

∂ Xþ uð Þ

∂X
(11)

where u is the displacement of a material point.
The expression of the corrected gradient of deformation tensor F, in total

Lagrangian formulation, is given by

Fih i ¼ �∑
j

uj � ui

� �

⊗∇Xj
W Xi �Xj; h0
� �

V0
j

 !

Bþ I (12)

where ∇Xj is the gradient with respect to a material point X, V0
j is the initial

volume of particle j, h0 is the initial smoothing length, and I is the identity matrix.
B is the expression of the correction of the gradient expressed as [20]

B ¼ ∑
j

mj

ρj
Xi �Xj; h0
� �

⊗∇Xi
W Xi �Xj; h0
� �

 !�1

(13)

The corrected mass conservation equation for particle i is

ρ0i ¼ ρiJ ¼ ρidetFi (14)

where J and ρ0 are the Jacobian and the initial density.
The corrected momentum equation for a particle i is

aih i ¼ �∑
j

Pj � Pi

� �

⊗∇Xj
~W Xi �Xj; h0
� �

V0
j þ f i

 !

: B (15)

where a, ~W , and f i are the acceleration, the normalized smoothing function, and
the body force.

P is the first Piola-Kirchhoff stress.

P ¼ JσF�T (16)

where σ is the Cauchy stress tensor and F�T is the inverse of the transpose of the
gradient of deformation tensor.

The corrected energy conservation equation for particle i is
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_eih i ¼ Pj :

�∑
j

mj

ρiρj
vj � vi; h0
� �

⊗∇Xi
W Xi �Xj; h0
� �

V0
j

þk∇Ti þ rpl

0

@

1

AB

2

4

3

5 (17)

where _e is the energy rate, rpl is the mechanical contribution (heat generated by
the plastic dissipation), k is the conductivity, and T is the temperature of the
particle.

The equation of motion and the equation of the thermal energy of each particle
can be put after discretization and evaluation of all the interactions in the following
forms:

ai ¼ €ui ¼
1
mi

f ext ið Þ � f int ið Þ
� �

(18)

_Ti ¼
1
Ci

hk
ext ið Þ � hk

int ið Þ

� �

(19)

where f int ið Þ and f ext ið Þ are the internal and external forces, hk
int ið Þ and hk

ext ið Þ are
the internal and the external heat flux, and C is the capacitance matrix.

The expression for the internal force for a given particle can be expressed by
differentiating the internal energy per unit mass with respect to the nodal positions
as

f int ið Þ ¼ ∑
n

j¼1
V0

j PjGi Xj

� �

(20)

where G is the gradient function and contains the corrected kernel gradients
∇�W at the initial reference configuration.

Gi Xj

� �

¼ V i∇
�0

Wi Xj

� �

(21)

Internal heat flux can be expressed as

hint ið Þ ¼ kiTi (22)

where k is the heat conductivity matrix and T the vector of nodal temperatures.
Explicit finite difference method is used to solve numerically the differential

equation presented in this section through explicit dynamic algorithm to update the
velocity, position, and temperature of each SPH particle.

4. Temporal integration scheme

A typical integration scheme used for integrating SPH equations is the leapfrog
algorithm (Figure 2), an extension of the Verlet algorithm with low storage mem-
ory during computation.

The heat transfer equations are integrated using the explicit forward-difference
time integration rule [22].

T tþΔtð Þ ¼ T tð Þ þ Δt tþ1ð Þ
_T tð Þ (23)

_Tt is computed at the beginning of the increment by
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_T tð Þ ¼ C�1 ht
ext � ht

int

� �

(24)

The stability time is given by

ΔtT ≈
Δr2min

2α
(25)

where Δrmin is the smallest interparticle distance and α is the diffusivity of the
material.

α ¼
k

ρs
(26)

where k is the conductivity and s is the specific heat.
For the mechanical part, an explicit central-difference integration rule is used to

integrate the equation of motion. The nodal accelerations €u at time t is given by

€u tð Þ ¼ M�1 P tð Þ � I tð Þ

� �

(27)

where M, P tð Þ, and I tð Þ represent the mass matrix and the external and internal
forces.

The integration leads to the nodal velocity _u (Eq. 28) and the nodal displacement
u (Eq. 29).

_u tþΔt
2ð Þ ¼ _u t�Δt

2ð Þ þ
Δt tþΔtð Þ þ Δt tð Þ

� �

2
€u tð Þ (28)

u tþΔtð Þ ¼ u tð Þ þ Δt tþΔtð Þ _u tþΔt
2ð Þ (29)

The stable time is calculated as follows:

Δt ¼ min
Le

cd

� �

(30)

where Le and cd are, respectively, the characteristic length of the element and the
dilatational wave speed of the material.

Figure 2.
SPH code structure [23].
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The whole thermomechanical problem is solved by explicit coupling; both the
forward-difference (for the thermal problem) and central-difference (for the
mechanical problem) integrations are explicit.

The structure of the SPH code is described below (Figure 2). The time
integration routine is the main subroutine. It calculates the new variables (density,
acceleration, external force, internal force).

5. Material behavior

Johnson-Cook model [24–26] is used in this work, and the flow stress is
expressed as follows:

σf ¼ Aþ B εp
� �n� 	

1þ Cln
ε˙p

ε˙p0

 !" #

1�
T � Tr

Tm � Tr

� �m� �

(31)

where ε is the plastic strain, _ε s�1ð Þ is the plastic strain rate, _ε0 s�1ð Þ is the
reference plastic strain rate, Tm is the melting temperature, Tr is the reference
temperature, T is the current temperature, A is the yield stress, B is the coefficient
of strain hardening, C is the coefficient of strain rate hardening, n is the strain
hardening exponent, and m is the thermal softening exponent.

The material used for the simulations (see Section 6) is an Al-Zn-Mg-Cu alumi-
num alloy. The Johnson-Cook material parameters are shown in Table 1.

6. Applications

6.1 Axial compression test

A cylindrical sample (diameter, 25.4 mm; length, 25.4 mm) was subjected to the
uniaxial compression test at constant velocity (2.54 mm s�1) and high temperature
(400°C). Both experimental and numerical tests were performed (Figure 3). The
aim of this test is to demonstrate the efficiency of the proposed total Lagrangian
SPH formulation. We compared the numerical stress-strain curve with the

A (MPa) B (MPa) c n m _ε0 (s�1) Tm (°C) Tr (°C)

420 465 0.862 0.5088 0.081 0.1 641 25

Table 1.
Johnson-Cook material parameters [12].

Figure 3.
Axial compression test setup in SPH.
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experimental ones to verify the accuracy and the stability of the code
(see Figure 4). To confirm the validity of the experimental result, the tests were
repeated three times.

6.2 Lateral compression test

Lateral compression test is performed in this section (Figure 5). Eulerian and
Lagrangian simulation time are compared, and tensile instability is verified. The test
is carried out at 30 mm s�1, and cylindrical sample (diameter 25.4 mm, length
25.4 mm) with 5313 particles was used. This is a case of a large deformation test; the

Figure 4.
Stress-strain curves: experimental vs. SPH.

Figure 5.
Lateral compression test: Eulerian vs. Lagrangian.

Simulation time Number of particles

Eulerian SPH 4 h 04 min 5313

Lagrangian SPH 1 h 36 min 5313

Table 2.
Simulation time comparison.
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initial diameter of the sample was reduced over 50% during the test. See compari-
son of results at Table 2.

6.3 Discussion

Figures 4 and 5 and Table 2 gather the tests results. From Figure 4 (axial
compression test), we can see that the SPH result is very accurate compared to the
experimental ones. Less than 5% of error is noted between the curves. The simu-
lated sample shows no clustered particles, meaning there is no tensile instability.

Figure 5 and Table 2 show the results of the lateral compression test and
confirm the previous result. Even in very large deformation test, particles keep their
initial neighbors and do not suffer from tensile instability. In addition, the simula-
tion time is very interesting compared to classical SPH formulation; simulation time
is reduced drastically (from 4 h 04 min to 1 h 36 min); a good numerical efficiency
is reached.

7. Conclusion

A corrected SPH particle approximation in energy-based framework is
presented. Stability (no tensile instability), accuracy, and fast result production are
shown leading to the conclusion that the total Lagrangian SPH formulation is very
well suited to simulate solid mechanic problems. This is particularly interesting in
simulating large deformation problems with physical fragmentation where the
numerical fragmentation (tensile instability) will not corrupt the results.
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