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Chapter

Surfactant Mixtures: Performances 
vs. Aggregation States
Camillo La Mesa and Gianfranco Risuleo

Abstract

The focus of this chapter is on bio-intended procedures based on mixing surfac-
tants with polymers and biopolymers, or surfactants among them (provided they 
are oppositely charged). In the first case, polymer-surfactant and protein-surfac-
tant systems are dealt with. Both are characterized by the splitting of the solution 
phase into, at least, three regions having peculiar properties. At first, surfactant 
nucleation onto polymers takes place; this implies large modifications in proper-
ties with respect to the starting materials. The formation of gels is possible in some 
instances. As to mixtures of oppositely charged surfactants, it is indicated how they 
form cat-anionic vesicles if mixed in nonstoichiometric amounts. Vesicle sizes are 
modulated by the charge ratio. These systems are excellent vectors for biomedical 
purposes.

Keywords: ionic surfactant mixtures, size and shape, surface charge density of 
micelles and vesicles, polymer-surfactant systems, protein-surfactant systems

1. Introduction

The certified history of surfactants and detergents goes back to the 
Mesopotamian and Egyptian ages. In the Roman period, authors contemporary 
of Julius Caesar described the procedures in use from Gauls and Belges to produce 
soaps from the alkaline hydrolysis of beef fat [1]. They were horribly shocked for 
the excessive use of soaps that Gauls consumed in hair cleaning. Such procedures 
are still in use in the preparation of niche products as Marseille soap. In much more 
recent times, new procedures largely improved the preparation of surface-active 
products, synthetizing alkyl sulfates. These studies date back to the 1930s of the 
last century [2]. Later on, nonionic surfactants of the alkyl-polyoxyethylene fam-
ily, as Triton TX-100, or zwitterionic ones were worked out and synthetized [3]. 
This induced chemists to prepare new classes of solid or liquid formulations, with 
better performances in terms of surface activity and solvent capacity. These efforts 
allowed preparing chemicals capable to operate in all working conditions, irrespec-
tive of pH, the presence of calcium, and ionic strength of the dispersant [4–6].

Nowadays, focus is on surfactant mixtures, improving the intrinsic quality of 
formulations and allowing applications to much more cases than those originally 
intended for. Applications of surfactant-based systems are much more versatile 
with respect to canonical laundry and personal body care formulations that were 
exploited until now. Current research lines focus on unexpected fields, as applica-
tions in biomedicine and in the feminine personal hygiene formulations. We do not 
consider, in this review, the adjuvant action played by cosurfactants, as long-chain 
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alkanols, glycerol, sterols, perfumes, softeners, bleaching adjuvants, and so forth. 
We mainly focus on the addition of species increasing the surface activity and sol-
vency of existing surface-active/cleaning formulations and in applications thereof. 
In particular, the synergistic properties that are observed in surfactant mixtures [7, 8]  
are discussed.

Cases of interest span from mixtures of ionic species of the same charge, to 
ionic/nonionic ones, and to mixtures of species having oppositely charged polar 
head groups. Relevant are also the cases where polymers, enzymes, and proteins 
are added. We discuss separately all the above fields taking into account the reasons 
underlying such research lines. In turn, focus is on the following aspects:

i. addition of polymers/biopolymers, referred to as PSSs [9]; and

ii. use of mixtures made of oppositely charged surfactants, defined as Cat-An 
systems [10].

The above items are more strictly interconnected than one could think at a first 
glance. In both the organizing role played, surfactants are crucial both on small or 
medium size scale (for polymer/surfactant systems) and on a much larger size scale, 
in case of surfactant mixtures. Both classes of formulations are biomimetic, and 
the efficiency is related to biopolymer modifications induced by surfactants and to 
surfactant-driven vesicle formation, respectively.

As a starting point, we report the essential details on the physical meaning of 
surface activity and solvent capacity; both requisites are necessary to understand 
biomimicry, surfactancy, and detergency on solid grounds. For more details, the 
interested reader is referred to pivotal books and reviews that have dealt with that 
field [11–14]. In many aspects, we follow the “main street” that is suggested in a 
seminal book, which allowed scientists to unify in a whole field the formation of 
both micelles, vesicles, and biological membranes [15].

2. Solvent capacity and surface activity

The term surface active, or surfactant, refers to substances capable to lower 
significantly and permanently the surface tension of water, i.e., to decrease the 
work required increasing the surface area of a liquid. In terms of the classical Gibbs 
surface adsorption equation valid for aqueous binary mixtures, we define as surface 
active all species fulfilling the equation [16]:

  d𝜎 = −  G  2   dRTdln  a  2    (1)

where σ is the surface tension and a2 is the solute activity. G2, the surface excess 
concentration, indicates as to whether the surface tension will decrease, or increase, 
upon addition of a given solute. G2 is defined with respect to the concentration of 
the given chemical in the bulk and depends on its modulus. That is the rationale 
underlying the meaning of the term “surface active.” When dσ = 0, there is no more 
room for adsorption, and the surface is saturated. In addition, if dlna2 is zero, the 
solute activity is constant and a new phase is being formed. This is the basis for the 
so-called phase separation approach to micelle formation [17], discussed later on.

The solvent capacity arises from a more subtle behavior and is univocally 
related to micelles onset. The organization of surfactant molecules arises from 
the “schizophrenia” that such molecules suffer from. They associate in micellar 
entities whose interior, mostly composed of alkyl groups, is capable to dissolve 
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nonpolar (i.e., hydrophobic) molecules. The polar groups facing outward the 
bulk guarantee thermodynamic stability to the aggregates so formed. In words, 
the solubilizing capacity toward oils and fats starts to occur only when micelles 
do form. For this reason, micelles are swelling units which grow in size upon 
addition of fats and oils.

From a thermodynamic viewpoint, micelle formation is mainly entropy-
driven. This is a rather counterintuitive behavior, if we consider that several 
molecules associate in a given entity. The reason underlying the entropy-based 
statement is that water molecules hydrophobically interacting with alkyl chains 
are released during micelle formation [15]. This substantially increases the 
number of degrees of freedom for H2O and those of the chains, as well. It is also 
worth noticing that an increase in temperature increases the number of rotational 
degrees of freedom of geometrically constrained surfactant alkyl chains, which 
are free to move into micelles. This is the main reason why micelle interior is 
assumed to be in a “liquid-like” form.

To unify the above features, that is, surface activity and solvent capacity, in 
a whole definition, we assume that the point at which surface activity ends and 
micelles begin to form is a “pseudo” phase separation threshold, indicated as critical 
micellar concentration or cmc [18, 19]. The definition “critical” indicates the steep 
discontinuity in many thermodynamic quantities (molar volumes, dilution enthal-
pies, activity coefficients, and so forth) observed in close proximity of the cmc.

For a given class of surfactants, such as alkali metal alkylsulfates, alkyltrimeth-
ylammonium halides, polyoxyethylene glycol alkyl ethers, etc., the two features 
jointly depend on the length of alkyl chains. The longer the latter are, the lower 
is the cmc, the steeper is the decrease in surface tension, and the more efficient 
is solvent capacity. We do not enter in more details about micelle sizes, shape, 
and polydispersity and assume, in a first approximation, that such aggregates are 
spheroidal colloids. For these reasons, they scatter light, have much lower diffusion 
coefficients than molecules from which they are made of, and their solutions can 
be moderately or significantly viscous. At high concentrations, they form ordered 
phases known as lyotropic liquid crystals [20, 21]. More aspects, such as the role of 
salts and cosolvents in micelle formation, shall be introduced when the need of “ad 
hoc” information will be necessary.

3. Addition of polymers or biopolymers

Studies on additives as salts and cosolvents have been widely investigated in the 
past and will not be reported, unless this is strictly necessary. Conversely, studies on 
systems containing synthetic polymers or biopolymers are still a matter of debate 
and investigation and will be discussed in this section. The first efforts along this 
line go back to the 1950s and were essentially dealing with protein separation from 
biological membrane lipids. These efforts were led to convergence in a classical 
textbook of the early 1990s [22]. This induced many scientists to focus on new and, 
sometimes, controversial fields [23–25].

The underlying phenomenology can be understood by looking at Figure 1. In 
the plot the behavior of a ternary system containing water, surfactant, and polymer 
is reported. If the relative wt% of the latter substances is much lower than water, 
the ternary phase diagram can be simplified in a pseudo-binary one. As can be seen 
in Figure 1, a pseudo-phase behavior occurs in absence of polymer; the cmc is the 
point separating the micellar from the molecular regime. Added polymer induces 
the splitting of the solution phase into three regions. For finite amounts of polymer, 
the following areas are observed, from the left:
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i. a molecular solution region, I;

ii. a polymer-surfactant one, II; and

iii. a region where free micelles coexist with polymer-surfactant adducts, III.

To build up the phase map, surface tension values are measured for a number 
of polymer wt% (Figure 2). There splitting of surface tension values in three 
regimes is evident. Cac and cmc* are easily determined form these and other 
experiments, as well [22].

On thermodynamic grounds, the line separating region I from II indicates the 
points above which polymer/surfactant interactions start to occur; the line position 
depends on polymer content and nature. There is an ensemble of critical points, 
whose location in the phase map depends on the polymer amount. Once the process 
has occurred, the surfactants located on the polymer backbone act as nucleation 
sites for the binding of more surface-active species. Thus, entities similar to micelles 
(emi-micelles) aggregate thereon: a sort of “pearl necklace” is formed [26]. Thus, 
the polymer backbone is decorated by a series of small aggregates, whose number 
is dictated by its length; the interacting polymer sections, the so termed “polymer 

Figure 1. 
The surfactant behavior in presence of a nonionic polymer. The black line in the left bottom of the figure 
indicates the molecular solution region and the dotted one the micellar regime. The turquoise area indicates 
the molecular regime and is limited by the cac, above which the surfactant starts to interact with the polymer. 
The red area indicates the interaction regime; the yellow one, the saturation regime, occurs when the polymer is 
saturated. The line separating the red and yellow regions is indicated as cmc* line.
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binding sites”, are a few kdalton long. Surfactant nucleation thereon continues until 
all possible sites are saturated. In consequence of that, the polymer tends to assume 
a different conformation with respect to the native one, with subsequent changes in 
viscosity. This is the reason why polymer/surfactant systems act as “viscosity modu-
lators” [27, 28]. Another important consequence is the fact that they are “kinetic 
buffers” as to matter exchange with the bulk is concerned [29].

Ancillary effects are concomitant to the mentioned behavior. First, micelles of 
smaller size compared with free ones are formed; they behave as a whole kinetic 
entity with the polymer (i.e., the binding energy is significant). This is a feature 
similar to those occurring in biological systems, as in the binding of molecules to 
the protruding parts of a receptor. The line separating the two regions is defined 
as “critical aggregation concentration” or cac line. The nucleation of fat droplets 
on a cotton string is a pertinent example for the formation of polymer-surfactant 
adducts; their location thereon is energetically more favored than in free form. 
The cmc* one, conversely, is a polymer saturation threshold, above which there 
is no room for binding. As a consequence, free micelles do form and coexist with 
polymer-adsorbed ones. Technological applications find place in formulation. The 
viscoelastic properties that such systems exhibit are used in shampoos, eye-drop 
fluids, etc. [30, 31]. Viscoelasticity is simply detected by abruptly rotating the 
fluid-containing vials, with transient formation of ellipsoidal bubbles or, in a more 
quantitative way, by rheology [27, 28]. An alternative simple procedure requires 
pressing drops of these formulations between glass slides and looking by a polariz-
ing microscope, to detect the preferred orientation that polymer-surfactant adducts 
assume during the flow.

There is no significant difference when polyelectrolytes replace nonionic 
polymers. In cases like such, precipitation may also occur; cases are known [32], 
mostly as to biopolymers are concerned [33–36]. In mixtures containing proteins, 
precipitates or, eventually, two-phase regions are usually met. As a rule, these are 
centered around the charge neutralization line, where precipitates or gels may 
coexist (Figure 3). In such systems relevant are the modifications observed in 

Figure 2. 
Plot indicating how to get the cac, the first minimum, and the cmc*, at surface saturation, for a given amount of 
polymer vs. surfactant content. Black points refer to data in presence of polymer, the red ones to the surfactant alone.
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protein conformation. Changes in the relative amounts of alpha-helix, beta-sheet, 
and random coil conformations are concomitant to protein-surfactant interactions 
in a wide part of the interaction regime. Such changes are responsible for significant 
variations in protein activity and three-dimensional structure of the “adducts” 
that are formed. All these systems are characterized by a not univocally defined 
stoichiometry, and the definition of “adduct” is more correct with respect to that of 
“complex.” The rationale underlying that behavior finds origin in the fact that alkyl 
chains are essentially located in the protein hydrophobic tasks. Many possible loca-
tions are available in cases like such. The above statements are quite well acquainted 
from experiments on albumins and, more generally, on protein denaturation strate-
gies [37]. Thus, biopolymer/surfactant systems offer the opportunity to prepare 
proteins in pure form from extensive dialysis of the corresponding mixtures. For 
these reasons they find extensive use in biochemically intended procedures.

4. Mixtures made of oppositely charged surfactants

Pioneering studies in the field are due to Wennerstroem [38], who focused on 
the synthetic analogues of lipids and suggested that stoichiometric mixtures of 
oppositely charged surfactants could be good substitutes of lipids. The original 
hypothesis dealt with systems of 1–1 stoichiometry, in terms of charge. There, the 
electrostatic interactions between polar groups mimic charge separation among 
entities bound on a glycerol backbone, which is also joining two alkyl chains. The 
above systems are models of swelling, lamellar domains. The first experimental 
results were discouraging; in fact, these mixtures often show thermotropic rather 
than lyotropic behavior [39], due to the high “Krafft point” [40] of alkyl chains in 
such mixtures. Later work demonstrated that nonstoichiometric Cat-An mixtures 
were more promising. It was noticed there the presence of vesicular entities [41, 42]. 
Debates occurred on the stability of largely polydispersed in size vesicles. It is 
actually accepted that they are kinetically stable entities although thermodynamic 
stability is demonstrated in some cases [43, 44].

The phenomenology of such systems, defined by the acronym “cat-anionic,” is 
extremely appealing from a bio-intended viewpoint. In the phase diagram, in par-
ticular, the vesicular areas are located in proximity of micellar ones and are clearly 

Figure 3. 
Partial phase diagram for the system water-lysozyme-lithium perfluorononanoate (a stiff, fully fluorinated 
surfactant), at 25°C. The coexistence of a solution and precipitate occurs in the black area, whereas a pure gel, 
in dark gray, and one empty of particles, in light gray, are met. The charge neutralization limit is indicated as 
a blue line. This is the point at which all nominal charges on the protein, at the given pH, are fully neutralized. 
Partly redrawn from Ref. [26].
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distinguishable from them. The observation is in favor of a significant modification 
in the micellar structure induced by the second surfactant. Cat-anionic mixtures, 
hereafter termed Cat-An’s, are characterized by a bluish color and may turn to 
yellowish or opalescent appearance when vesicle sizes exceed some 100 nms. They 
are both positively and negatively charged. This fact gives the opportunity to use 
Cat-An vesicles as vehiculating/binding agents of DNA (for positively charged 
ones) and proteins. In the latter eventuality, both positively and negatively charged 
vesicles may be used, depending on the demand dictated by protein charge.

Debates questioned on the possible protein denaturation that could be induced by 
the surfactants present in Cat-An formulations, until it was realized that the surfactant 
in molecular form is solely responsible for protein denaturation [45]. The amount of 
such species is orders of magnitude lower than in solutions of the single surfactants.

The above behavior is supported by the following thermodynamic consid-
erations. The mutual interactions between polar head groups and alkyl chain 
packing play a key role in such systems. The observed behavior is different from 
that expected if ideality of mixing holds. In words, when fluid chains are presum-
ably miscible in all proportions, the effect of surface charges modulates the area 
on which alkyl chains insist and determines their optimal packing. This results in 
a strong nonideality of mixing. It is not surprising, therefore, that the cmc for an 
aggregate of given stoichiometry can be orders of magnitude lower than expected 
from primitive considerations. To quantify such effects, it was assumed the validity 
of regular solution theory, and it was imposed, accordingly, that “the free monomer 
has an activity coefficient of unity” [46]. This is an oversimplified viewpoint, since 
surfactant solutions are strongly nonideal even below the cmc. To proceed along, we 
assume that the concentration above which added surfactant preferentially enters 
into aggregates (disregarding their size and shape) is the saturation threshold for 
the molecular species. In this way, the difference in composition between molecular 
and micellar form is immaterial. In two-component surfactant mixtures, thus, the 
cmc of the mixed system is defined according to the relation [47].

    (1 /  cmc  mixt  )  =  [ ( X  2   /  𝛾  3    cmc  3  )  +  (1 −  X  2  )  /  𝛾  2    cmc  2  )  ]     (2)

where γ2 and γ3 are the activity coefficients of the surfactants, having cmc3 and 
cmc2 as the corresponding critical values. cmcmixt is the critical concentration of 
the mixed system. X’s are the mole fraction of the given surface-active species. In 
the limits dictated by the regular solution theory [48], the solute-solute interaction 
parameter, b, results to be [47].

  b = ∆  G  exc,mixt   [ (  X  2     
2  +   X  3     2 )  /  (  X  2     

2    X  3     2 ) ]   (3)

The underlying rationale is as follows. Micelles are in fluid state with freely 
moving polar head groups. They may change position, adsorb/desorb counterions, 
and so forth. The constraints acting on alkyl chains are such that polar head groups 
close each other attract/repel. In consequence of that, mixed systems show strong 
deviations from the ideal behavior. This tendency is quantified by the mentioned 
b parameter. The effect is substantial (Figure 4) and explains why the amount of 
both surfactants in molecular form is orders of magnitude lower than expected. 
In words, Cat-An’s are in equilibrium with their own counterions and with tiny 
amounts of free surfactants, as well. This is the basis for using cat-anionic vesicles as 
cargos for proteins and DNA [49–51].

Sizes of Cat-An vesicles strongly depend on the formulation stoichiometry. As 
mentioned above, 1–1 mixtures form indefinitely large smectic crystals; on both 
sides of this threshold, sizes depend regularly on composition and approach values 
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Figure 5. 
Vesicle size (in nm) for SDS-CTAB mixtures, at 25°C, vs. the nominal surface charge excess of the vesicular 
aggregate. The light blue area in the center of the figure refers to the precipitation regime.

Figure 4. 
Dependence of the cmc (in mol kg−1) on cetyltrimethylammonium bromide, CTAB, mole fraction for SDS-
CTAB mixtures, at 25°C. The red line is for visual purposes; the full on the top refers to ideal mixing and the 
vertical to the nonideality of mixing. The blue area indicates the precipitation regime.
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pertinent to the pure surfactant aggregates. In words, the excess surface charge 
determines vesicles sizes (Figure 5). It is worth to note that similar trends are also 
observed in mixtures of oppositely charged lipids [52]. The surface charge versatil-
ity is reminiscent of statements based on the relations between particles size and 
surface charge density. The higher the former, the lower the latter. This fact has 
important consequences on the links between (nominal) surface charge density and 
sizes. It is a sort of charge-based size tailoring and is quintessential in choosing the 
proper particles for transfection technologies. Another pertinent possibility along 
this line arises from thermal cycling procedures, which allow getting stable particles 
of proper size by raising the temperature above a certain value (which depends on 
the composition of the Cat-An mixture [53]. Thermally quenched vesicles obtained 
accordingly retain their size for indefinitely long times.

Sound procedures based on the combination of the above features allow getting 
vesicles of the desired size and surface charge density. This allows using them for DNA 
transfection technologies and protein immobilization onto vesicles [54]. An interest-
ing feature is that vesicles of a given composition are destroyed by adding amounts of 
surfactant required for the complete neutralization of the Cat-An mixture. In conse-
quence of that, the biopolymer which is eventually bound onto vesicles is released in its 
pristine form [55]. This is a terrific possibility for bio-intended technologies.

5. Conclusions

This contribution focuses on the possibilities offered by surfactants and their 
mixtures in selected bio-intended applications. The mentioned systems are niche 
fields, but are becoming of relevant impact in a lot of practical purposes. Think, for 
instance, that applications in shampoos and similar products almost always include 
silk proteins as adjuvants of hair state and health. Transfection, conversely, is quite 
appealing for biochemistry and molecular biology applications. In many aspects, 
thus, both fields of research are on the same line as those originally intended in 
the pre-Christian age. It is as if we were moving back to the roots of surfactancy. 
Luckily, we have much more knowledge in the field, and this allows us to exploit 
applications on more conscious grounds.
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