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Abstract

The current lifestyle and the greater awareness of the health benefits of wine are 
causing an increase in demand for wines with higher levels of bioactive compounds, 
principally red wine. Scientific evidence supports the benefits of wine, mainly 
related to their antioxidant and anti-inflammatory activities. This chapter, in its 
first section, reviews previous studies aiming to elucidate the action mechanisms 
through which the bioactive compounds act on the human organism in the preven-
tion of diseases. According to the existing literature, studies dealing with specific 
procedures to enhance the bioactive profile of wines are scarce. Therefore, in the 
second section, we pay attention to some aspects related with applicable technologi-
cal strategies during the winemaking process and its incidence in the extraction and 
stability of bioactive compounds. Furthermore, we discuss some applicable strate-
gies in (i) the vineyard during the vine cultivation and (ii) the raw material level in 
pre-fermentative stage within winery, as well as, biotechnological strategies during 
the fermentation and aging. All these are directed to improve the content of bioactive 
compounds in the wine and, thus, transmit its benefits to the consumer’s health.

Keywords: wine, bioactive compounds, bioactive compounds extraction,  
disease prevention

1. Introduction

It is known that the content of bioactive compounds is greater in red wines, so 
that more health benefits can be expected by its consumption. This is the reason 
most studies are conducted on these wines.

Among the most studied compounds are the anthocyanins, which can be found 
in the skin and represent between 50 and 60% of the phenolic fraction in the red 
grapes (dry weight basis) [1]. For its part, the flavanols are mainly found in grape 
seeds with predominance of catechin over its isomer epicatechin [2], while the 
tannins are mostly grouped in procyanidins (catechin and epicatechin deriva-
tives) and prodelphinidins (derived from gallocatechin and epigallocatechin) [3]. 
Other important groups are the stilbenes, mainly resveratrol, to which much of the 
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protective effects of wine are attributed. Also, flavonols such as quercetin, myric-
etin, and kaempferol, predominant in Vitis vinifera, are also worth mentioning.

2. Health benefits of wine

2.1 Antioxidant activity

This activity is perhaps the most important concerning the prevention of 
diseases, due to the presence of phenolic compounds. Among the most important 
action mechanisms, the prevention of oxidative damage caused by free radicals 
stands out. This mechanism relies on the capture of unpaired electrons and gen-
eration of less reactive species, as well as well as the chelation of metal-ions such 
as Fe or Cu, to avoid the production of new free radicals [4, 5]. Other mecha-
nisms include the interruption of self-oxidation chain reactions, deactivation 
of singlet oxygen, suppression of nitrosative stress, synergy with other antioxi-
dants, activation of antioxidant enzymes, and inhibition of oxidant enzymes [6], 
among others.

The antioxidant efficacy would be determined by the chemical nature. For 
instance, the anthocyanin B-ring substitution rate is crucial due to its potential to 
neutralize free radicals [7], mostly in the malvidin, since it contains two methoxyl 
groups (-OCH3) and one hydroxyl (-OH) group in the B-ring.

Similar behavior has been observed in gallotannins (epicatechin gallate and epigal-
locatechin gallate) arising from high concentration of OH groups with higher anti-
oxidant activity than the non-gallates (catechin and epicatechin) [8]. Moreover, the 
antioxidant activity might improve with the synergistic tannin-tannin interaction [8] 
or between tannins and other compounds such as quercetin and resveratrol, reducing 
the lipid peroxidation caused by physical activity, for instance, in athletes [9].

The resveratrol is one of the compounds with the most antioxidant activity as it 
shows anti-aging activity due to its stimulant action on sirtuins [10]. Also, it is able 
to suppress free radical production, regulate the antioxidant enzymes activity, and 
induce endogenous antioxidant defenses such as Nrf2 [nuclear factor (erythroid-
derived 2)-like 2] pathway [11], which regulates the expression of inflammatory 
markers, protecting against diseases such as Parkinson’s [12].

The quercetin also contributes to reduce oxidative stress acting on the anion  
O2- and over the enzymes that produce it [13].

Also, the benefits of alcohol-free red wine have been observed, which include 
activity increase of SOD, catalase, and glutathione reductase enzymes [14] and the 
production of nitric oxide (NO) [15]. The latter is closely related to a lower cardio-
vascular risk [16].

2.2 Anti-inflammatory activity

Inflammation is a natural bodily response against the presence of injuries or 
harmful agents. Among these agents, free radicals can activate the production of 
pro-inflammatory mediators such as tumor necrosis factor alpha (TNF-α) [17], 
which in turn can lead to increased oxidative stress in a cycle that contributes to the 
progression of many diseases.

Anti-inflammatory compounds, such as resveratrol, have been proven to be 
effective against cyclooxygenase (COX) enzyme, which is involved in the produc-
tion of prostaglandins that stimulate the growth of tumor cells [18]; in addition, 
resveratrol enhances the insulin sensitivity in diabetic patients by the activation 
of sirtuins, which are responsible for inhibiting inflammatory processes and the 
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secretion of TNFα factor [19, 20]. Also, resveratrol acts on microglia, involved in 
the defense of an injury or disease of central nervous system (CNS) [21]. Thus, 
the inhibition of microglial activation may help prevent several disorders. Besides, 
resveratrol also presents protective activity against cardiovascular diseases 
(CVD), by inhibiting TNFα and interleukin 6 (IL-6) [22].

Specific cases related to some pathologies are discussed in detail below.

2.3 Protection against cardiovascular diseases

There is vast evidence linking the moderate consumption of wine to lower 
CVD predominance, with the reports by Renaud and de Logeril [23] and St. Leger 
et al. [24] being pioneers in the study of the known French paradox. These studies 
explained the lower incidence of CVD in France despite the high consumption of 
saturated fats. Later studies have shown the benefits for cardiovascular risk bio-
markers (Figure 1), which are mainly attributed to phenolic compounds.

Also, the presence of ethanol has been associated with low-density lipoprotein 
(LDL) and triglycerides level reduction and with the increase of high-density 
lipoprotein (HDL) at doses of 15–30 grams of ethanol per day [26]. Later studies 
suggest that moderate ethanol ingestion can increase HDL levels, apolipoprotein 
A1 (ApoA1) and adiponectin, in addition to lowering fibrinogen levels [27]. 
Nonetheless, such results suggest the need for further studies due to negative effects 
of excessive ingestion of ethanol.

Other compounds coming from grapes, such as melatonin and phytosterols 
(β-sitosterol, stigmasterol, and campesterol), have also shown protective effects 
against CVD either individually or in synergy with phenols [28]. Melatonin has 
shown effects against clinic indicators such as blood pressure, NO metabolism, and 
endothelial functions [29, 30] in addition to the effects on free radicals [31].

Moreover, β-sitosterol, stigmasterol, and campesterol have shown hypocholes-
terolemic effects by reducing the plasmatic levels of LDL (up to 10%), LDL/HDL 
ratio (up to 11.5%), and intestinal absorption of cholesterol (30–40%) [32–34].

Figure 1. 
Effects of wine components for cardiovascular risk factors. Adapted from Ref. [25].
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2.4 Neuroprotective effects

2.4.1 Prevention of memory loss

Wine consumption could reduce the memory loss caused by cerebral circula-
tory insufficiency by increasing the acetylcholine levels, proteins responsible for 
the organization of brain cells [36], and the prevention of platelet aggregation by 
ethanol [37]. Other mechanisms include the resveratrol action on the telomerase 
enzyme, involved in preventing cell senescence and delayed cognitive impairment 
[38], or the action of the quercetin against cell aging by means of the activation of 
proteasome complex [39].

2.4.2 Action against cerebrovascular infarctions

In the Copenhagen City Heart Study, it was observed that participants who 
consumed wine moderately had 50% less risk of dying from cerebral infarction [40] 
due to the enhancement of the cerebral blood flow, the effect mainly attributed to 
resveratrol.

In addition, resveratrol interacts with estrogen receptors α and β, reducing 
cholesterol levels and the formation of atherosclerotic plaque and therefore the risk 
of stroke due to circulatory failure, for example, in postmenopausal women [41]. 
Resveratrol has also been shown neuroprotective activity against inflammatory 
mediators, such as interleukin 1β (IL-1β) and TNF-α, as well as keeping the levels 
of proteins occludin and claudin-5, of vital importance for the permeability and 
tissue integrity [42], and to attenuate the cellular apoptosis in ischemia-reperfusion 
injuries [43], which diminish cell death and the development of diseases such as 
Alzheimer’s.

2.4.3 Antidepressant effect

This effect has been studied in rodents by administration of resveratrol, which 
can regulate the monoaminergic system, increasing the levels of serotonin, nor-
adrenaline, and dopamine [44]. Also, resveratrol, quercetin, ferulic acid, ellagic 
acid, and proanthocyanidins can modulate the hypothalamic-pituitary-adrenal 
(HPA) axis activity as well as the serotonergic neurotransmission [45, 46], which 
are important mechanisms against anxiety and depression.

2.5 Anticarcinogenic activity

Cancer development comprises the following stages: initiation, promotion, 
progression, invasion, and metastasis (Figure 2). Initiation corresponds to DNA 
damage by free radicals, inflammatory mediators, cigarette smoke, radiation, etc. 
[47–49], which may induce genetic mutation and reproduction of mutated cells 
giving rise to carcinogenesis.

Greater protective effect has been observed with phenolic compounds, for 
example, apoptotic activity of ellagic acid [50] and delphinidin [51] in colon cancer 
cells. Delphinidin has also shown activity in leukemia, liver [52], and prostate 
cancer cells [53]. Resveratrol can also induce cell apoptosis [54].

For its part, proanthocyanidins can alter the migration and invasion processes in 
human pancreatic cancer [55]. Delphinidin and cyanidin has proven their antimeta-
static activity in human colon cancer cells [56], while resveratrol has the same effect 
on lung cancer cells [57]. More specific mechanisms are shown in Figure 2.
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2.6 Antimicrobial and antiviral activities

Red wine presents activity against Streptococcus mutans, Streptococcus oralis, 
Fusobacterium nucleatum, and Actinomyces oris implicated in the formation of dental 
cavities and periodontitis [58], in addition to Clostridium [59], Candida albicans, 
and Botrytis cinerea [60], among other microorganisms.

White wine also presents activity against Salmonella [61]. However, the authors 
argued that the effect may be associated with the presence of malic acid, since the 
white wine is not subjected to malolactic fermentation.

Besides, wine’s activity is also effective against some viruses, which include 
human immunodeficiency virus (HIV) [62], hepatitis virus and adenovirus (respi-
ratory infections), cytomegalovirus (chickenpox and infectious mononucleosis), 
and norovirus and rotavirus (gastroenteritis) [60].

Nonetheless, it is worth mentioning that the antimicrobial and antiviral activi-
ties showed by the wine and/or their components cannot be compared to the one 
attributed to antibiotics. Therefore, wine should not be used for such purposes.

3. Enhancement of bioactive compounds content

3.1 Vineyard: synthesis of bioactive compounds

The wine composition is closely related with the grape composition that mainly 
depends on its variety. Some compounds, such as resveratrol can reach concen-
trations of up to 6 mg L−1 in wines made of Pinot noir grapes [63], quercetin, 

Figure 2. 
Potential protective mechanisms of the phenolic compounds at different cancer stages. Adapted from Ref. [35].
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concentrations of up to 13 mg L−1 in wines made of Shiraz grapes [64], or 
β-sitosterol, up to 106 mg/100 g of dry skin in Groppello grapes [65].

Other factors which may also induce a better synthesis of bioactive compounds at 
the vineyard stage are the cultivation conditions and viticulture practices (Figure 3). 
Some examples include the increase in anthocyanin and tannin levels by exposing grape 
bunches to sunlight and UV radiation [66], which resembles the effect observed in 
quercetin [67] and resveratrol [68]. In addition, agrochemical elicitation may induce the 
synthesis of resveratrol [69], melatonin [70], β-sitosterol, and other sterols [65].

However, conditions, such as high temperatures, can slow down the synthesis 
of phenolic compound, mainly anthocyanins, promoting the synthesis and accu-
mulation of sugars in berries [71] and affecting the levels of extractable bioactive 
compounds during winemaking process.

3.2 Pre-fermentation treatments

Although most of the procedures are intended to enhance the physicochemical 
stability and sensory profile, these can be advantageous to improve the bioactive 
profile of wine, considering that 50% of these compounds are extracted during the 
winemaking process [64].

The contact time between skins and grape-must/wine can affect the content of 
compounds such as resveratrol, whose maximum extraction can be realized after 
10 days of contact [72]. Also, the use of pre-fermentation enzymes and cold mac-
eration can assist in the extraction of anthocyanins and tannins [73].

Figure 3. 
Technological strategies to improve the content of bioactive compounds in red wines.
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Furthermore, the emerging technologies could also be useful. Traditionally, 
these technologies have been studied to control microbial load of food. However, 
they can also be useful to improve the extraction of phenolic compounds and other 
molecules with positive effects on the properties of the wine. Other benefits include 
aroma preservation and phenolic compound protection against oxidation, since the 
temperature of the treated product does not change [74] and reduce SO2 doses, an 
additive that can cause problems on the consumer’s health [75].

These technologies can also help improve the extraction in grapes with low 
phenolic content, as an alternative to conventional treatments such as the use of 
pectolytic enzymes or the “blended” with varieties of grapes with higher phenolic 
content [76]. It also allows to produce wines with greater varietal character, which is 
preferred in the markets.

3.2.1 High hydrostatic pressure

The high hydrostatic pressure (HHP) technique can improve the extraction 
and protect the phenolic compounds against oxidation, given that at pressures of 
600–700 MPa partial inactivation of the polyphenol oxidase enzyme is achieved 
[77], which enables the enhancement of the antioxidant properties of wine and, 
consequently, reduces the SO2 doses [75]. HHP also allows for the maintenance of 
the integrity of the berry [74], facilitating the manipulation of the grape, without 
losses of raw material or risks of microbial contamination.

Pressures of 200 MPa have allowed the enhanced extraction of anthocyanin 
in red grapes, improving color intensity (26% higher) and total polyphenol index 
(TPI, 43% higher), with respect to the control [78]. Besides, HHP increases the 
selective extraction of acylated anthocyanins (up to 68% of p-coumarylated 
anthocyanins), since the HHP reduces the polarity of the grape-must due to the 
decrease of the water dielectric constant and the pH (molecular deprotonation at 
high pressures). Thus, the solubility of these anthocyanins is improved.

Higher pressures (600 MPa) were applied by Corrales et al. [79], increasing 
the acylated anthocyanin extraction by nine times with respect to the control 
at 70°C. In addition, pulsed electric field (PEF, at 3 kV cm−1) technique was 
applied, improving the antioxidant capacity by up to three times with HHP 
and four times with PEF. The latter may be associated with the inactivation of 
oxidant enzymes.

On the other hand, the HHP favors the formation of pyranoanthocyanins, 
mainly derived from vitisin A at 600 MPa and 70°C [80]. Nonetheless, the antho-
cyanin content, like the cyanidin, can be reduced as it occurs with pulsed light (PL) 
and e-beam irradiation [81, 82].

3.2.2 Pulsed electric fields

The pulsed electric fields (PEF) are efficient in the extraction of phenolic 
compounds due to its action over the skin cell walls, reaching rates of up to 50% or 
higher [83], in addition to reducing the maceration time by up to 50% at a dose of 
5–10 kV cm−1 [84].

Like HHP, the selective extraction of acylated anthocyanins can be increased 
by more than six times with respect to the control at 3 kV cm−1 [79]. Also, a higher 
degree of polymerization of the skin tannins can be achieved due to the greater 
permeability and diffusion through the fractured cell walls [85], which reduce the 
sensation of astringency and bitterness in the produced wines.

Also, the content of flavanols, flavonols, and hydroxycinnamic acids and 
derivatives can be improved after 12 months of aging in wines obtained from grapes 
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treated with PEF, as obtained by Puértolas et al. [86] when treating Cabernet 
Sauvignon grapes with doses of 50 a 122 Hz, 5 kV cm−1 y, and 3.67 kJ kg−1.

At the level of grape-musts treated with PEF, adverse effects have not been 
observed at doses of up to 29 kV cm−1 [87].

3.2.3 Ultrasound

The ultrasound (US) treatment of red grape-musts is an effective alternative to 
keep the level of anthocyanins up as high as 97% [88]. This fact clearly shows that 
the US preserves the chemical stability of these pigments. Combinations of US with 
heat and ethanol can also be exploited to increase the extraction of total phenols 
and anthocyanins and to increase the antioxidant capacity [79, 89].

3.2.4 Pulsed light

Pulsed light (PL) is a low-cost technological alternative with higher possibilities 
of being scaled to an industrial level than HHP, PEF, or e-beam irradiation [81]. Its 
efficacy varies as a function of the applied light’s features. Thus, better performance 
is achieved with PL than with UV-C, since the former, in addition to its intensity, 
includes the infrared component [90].

The UV-C light (254 nm, 8.4 kJ m−2, 15 min, 27°C) continuously applied pro-
duces micro-cracks in the skin of red grapes [90], inducing a high anthocyanin 
migration, although it is performed with lesser intensity than with HHP [74] or 
e-beam irradiation [82] and without affecting the external appearance of the 
treated berries, which facilitates their subsequent handling.

However, in wines obtained from red grapes treated with PL (12% UV-C, 10% 
UV-B, and 8% UV-A), a slight reduction of anthocyanins at doses of 10 pulses at 
600 J has been noted. This may be associated with the oxidative degradation of 
these compounds by radiation [82]. Interestingly, vinylphenolic pyranoanthocya-
nins and vitisins have exhibited higher stability [81].

3.2.5 e-Beam irradiation

Electron beam (e-beam) irradiation can enhance the extraction of anthocyanins 
by up to 70% at 10 kGy [82], without affecting the external appearance of treated 
berries. Lower doses (0.5–3.0 kGy) have also shown improvements during extrac-
tion of anthocyanins from grape marc [91].

One disadvantage of this technology is the lowering of anthocyanin contents 
in the produced wines, as consequence of the induced oxidation by radiation [82]. 
Nonetheless, the content of vinylphenolic pyranoanthocyanins and vitisins is not 
affected due to the robustness of double bond in heteroaromatic ring under the 
induced oxidation by e-beam irradiation [82].

3.2.6 Ozone

Grapes exposed to ozone have shown greater contents of flavanols and resve-
ratrol [92, 93]. However, the continuous exposure of berries to this gas (30 μL L−1, 
24 h) may produce skin hardening, causing slower extractions without affecting the 
final content of anthocyanins and flavanols [94].

On the other hand, the efficacy of phenolic extraction has been related with 
the grape variety. Wines fabricated with grapes containing high level of flavanols 
(as Nebbiolo) improved their color stability during winemaking procedure, espe-
cially with short expositions to ozone (<72 h, 30 μL L−1) [95]. Accordingly, the 
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anthocyanin extraction can be as high as 19% in Petit Verdot grapes treated with 
ozone, in addition to reduce the fermentation time [96].

3.3 Fermentation level strategies

3.3.1 Selected yeasts

The melatonin content can be increased by using Saccharomyces and non-
Saccharomyces strains with high production of this compound [97], as an additional 
source to the melatonin coming from grapes [28]. However, some compounds 
like the phytosterols may be reduced during the winemaking process, since some 
Saccharomyces strains might be able to use them as nutrients [65]. Besides, con-
tents of anthocyanins [98] and resveratrol [99] can diminish, as a result of being 
adsorbed by the yeast cell walls during the fermentation process.

Another issue to be aware during the winemaking process is the use of yeast with 
lower expression of anthocyanin-β-glucosidase activity, which is responsible for 
hydrolysis of anthocyanins [100].

3.3.2 Pyranoanthocyanins synthesis

The most important are vinylphenolic pyranoanthocyanins and vitisins. They 
present high chemical stability due to the presence of a heteroaromatic fourth ring in 
their structure, formed by the integration of vinylphenols, pyruvate, or acetaldehyde 
in the structure of the anthocyanin precursor [101], which provides resistance against 
oxidation and discoloration in the presence of SO2 and/or increase of wine pH [102]. 
Moreover, pyranoanthocyanins possess microbiological stability, for instance, against 
Dekkera/Brettanomyces, since this yeast is not able to hydrolyze these pigments [103].

Fermentations with yeasts with hydroxycinnamate decarboxylase (HCDC+) 
activity have been studied as a strategy to improve the synthesis of vinylphenolic 
pyranoanthocyanins, from the condensation of anthocyanins with vinylphenols 
[101]. The vinylphenols are molecules released from hydroxycinnamic acids in 
grapes by the HCDC+ activity, which later on can serve as substrate to the synthe-
sis of 4-ethylphenol by Dekkera/Brettanomyces [103]. By reducing the content of 
hydroxycinnamic acids, it is possible to prevent the synthesis of 4-ethylphenol and, 
in turn, the content of vinylphenolic pyranoanthocyanins can be increased.

Other interesting pyranoanthocyanin groups are the vitisins A and B, which 
arise from the condensation of pyruvic acid and acetaldehyde, respectively, together 
with the malvidin during or after the fermentation process [102].

Also, it is possible to increase vitisin A levels with Schizosaccharomyces pombe 
[104], of vinylphenolic pyranoanthocyanins in mixed fermentations of S. cerevisiae 
with Pichia guilliermondii [105] or by using species with high production of acetal-
dehyde, such as Saccharomycodes ludwigii [106], to improve the synthesis of vitisin B 
and other molecules with positive impact on the wine.

On the other hand, it is possible to enlarge the production of acetaldehyde by S. 
cerevisiae in the presence of metabolic inhibitors [71, 107], due to their effect on the 
alcohol dehydrogenase, which might enhance the synthesis of vitisin B.

3.4 Post-fermentation strategies

3.4.1 Traditional aging of red wine

The aging has direct effects on wine composition, since chemical and/or enzy-
matic oxidation processes, degradation of phenols on the presence of SO2, and 
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condensation and polymerization reactions [108], among others, take place at this 
stage, contributing to modify the content of bioactive compounds.

In general, anthocyanin, resveratrol, and flavonol levels tend to diminish with 
aging process [1, 108, 109]. So that, more benefits to health are attributed to young 
red wines. Regarding the resveratrol, hydrolysis of the glycosidic form and cis/trans 
isomerization take place [108], affecting its availability and activity.

At the same time, the content of pyranoanthocyanins increases through 
anthocyanin condensation with other molecules [101, 102]. Besides, the antho-
cyanic polymerization or anthocyanin-tannin condensation can be potentially 
increased.

Likewise, it can augment the content of monomeric flavanols from the hydroly-
sis of oligomeric and polymeric forms [1]. In fact, monomeric tannins possess high 
antioxidant capacity to act against free radicals and chelate metals [4, 5, 8], inhibit 
oxidative stress in cardiac hypertrophy cases, and inhibit cardiomyocyte apoptosis 
[110] as well as provide antimicrobial activity against oral pathogens [58].

3.4.2 Aging on lees (AOL)

In the last years, this aging technique has gained relevance in the production 
of red wine [109]. It consists of the release of polysaccharides from cell walls 
of selected yeasts lees toward the wine during its stay in barrel [111]. These 
released polysaccharides can enhance, among other attributes, the protection 
of phenolic compounds against oxidation, due to the lees that have higher 
oxygen affinity [112].

Nonetheless, it has been noted that anthocyanin contents can be reduced during 
AOL [111], especially within the first months of aging. This is a consequence of the 
adsorbent capacity of lees, particularly, cinnamic anthocyanins [109]. Although 
the loss of anthocyanins can be reduced with lees of species like S’codes ludwigii or 
S. pombe [111].

4. Additional considerations and future perspectives

The protective effect ascribed to bioactive compounds from wine is not only 
related to only one compound but also to a combined effect of several of these 
compounds and to their interactions with other compounds present in food. Also, 
the moderate ingestion of wine is certainly an important factor.

Most studies have been conducted at preclinical levels (in vitro and in vivo), 
aiming to elucidate the action mechanisms. Nonetheless, issues, including the 
absorption and bioconversion, the number of compounds and their subsequent 
metabolites in blood circulation, their accumulation and distribution on tissues, 
the chemical shapes capable of acting on specific receptors in the human organism, 
and so forth, are still not fully understood.

Despite the existing evidence, there is no consensus regarding its acceptance as 
an alternative, which aids in the prevention of diseases. Hence, more studies at the 
clinical level, considering a larger number of volunteers of different ethnicities, life-
styles, and health conditions, are certainly required, with the special consideration 
that these bioactive compounds cannot be used to replace the medicaments, since 
they do not possess curative properties, rather they are components of a healthy diet 
that can help to prevent diseases.

Within the potential strategies, some viticulture practices might contribute to 
improve the synthesis of bioactive compounds during the vine cultivation. Later 
into the winery, a proper extraction from the grapes, as well as procedures to 
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minimize the loss of such compounds during the fermentation and aging stages, can 
improve the bioactive profile of produced wines.

Another important issue is the presence of products such as alcohol-free wines in 
the markets, which have also shown effectiveness due to the high content of bioac-
tive compounds but with the advantage of avoiding the problems associated with 
excessive ethanol ingestion.

4.1 Emerging technologies

These kinds of technologies have demonstrated their efficacy to improve the 
extraction of bioactive compounds in pre-fermentation stages although, until now, 
some disadvantages have been reported during their application. For instance, the 
HHP, PL, and e-beam irradiation can diminish the content of anthocyanins like 
cyanidin in treated grapes [78, 81, 82].

In addition, the high extraction of vitisin derivatives at 70°C by using of HHP, as 
previously reported by Corrales et al. [80], converts the temperature into a critical 
parameter that limits its applicability in the winery. This fact indicates the need for 
more studies to optimize the extraction process.

Likewise, during PL applications [81], it is important to ensure a uniform 
exposition of the berry surface. The authors suggest the use of roller conveyor belts 
to change the position of the irradiated berry in order to improve the extraction.

Finally, the scaling of these technologies at the industrial level is still a pending 
issue since most studies have been carried out in small volumes and in static systems 
at laboratory level. In order to implement such technologies in wineries, more stud-
ies concerning large volumes and continuous flow systems, like the one performed 
by González-Arenzana et al. [113] with PEF, are needed.

4.2 Pyranoanthocyanins and their effects on health

It has been observed that the antioxidant potential of wine may decrease in aged 
wines as a result of the reduction of anthocyanins, resveratrol, and flavonols and 
the simultaneous synthesis of condensation products.

In general, the vitisins have shown lower potential to neutralize free radicals like 
O2

− with respect to their anthocyanin precursors [7], while the pyruvic adduct of 
the delphinidin has shown greater ability to neutralize OH− and O2

− when com-
pared with other pyranoanthocyanins.

The pyranoanthocyanin synthesis by incorporation of pyruvic acid in positions 
4 and 5 of A-ring in the structure of the anthocyanin precursor can decrease the 
potential to suppress free radicals, which might be related to the loss of -OH from 
carbon 5, that together with -OH from carbon 7, favors the antioxidant activity 
of anthocyanins [114]. These condensations can be achieved at the fermentation 
level, although these mostly happen during the aging of wine. Thus, in accordance 
with the traditional winemaking process, these would be necessary as a strategy to 
provide physicochemical and microbiological stability to the wine.

As in anthocyanin precursor state, pyranoanthocyanins have shown antioxidant 
and anti-inflammatory activities. For example, against pro-oxidant (H2O2) and 
pro-inflammatory (TNF-α) molecules, in addition to neutralizing the secretion of 
interleukin 8 (IL-8) in cell cultivation of adenocarcinoma from the human colon 
[17]. Vitisin A has been shown a protective effect against the secretion of monocyte 
chemoattractant protein-1 (MCP-1) induced by TNF-α factor in human endothelial 
cell cultures [115], in addition to show great stability in simulated (in vitro) gastro-
intestinal conditions [116], indicating its potential availability and effectiveness in 
in vivo conditions and at clinical level.
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5. Conclusions

There is vast evidence regarding the health benefits of wine, especially red wine, 
that results from higher contents of bioactive compounds, which aid in the prevention 
of diseases and provide good health benefits when consumed in moderation. Studies 
carried out at the pre-clinical and clinical stages have been reviewed, mostly at the pre-
clinical level. Therefore, the gathered studies contribute to the better understanding of 
the action mechanisms by which the bioactive compounds may act in the human organ-
ism (clinical level) taking advantage of the antioxidant, anti-inflammatory, antitumor, 
antithrombotic, and antimicrobial activity, among others, to prevent several diseases.

According to the reviewed literature, studies addressing specific procedures to 
improve the bioactive profile of wine are still scarce. Hence, we described potential 
technological strategies that may contribute to the increase in, or at least maintenance 
of, the levels of different bioactive compounds present in wine during the winemaking 
process. Starting from the production at the vineyard, cultivation strategies can be 
applied in order to stimulate the greater synthesis of certain compounds. Once into 
the winery, the pre-fermentative treatments can increase the extraction of bioactive 
compounds by treating the grapes with HHP, PEF, LP, US, e-beam irradiation, and 
ozonization. At the fermentative level, yeasts with low adsorption and/or consumption 
of bioactive compounds, low anthocyanin-β-glucosidase activity, and high production 
of pyranoanthocyanins and/or precursor molecules of these, among other strategies, 
can be utilized. Although, in most cases, the content of bioactive compounds can 
decrease during the aging period, novel strategies like AOL can help to maintain the 
levels of these compounds in wines. Also, recurrent chemical processes during aging, 
despite modifying the structures of the grape compounds, have the advantage of 
allowing the synthesis of pyranoanthocyanins, polymerization of anthocyanins and 
flavanols, and anthocyanin-tannin condensations, among others, while maintain-
ing the bioactive profile of the wine to a certain degree. All the above are potential 
strategies to be considered as technological alternatives that are applicable during the 
winemaking process, which enhance the content of bioactive compounds in the wine, 
therefore transferring their benefits to the health of the consumer.
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