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Chapter

Normal Boundary Intersection
Applied to Controllers in
Environmental Controls
Fabiano Luiz Naves

Abstract

Generally, the controllers currently used and implemented in the environmental
field have certain set point values, which are pre-calibrated according to a specific
process characteristic. However, instability in environmental processes is a
difficult variable to fix. Thus, the use of numerous set points for specific process
conditions may be a way of controlling instability. One way to obtain numerous
setups within a working region is to use optimization algorithms for the construc-
tion of the Pareto frontier, each point of the boundary being represented by a
different and at the same time optimum setup of operation. In this context, the
construction of a Pareto frontier for a multiobjective and multivariate problem,
established from an environmental problem, can be a way of getting around the
problem of process instability. This chapter has a main objective to demonstrate
the possibility of using the algorithm Normal Boundary Intersection (NBI), origi-
nally enunciated by Karna, as a precursor for the construction of the Pareto frontier,
as well as the possibility of implementing the generated function for implementa-
tion in programmable logic systems.

Keywords: NBI, controllers, multivariate optimization, environmental, biosensors

1. Introduction

Comprehensively, much of the real industrial processes make use of several
input variables (factors) at levels often unpredictable due to the instability
displayed during operation in transient regime. The actual processes are very diffi-
cult to control, especially when it comes to numerous responses to be controlled.

Figure 1 shows in an illustrative way a real process where other factors that
could directly influence the responses and interactions, called noise, were not con-
sidered. These noises can be related from the events of the environment where the
process occurs, such as variations in the temperature of the medium, or events
related to errors occurred by the operators. The use of complete second-order
models to model processes should be restricted to only a certain interval specified
by the levels presented for each of the factors analyzed. In the context of environ-
mental processes, such as effluent decontamination in a treatment plant, the waste
disposal parameters are defined according to country-specific standards and must
be strictly followed. By using the effluent treatment plant as an example, it is
practically impossible to maintain the constant input parameters such as the
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incoming organic load, heavy metals, and turbidity, among others. In order to
keep the process running at steady state, with possible variations of input, it is
necessary that the levels of the controllable factors be adequate in order to keep the
responses at the exit within the pre-established parameters. This adjustment of
levels can be achieved through sensors connected to programmable logic
controllers, which usually operate through a set point.

These types of equipment are microprocessor computers that perform the func-
tion of control through specific software. One of the major problems encountered in
using this device can be attributed to numerous, generally correlated, input condi-
tions that may occur throughout the operation. Even with controller performance
due to the set point, it no longer considers the possibility of interactions between
these input parameters, which may compromise the permanence of the steady state.
When the noise source is not discovered for later quantification, instability in the
process can lead to desired responses outside of the predefined standards, leading to
losses, associated cost, and environmental damage. Therefore, the controllers cur-
rently applicable cannot consider this instability generated by the noise industrially.

In the environmental area, due to the large number of parameters that must be
monitored and pre-established as waste disposal control standards in receiving
bodies, it is very common to maintain a certain operation for numerous responses.
Thus, it is fundamental that the process can be previously known, modeled, and
later optimized through algorithms already fomented by the literature, allowing the
implementation of robust multiobjective optimization from the polynomial that
describes all the responses, factors, and levels of the process in detail.

The concept of multiobjective robust optimization can be described as the set of
nonlinear constrained programming (NLP) methods and algorithms that are
intended to simultaneously optimize the mean and variance of multiple process
characteristics that are in a way correlated output quantities that are reasonably well
modeled by complete quadratic models. However, in effluent treatment processes
that have multiple output characteristics are generally correlated.

Any process can be defined through a quadratic polynomial, if it is properly
constrained within certain predefined intervals. The original concept of “robust”
process was introduced by Genichi Taguchi in 1980 [1]. To this concept we can
associate the original idea of RPD (robust parameter design), applied to generic
processes. The more “robust” the details of the process are known, the more accu-
rately it can be modeled and optimized. Therefore, there are several situations in
which the multiple means of responses must be optimized and the multiple vari-
ances associated with each of the responses individually, minimized. This routine
can be performed in order to reduce the interference attributed to the noise and
to maintain a more stable process. As already mentioned, independently of the
innumerable responses to be analyzed to a process, they are easily analyzed

Figure 1.
General process diagram.
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individually, even knowing the existence of a high associated positive correlation.
Thus, when the responses have a very high correlation, mainly positive, very com-
mon in processes that involve chemical reactions, it becomes impracticable to
perform the modeling of the multiple objective functions in an independent way,
leading to the wrong responses.

In multiobjective optimization problems, the assignment of convex combina-
tions of weights to the multiple responses leads to the agglutination of the objective
functions that represent each response through weighted sums, thus generating a
Pareto border or surface. Pareto border or surface is therefore a set of optimal
values for multiple features obtained from a list of viable optimal points, obviously
within a region of viable space. This agglutination of functions can be performed
according to some methods: weighted sum and global criterion method (GCM).
Both allow the construction of the Pareto border with some constraints attributed to
the convexity of the objective function presented in the region of the viable space
where the boundary is constructed. When there is a non-convex region in a certain
objective function to be analyzed, the Pareto boundary cannot detect optimal points
in this region.

Analyzing Figure 2, it is possible to verify a Pareto frontier for two responses,
where each of the points represents different operating conditions. However, there
is a discontinuity indicating no convex region of both functions representing the
responses. One way to solve this problem is to use the algorithm Normal Boundary
Intersection (NBI) to construct the Pareto frontier. This algorithm is able to deter-
mine points along the boundary, even in non-convex regions of space. The NBI
algorithm considers two fixed points of the frontier (“best of the best and worst
of the worst”) known as utopia and nadir respectively. Between these fixed points,
all others that make up the border are distributed.

One of the great possibilities in using this algorithm as a transfer function in
control processes is precisely the possibility of choosing a number of different
process setups, which consequently lead to optimized responses between the utopia
and nadir points, which may be the limits of specification of the particular disposal

Figure 2.
Pareto frontier showing discontinuity.
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parameter in an effluent treatment plant, for example. The polynomial (Figure 3),
which represents the Pareto frontier, can be used as a transfer function in scaling of
a possible dynamic process controller for multiobjectives.

2. Description of the process NBI control

In order to facilitate the understanding of the possibility of implementing
the NBI algorithm in controllers, let us take, for example, an industrial effluent
treatment plant, which operates with a certain constant flow, due to the
residence time necessary for part of the organic load to be degraded via bacteria and
protozoa in an aerobic process. As a base of the input variables, we will work with
initial organic load in terms of biochemical oxygen demand (BOD) and pH. As
controllable factors, we will use the air or oxygen flow (aeration) and residence
time. As desired responses, we will use as an illustration the removal of the
organic load in terms of biochemical oxygen demand (BOD) and chemical
oxygen demand (COD).

Modeling a typical problem processes, we could write that both responses have a
direct relationship with the two factors presented as X1 and X2. However, keeping
the process steady relative to the inputs becomes virtually impossible. By
establishing, the two responses used, as an illustration of the application of the
method, is it feasible to predict the aeration rate and residence time required.
Certainly, the answer would be positive, if the entries were kept constant. However,
if this standardization is not possible, how can we keep the responses within desir-
able patterns? Imagine in a situation of actual biological treatment process, where
some changes can lead to periodic changes in the conditions of entry. For example,
an increase in the rainfall rate may lead to the dilution of the organic matter present
in the tributary and consequently the decrease of the initial BOD. The decrease of
the initial BOD requires a lower concentration of dissolved oxygen so that bacteria
and protozoa can decompose the organic matter in order to meet the exit standards,
which would lead to the conclusion of shorter residence times required. There is a
relationship as presented that can be considered a certainty. However, what is the
relationship between them? What would be the best condition, to decrease aeration
or increase residence time? These responses can only be met if we have this problem
modeled. When working with models, we can easily predict the relationship of each
of the factors to the expected response. This fact helps us reduce process costs and
increase effectiveness in the targeted response. Through the use of models created
from response surfaces, which have quadratic models, it is easily possible to deter-
mine local or global minimum or maximum points.

Figure 3.
Pareto border for bi-objective problem.
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2.1 Stochastic response surface models

The response surface methodology (MSR) is a collection of mathematical
and statistical techniques that allows modeling, analyzing, and optimizing problems
whose response variables are influenced by many variables [2]. As mentioned
earlier, there is great difficulty in knowing the behavior of independent and
dependent variables in a process. Thus, the response surface allows the real
approximation of the process from a quadratic model. The development through
a Taylor polynomial, truncated in the quadratic term, takes what we call
a second-order response surface:

Y xð Þ ¼ β0 þ ∑
k

i¼1
βixi þ ∑

k

i¼1
βiix

2
i þ ∑

i < j
∑ βijxixj þ ε (1)

where β represents the coefficients of the model, k is the number of independent
variables considered in the study, and ε is the error term.

The fact of using the response surface in a region close to high curvature of the
model, presented according to local or global maxima or minima, according to
convexity, does not effectively determine the best points or operation setups. How-
ever, what can be verified is a region of space that, depending on the levels of each
of the independent variables, leads to better responses.

From the color gradient shown in Figure 4, it is possible to verify regions,
delimited through the Cartesian axes representing the levels of each of the factors
studied, leading to better responses. Thus, the construction of models through the
surface response method becomes paramount for the application of later optimiza-
tion algorithms. Among several optimization algorithms, the Normal Boundary
Intersection (NBI) [3] has been used in several researches, in several different
fields.

2.2 NBI algorithm

The NBI algorithm is developed in terms of an array that we call the payoff
matrix Φ , which represents the optimal values of the multiple objective functions

Figure 4.
Counter graphic.
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minimized individually. The solution vector that minimizes the i-th objective func-
tion individually f i xð Þ is represented by x ∗

i so that the minimum value of f i xð Þ at

this point is f ∗
i x ∗

i

� �

. When replacing the individual optimum point x ∗
i obtained in

the optimization of objective function in the other functions, we have f i x
∗
i

� �

which
is therefore a nonoptimal value of this function. By repeating this algorithm for all
functions, we can represent the payoff matrix as

Φ ¼

f ∗
1 x ∗

1

� �

⋯ f 1 x ∗
i

� �

⋯ f 1 x ∗
m

� �

⋮ ⋱ ⋮

f i x
∗
1

� �

⋯ f ∗
i x ∗

i

� �

⋯ f ∗
i x ∗

m

� �

⋮ ⋱ ⋮

fm x ∗
1

� �

⋯ fm x ∗
i

� �

⋯ f ∗
m x ∗

m

� �

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(2)

Each line of Φ is composed of minimum and maximum values of f i xð Þ. In the
NBI method, these values can be used to normalize the objective functions, espe-
cially when they are represented by different scales or units. In a similar way,
writing the set of individual optimums in a vector, we have

fU ¼ f ∗
1 x ∗

1

� �

…; f ∗
i x ∗

i

� �

…; f ∗
m x ∗

m

� �� �T
(3)

This vector is called utopia point. In the same way, by grouping the maximum
(nonoptimal) values of each objective function, we have

fN ¼ fN1 …, fNi …, fNm
� �T

(4)

This vector is called nadir points.
Using these two sets of extreme points, the normalization of the objective func-

tions can be obtained as

f xð Þ ¼
f i xð Þ � fUi
fNi � fUi

, i ¼ 1,…, m (5)

This normalization therefore leads to the normalization of the payoff matrix, Φ.

The convex combinations of each line of the payoff matrix, Φ, form the “convex
hull of individual minima” (CHIM) or the utopia line.

Figure 5 illustrates the main elements associated with multiobjective optimiza-
tion. The anchor points represent the individual solutions of two functions. Points a

and b are calculated from the stepped payoff matrix, Φ wi. Considering a set of
convex values for the weights, w, one has to Φ wi represent a point on the utopia
line, making n̂ denote a unit vector normal to the line at point’s utopia Φ wi in the
direction of origin; at the time, Φ wþD n̂ with D∈R will represent the set of
points in that normal.

The point of intersection of this normal with the boundary of the viable region
that is closest to the origin will correspond to the maximization of the distance
between the utopia line and the Pareto border. Thus, the NBI method can be written
as a constrained nonlinear programming problem such that

Max
x;tð Þ

D

subject to : ΦwþDn̂ ¼ F xð Þ

x∈Ω

(6)
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2.3 Implementation of the NBI control system

For the process described as an example, there are two controllable factors
represented by the aeration rate (x1) and residence time (x2). However, according
to Figure 6, there are also two input variables that cannot be measured, mainly
due to the instability of a biological treatment plant, according to initial organic
charge z1 and pH z2. The first artifice presented will be the transformation of
each of these variables into known values, from experiments carried out on a
smaller scale.

Thus, we will have the following factors: aeration rate (x1), residence time (x2),
initial organic load (x3), and pH (x4). From a surface of response called central
composite design (CCD), it is possible to construct a quadratic model, executing 31
experiments in laboratory scale:

Figure 6.
General scheme of the process.

Figure 5.
Normal to intersect method (NBI).

7

Normal Boundary Intersection Applied to Controllers in Environmental Controls
DOI: http://dx.doi.org/10.5772/intechopen.83662



Y1x ¼ β0 þ β1x1 þ β2x2 þ β3x3 þ β4x4 þ β11x1
2 þ β22x2

2 þ β33x3
2

þ β44x4
2 þ β12x1x2 þ β13x1x3 þ β14x1x4 þ β23x2x3

þ β24x2x4 þ β34x3x4 þ ε

(7)

Y2x ¼ β0 þ β1x1 þ β2x2 þ β3x3 þ β4x4 þ β11x1
2 þ β22x2

2 þ β33x3
2

þ β44x4
2 þ β12x1x2 þ β13x1x3 þ β14x1x4 þ β23x2x3

þ β24x2x4 þ β34x3x4 þ ε

(8)

Each of the coefficients presented in the two equations, represented by βi, βii,
and βij, is determined by the ordinary least square (OLS) regression algorithm

where x1, x2, x3, and x4 are the factors already stated. With the models presented, it
is possible to propose an optimization of both responses from the NBI algorithm for
the four factors (Figure 7).

The Pareto frontier constructed from the optimum of both responses can now,
from each of the setups assigned to each point, serve as the basis for implementation
in controllers.

For each point referring to the specific response condition, a different setup
is considered. For the chosen point 1 according to Figure 8, there is a BOD of
33.2 and a COD of 67, and under these conditions, we have the levels of each of
the factors:

Figure 7.
Modeling and optimization flowchart.

Figure 8.
Pareto frontier with sample choice point.

8

Biosensors for Environmental Monitoring



Aeration rate ¼ x1

Residence time ¼ x2

Initial organic load ¼ x3

pH ¼ x4

8

>

>

>

>

>

<

>

>

>

>

>

:

(9)

In the conditions of this chosen point, replacing in (Eqs. (6) and (7))
the response surface, we have two quadratic equations, one referring to Y1 (x)
and Y2 (x).

The implementation of the transfer function in the control will be done
according to Figure 9.

The two responses provided in the example, enter into a multiprocessor system
according to pre-established parameters. The multiprocessing system introduces

Figure 9.
Proposed arrangement for implementation.

Figure 10.
Flow sheet of implementation algorithm.
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polynomials referring to each different setup that consisted of the Pareto frontier,
and for each setup, there are specific values of COD and BOD in mgO2L

�1. From
these inputs, the factors can be determined in optimized terms, X1 *, X2 *, and X3 *.

An example of implementation for pH 5–9 and BOD values between 200 and
1000 mgL�1 follows the flow sheet (Figure 10).

As already mentioned, one of the advantages of the method is the correction of
the input parameters belonging to the Pareto frontier, consisting of innumerable set
points within an optimal solution space.

3. Conclusions

Although it has not yet been implemented in controllers, the use of algorithms
such as NBI can facilitate the operation of this equipment, as well as lower costs of
implementation and operation of environmental systems.
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