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Chapter

Statically Fused Converted
Measurement Kalman Filters
Gongjian Zhou and Zhengkun Guo

Abstract

This chapter presents a state estimation method without using of nonlinear
recursive filters when Doppler measurement is incorporated into the tracking sys-
tem. The commonly used motions, such as the constant velocity (CV), constant
acceleration (CA), and constant turn (CT), are represented in a pseudo-state space,
defined from the product of target true range and range rate, by linear pseudo-state
equations. Then the linear converted Doppler measurement Kalman filter
(CDMKF) is presented to extract pseudo-state from the converted Doppler mea-
surement, constructed by the product of the range and Doppler measurements. The
output of the CDMKF is fused statically with that of the converted position mea-
surement (range and one or two angles) Kalman filter (CPMKF) to produce target
Cartesian state estimates. The accuracy and consistence of the estimator can be both
guaranteed, since linear Kalman filters are both used to extract information from
position and Doppler measurements.

Keywords: Kalman filter, measurement conversion, doppler, static fusion

1. Introduction

In real tracking applications, most sensors report target parameters in sensor
(e.g., polar) coordinates, while target motion is usually modeled in Cartesian coor-
dinates. In Doppler radars, the measurements consist of range, one or two angles,
and range rate. Tracking in Cartesian coordinates using polar measurements is a
nonlinear estimation problem. To handle the range and angle measurements, it is
preferred to convert the measurements to a linear form in Cartesian coordinates to
avoid nonlinear filtering. This results in the converted position measurement
Kalman filtering (CPMKF) method [1]. The statistic property of the converted
position measurement errors has been explored in [1–10]. The Doppler or range-
rate measurement, which is the only measurement containing target velocity infor-
mation, is not processed in the CPMKF method.

Due to the high nonlinearity of the Doppler measurement, the filtering process
becomes more complex when Doppler is also included as a part of measurement
vector. Various nonlinear filtering methods are utilized to handle Doppler
measurements [11–18]. The first-order extended Kalman filter (EKF) is used to
process the position and Doppler measurements simultaneously [12, 16]. A sequen-
tial processing approach, which can not only improve the filtering accuracy but also
reduce the computational complexity [19, 20], is used with the first-order EKF [18]
to process position and range-rate measurements. Since the EKF is based on a
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Taylor series expansion, large errors in the posterior mean and covariance approx-
imation may lead to performance degradations and possible divergence with the
highly nonlinear range-rate measurements. The unscented Kalman filter (UKF),
which overcomes some of the shortcomings of the EKF based on a deterministic
sampling approach, is used to process the Doppler measurements sequentially in
[15, 17]. On the other hand, the converted Doppler measurements, constructed by
the product of range and Doppler measurement, are used to replace the original
Doppler measurement in [13, 14, 21]. Nonlinear recursive filtering methods still
have to be employed to extract target information from the nonlinear converted
measurements directly, although the nonlinearity is reduced largely [13]. The
second-order EKF is utilized to process the converted Doppler measurements and
the converted position measurements simultaneously in [21] and sequentially in
[13, 14]. The measurement errors amplified by large ranges may result in perfor-
mance degradation of those converted Doppler measurement-based methods. A
linear denoising filter is presented in [22, 23] to reduce the noise contained in the
converted Doppler measurement, but only the constant velocity (CV) motion is
investigated. In [3], based on the estimated angle cosine and sine, Doppler is treated
as an approximate linear function of velocity components to allow the use of linear
Kalman filter. Since the angle cosine and sine are all nonlinear functions of target
position components, the process is actually nonlinear, and estimation performance
may rely on the quality of angle cosine and sine critically.

Although performance improvements have been observed in the existing litera-
ture, which use the Doppler measurements in state estimation, performance cannot
be guaranteed due to the utilization of nonlinear recursive filtering methods. One of
the major advantages of the CPMKF is that the nonlinear approximations (i.e.,
measurement conversion and statistic evaluation) are performed outside the filter-
ing recursion and nonlinear filters are avoided [24]. Whereas, in the existing
nonlinear filtering methods [13, 17, 18], the nonlinear approximation of the Doppler
measurements or the converted Doppler measurement is performed inside the
dynamic filtering recursion. The accumulations of approximation errors may lead to
unsatisfactory performance.

In order to rectify these flaws, a new method is proposed in [27–29] and sum-
marized in this chapter. In the proposed method, the use of nonlinear filtering
approaches is also avoided while dealing with the Doppler measurements. First, the
pseudo-state vectors, of which the converted Doppler measurements [13, 14, 22, 23]
are linear functions, are defined. The pseudo-state vector consists of the converted
Doppler (i.e., the product of range and range rate) and its derivatives. The time-
evolving equations of the pseudo-states are derived and proven to be linear for the
three commonly utilized motion models, the constant velocity (CV), constant turn
(CT), and the constant acceleration (CA) models. Then, the converted Doppler
measurement Kalman filter (CDMKF), a linear filter, is presented to produce the
pseudo-state estimates and filter the noise contained in the converted Doppler
measurements. Finally, the CDMKF is carried out along with the CPMKF to estab-
lish a new state estimation method, statically fused converted measurement Kalman
filters (SF-CMKF). Cartesian state estimates and pseudo-state estimates are pro-
vided by CPMKF and CDMKF, respectively, and are then fused by a static estimator
to produce final state estimates. The quadratic nonlinearity of the pseudo-states is
processed by expanding the pseudo-states up to the second order around the esti-
mates from the CPMKF. The correlation between the CPMKF and CDMKF, caused
by the common range measurement and process noise, is involved in the static
minimum mean squared error (MMSE) estimator to derive correct fusion of the
states from the two linear Kalman filters. This filtering scheme actually converts the
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dynamic nonlinear estimation problem to a linear dynamic estimation following
with a static nonlinear fusion problem, where nonlinearity approximations are
carried out outside the filtering recursions and the static fusion part produces
estimates only for overall outputting. Therefore, nonlinear filtering is also avoided
even when range-rate measurements are used for estimation.

2. Problem formulation

A target’s motion is modeled in a two-dimensional (2D) Cartesian system by a
discrete time-state equation as

X kþ 1ð Þ ¼ ΦX kð Þ þ ΓV kð Þ (1)

where X kð Þ is a state vector consisting of position components and
corresponding velocity components (or acceleration components) along x and y
directions, Φ is the state transition matrix, and Γ denotes the noise input matrix.
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For CT model,
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For CA model,
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where T is the sampling interval. V kð Þ ¼ vx kð Þ; vy kð Þ
� �T

is the process noise that

follows the Gauss distribution with zero mean and known covariance
Q ¼ diag q; q½ �. Here, and denote process noises in x and y directions,
respectively, and q denotes the process noise intensity. is the known turn rate for
CT model [25].

A 2D Doppler radar is assumed to report measurements of targets in polar
coordinates, including range, range rate, and azimuth. The measurement equation
can be expressed as
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ð5Þ

where , , and are the target’s true range, azimuth, and range rate,
respectively. , , and are the corresponding measurement noises, which

are all assumed to be zero-mean Gaussian noises with known variances , , and

, respectively. It is assumed that the measurement noises are mutually indepen-

dent with the exception that and are statistically correlated [26] with

correlation coefficient , i.e., .

3. Measurement conversion

In this chapter, the CPMKF is utilized to extract information from position
(range and azimuth) measurements, and the CDMKF is used to produce pseudo-
state estimates from range and range-rate measurements. Fusion of the two
converted measurement Kalman filters yields final Cartesian state estimation. For
appropriate filtering, the actual statistic, mean and covariance, of the converted
measurements has to be evaluated.

The converted position measurements constructed from range and azimuth
measurements can be written as

ð6Þ

where and are converted measurement errors along x and y directions,
respectively. The converted Doppler measurements is constructed by the product of
the range and Doppler measurements as

ð7Þ

where is the product of true range and range rate, expressed by.

ð8Þ

and is the corresponding error. It can be seen from (8), the converted
Doppler measurements are nonlinear with respect to Cartesian states. In conven-
tional tracking approaches, which estimate Cartesian states by recursive filtering
directly from measurements, nonlinear recursive filters have to be employed,
resulting in unsatisfied performance and possible divergence. In this chapter, the
converted Doppler measurements are processed first, by a linear filter, to produce
pseudo-state estimates, instead of Cartesian state estimates directly.

The converted measurements in (6) are biased [1, 8] due to nonlinear trans-
formations. Both additive [1] and multiplicative [8] debiasing approaches are
presented to counter this bias. Some modifications have also been proposed to deal
with large errors [4] and correlation between the measurement noise and the
covariance [2, 3, 5, 7]. A detailed discussion on the bias issue is beyond the scope of
this chapter. In [1], the additive debiasing method is used with converted position
measurements. A linearization method based on Taylor series expansion, which
may result in large errors, is proposed in [18]. To facilitate a fair comparison against
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existing works [14, 15] dealing with Doppler measurements, the position measure-
ment conversion is implemented here based on the additive debiasing [1] tech-
nique, as in [14, 15].

Using the nested conditioning method [1, 24], which was proven to be effective
and consistent, the calculation of the converted Doppler measurement errors was
investigated in [14, 15]. The objective of the nested conditioning method is to find
the mean and covariance conditioned on the unknown ideal measurement first and
then to find their expectations conditioned on the noisy measurement.

Denote the bias and covariance of the converted position measurements as

ð9Þ

and

ð10Þ

respectively. Then the debiased converted position measurements can be
obtained as

Z
p
c kð Þ ¼

xc kð Þ

yc kð Þ

� �

� μ
p kð Þ (11)

The expressions of the elements in (9) and (10) can be obtained by the nested
conditioning method [1] as

ð12Þ

ð13Þ

ð14Þ

ð15Þ

ð16Þ

Similarly, one can get the bias and variance of the converted Doppler
measurements as [14].

ð17Þ

and

ð18Þ

respectively. The converted Doppler measurements are debiased as

ð19Þ
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The covariance between the converted position and Doppler measurements is
given as

ð20Þ

For details of the derivations of the measurement errors presented above, see
[1, 13, 14].

4. Statically fused converted measurement Kalman filters

The converted position measurements, given by (10) and (11), are preferably
processed by the standard linear Kalman filter to outperform practical nonlinear
filters (EKF and UKF). The converted Doppler measurements, given by (18) and
(19), are also processed by a linear Kalman filter to extract pseudo-state. The out-
puts of these two linear filters are then fused by a static MMSE estimator to yield the
final Cartesian state estimates. This results in the statically fused converted mea-
surement Kalman filter, which is illustrated in Figure 1. This method, abbreviated
as SF-CMKF, produces superior performance in both accuracy and consistency.

4.1 Pseudo-state equation

Finding the proper representation of a certain motion in the generic state space
that corresponds to the converted Doppler is critical to this method. In this section,
the pseudo-state equation, consistent with the CV, CA, and CT model in 2D Carte-
sian state space, is derived first, and then the CDMKF and SF-CMKF filtering pro-
cedures are formulated.

4.1.1 Pseudo-state equation for CV model

The CV model in 2D Cartesian coordinates can be described by

ð21Þ

The converted Doppler (8) is considered to be a generic position to define a
pseudo-state that is linear with respect to measurement (7). Since the converted
Doppler is quadratic in Cartesian states, it has limited derivatives for the CV model.
Taking derivatives of the converted Doppler up to the second order using (21), we
have

ð22Þ

It shows that the CV motion in 2D Cartesian coordinates can be described
completely by and its first-order derivative in the state space corresponding to
the generic position, converted Doppler. Then the pseudo-state vector can be
defined as
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ð23Þ

where is the vector-valued nonlinear function.
To derive the pseudo-state equation, explicit substitutions are employed. From

(23), the pseudo-state at time is given by

ð24Þ

Using (1), (23), and (24), explicit substitutions of the pseudo-state by the
Cartesian state equations are performed; the pseudo-state equation can be
derived as

ð25Þ

where

ð26Þ

ð27Þ

ð28Þ

ð29Þ

ð30Þ

Figure 1.
Filtering structure of SF-CMKF.
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ð31Þ

It can be seen from (25)–(31) that the pseudo-states evolve linearly in time,
disturbed by the noise part. Based on the assumption that , , and are
white Gaussian with zero mean and mutually independent, we have that the noises

and are white with zero mean; the corresponding covariance can be
obtained as

ð32Þ

ð33Þ

4.1.2 Pseudo-state equation for CA model

Similarly, the pseudo-state equation for CA model can be derived as

ð34Þ

where

ð35Þ

ð36Þ

ð37Þ

ð38Þ

ð39Þ

ð40Þ
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ð41Þ

The noises and are white with zero mean; the corresponding covari-
ance can be obtained as

ð42Þ

ð43Þ

4.1.3 Pseudo-state equation for CT model

Similarly, the pseudo-state equation for CT model can be derived as

ð44Þ

where

ð45Þ

ð46Þ

ð47Þ

ð48Þ

ð49Þ

ð50Þ

ð51Þ

In the above

ð52Þ

ð53Þ

ð54Þ

ð55Þ

9

Statically Fused Converted Measurement Kalman Filters
DOI: http://dx.doi.org/10.5772/intechopen.85711



where

ð56Þ

ð57Þ

ð58Þ

ð59Þ

The noises and are white with zero mean; the corresponding
covariance can be obtained as

ð60Þ

ð61Þ

For CV, CA, and CT models, the cross-covariance between and is
proven to be zero. Therefore, the disturbance part in the pseudo-state equation can
be treated as white. Additionally, the pseudo-state equation can be considered as
linear. In this case, the MMSE can be used to produce a best linear estimation.

4.2 Converted doppler measurement Kalman filter

The debiased converted Doppler measurements in (19) guarantee the
observability of the pseudo-states in (23), (25), (34), (35), (44), and (45) with the

measurement matrix given as , where is the dimension of the

pseudo-state. The measurement equation is given by

ð62Þ

In the above, denotes the zero-mean Gaussian measurement noise with
known variance given by (18). The CDMKF is derived under the linear minimum
mean squared error (LMMSE) estimation frameworks as follows:

Applying the expectation operator on the pseudo-state (25), (34), and (44)
conditioned on the converted Doppler measurements up to time step , we can
obtain the predicted pseudo-state as

ð63Þ

Subtracting the above from the pseudo-state equation yields the state prediction
error

ð64Þ

where is the estimation error at time step . Then the state prediction
covariance is

ð65Þ
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The predicted measurement can be obtained similarly by taking expectation
(62) conditioned on the measurements until time step as

ð66Þ

Subtracting the above from (62), the measurement prediction error can be
written as

ð67Þ

Then the measurement prediction covariance is given by

ð68Þ

And the cross-covariance between the pseudo-state and the measurement is

ð69Þ

The filter gain is calculated by

ð70Þ

Then the updated pseudo-state at time step is given as

ð71Þ

And the updated covariance is

ð72Þ

Eqs. (63)–(72) summarize the filtering procedure of the CDMKF with the key
matrix parameters defined by the pseudo-state equation. The whiteness of the
process noise and the linearity of the state equations guarantee that the CDMKF is a
best linear estimator in the sense of MMSE. This provides a new method, rather
than a nonlinear filter, to mitigate the noises in Doppler measurements and extract
target information in pseudo-state space.

Note that the Cartesian state at time is required to determine the matrix in
(30), (40), and (50). In practice, the true state is not available. The solution is to

replace the true state by the state estimates at time step from the

CPMKF. Also, the covariance for CV model in (32) can be approximated using

components of as

ð73Þ

and the covariance for CA model in (42) can be approximated as
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ð74Þ

4.3 Converted position measurement Kalman filter

The formulations of the CPMKF are also given for derivation of the SF-CMKF.
The state equation and measurement equation can be expressed as

ð75Þ

ð76Þ

The process noise is identical to those in (30), (40), and (50). Here, is
the debiased converted position measurement in (11). The converted measurement
error is zero mean with known covariance in (10). The subscript is utilized
to indicate the matrixes or variables are related to the CPMKF. The implementation
procedure of CPMKF is as below:

ð77Þ

ð78Þ

ð79Þ

ð80Þ

ð81Þ

4.4 Correlation between CDMKF and CPMKF

As shown in Figure 1, the range measurements are commonly used in CDMKF
and CPMKF. Therefore, the pseudo-state produced by the CDMKF and the Carte-
sian states from the CPMKF are not independent. The correlation should be handled
appropriately in the fusion procedure.

According to the formulations in the CDMKF, we can rewrite the state estimate
from CDMKF at time step as

ð82Þ

Then the corresponding estimation error is

ð83Þ
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Similarly, the filtering error of CPMKF at time step can be obtained as

ð84Þ

Multiplying (84) by the transpose of (83) and taking expectation, the covariance
between the parallel two filters can be updated recursively as

ð85Þ

In the above, is the cross-covariance between the converted position
and Doppler measurements at time step . It can be given by (20). The above
equation is a Lyapunov-type equation. The initial condition can be obtained from
the initial covariance between the converted measurements.

4.5 Static fusion of CDMKF and CPMKF

The challenges, when combing the estimates from the CDMKF and CPMKF to
obtain final state estimates, are not only the nonlinearity but also the correlation
between the CDMKF and CPMKF. Since the pseudo-states from the CDMKF are
quadratic in Cartesian states, the nonlinearity can be dealt with by expanding the
pseudo-states up to the second order in a Taylor series. In the meantime, the cross-
covariance between these two filters should also be taken into account. A static
estimator is derived based on the framework of linear MMSE estimator to fuse the
outputs from the two filters, with both the nonlinearity and the dependence han-
dled simultaneously.

The problem is to estimate target states at time step using the pseudo-state
estimates produced by the CDMKF and the Cartesian state estimates

from the CPMKF. The prior mean of the state is

ð86Þ

given the state estimates of the CPMKF.
A “measurement”

ð87Þ

is constructed to update the state of interest. The error is assumed
zero mean, with known covariance , and is correlated to the estimation
error of the CPMKF

ð88Þ

with cross-covariance in (85).
To obtain the prior mean of measurement , the nonlinear function

between pseudo-states from CDMKF and Cartesian states is expanded as a Taylor

series around with terms up to the second order as
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ð89Þ

Since the calculations are all performed at a single time step , the time
subscript is omitted for simplicity. Here, denotes the Cartesian basis vector.

In the above,

ð90Þ

is the Jacobian of the vector , evaluated at . Also,

ð91Þ

is the Hessian of the component of , and stands for the higher-order
terms, which are all zero for the components with quadratic nonlinearity.

The prior mean of the measurement can be obtained by taking expectation on
(89) conditioned on the estimates from the CPMKF as

ð92Þ

Then the covariance between the states to be estimated and the “measurement”
is, incorporating their dependence,

ð93Þ

The covariance of the measurement is

ð94Þ

The items with in (93) and (94) arise from the correlation between the two
converted measurement filters, and the other items are the same as the measure-
ment update of the second-order EKF.

The static nonlinear estimates are obtained as

ð95Þ

The covariance associated with this combined estimate is

ð96Þ

The final target states are then evaluated by (95) from the pseudo-state esti-
mates of the CDMKF and the state estimates of the CPMKF.
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4.6 Initialization

In the SF-CMKF, there are three estimators that need to be initialized: (1) the
CPMKF, (2) the CDMKF, and (3) the static fuser.

The two-point differencing method, which uses measurements from two con-
secutive time steps and to estimate the “position” components
and the corresponding “velocity” components and the measurement covari-
ance to approximate state covariance , is used. The initial state has the
form as

ð97Þ

where is the remaining components. The corresponding covariance is
given by

ð98Þ

ð99Þ

where is the vector consisting of maximum values of the remaining
components.

The initialization of the three estimators can be implemented all based on (97)
and (98), using correct measurements and measurement covariance.

To initialize the CPMKF, we should use the converted position measurements in
(11) and the converted position measurement covariance in (10). To initialize the
CDMKF, the converted Doppler measurements in (19) and the corresponding
covariance in (18) are used to calculate (97) and (98).

The initialization of the static estimator in the fusion step can be implemented
similarly to (98) as

ð100Þ

where is the cross-covariance (20) between the converted position
measurements and the converted Doppler measurements. Here, matrix is
replaced by , which is because there is no correlation between the states that
are initialized to zero.

5. Conclusions

Tracking with position and Doppler measurements, where the range and Dopp-
ler measurement errors may be correlated, was considered in this chapter.

First, the converted Doppler measurement Kalman filter, a linear filtering
approach, can be used to improve state estimation results with the converted
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Doppler measurements, which are constructed by the product of the range and
Doppler measurements. This estimation produces pseudo-state estimate. The
pseudo-state equations for three commonly used target motion models, the CV, CA,
and CT models, were presented, and the filtering procedures were derived.

Based on the converted Doppler measurement Kalman filter and the converted
position measurement Kalman filter, a novel tracking filter was proposed to esti-
mate target states from position and Doppler measurements. In this approach, the
two converted measurement Kalman filters are used to produce recursive state
estimates individually, and their outputs are fused outside the filtering recursion by
a static nonlinear estimator, with nonlinearity and correlation handled properly.
Since nonlinear operations are all shifted outside the filtering recursions and the two
dynamic filters are the best linear MMSE estimators, the proposed method mitigates
the effects of nonlinear filtering methods.
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