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Chapter

Classitying the Existing
Continuum Theories of
Ideal-Surface Adhesion

Belov Petr Anatolyevich, Lurie Sergey Albertovich
and Golovina Natalya Yakovlevna

Abstract

The chapter classifies the existing continuum theories of ideal-surface adhesion
within the gradient theory of adhesion. Ideal surface herein means a defect-free
surface, the deformed state of which is entirely defined by the displacement vector
and its first (distortion) derivatives as well as its second (curvature) derivatives.
Ideal surfaces have such kinematic variables as noncombined deformations and
rotations. The classification is based on a formal quadratic form of potential surface
energy, which comprises contracting the first-rank tensors (adhesive-force theory),
second-rank tensors (adhesive-stress theory), and third-rank tensors (theory of
adhesive couple stresses). To interpret the physical sense of the summands in the
quadratic form of the potential-energy surface density, this research uses a rather
common method of dividing the elastic solid into an internal solid plus a surface
layer (adhesive, contact, boundary, or inter-phase layer). The formal structure
of the adhesion-energy surface density is compared to the structure of the
thickness-averaged potential energy of a selected 3D layer. The chapter establishes
the most general structure of adhesive-moduli tensors for the surfaces of classical
elastic solids. The adhesive modules specific to the surfaces of a solid in gradient
elasticity theories are identified.

Keywords: continuum adhesion theories, adhesive moduli, adhesive interaction,
scale effects, nonclassical physical parameters

1. Introduction

Recent investigations of adhesive properties of surfaces and interfaces in
deformable solids, in the mechanics of heterogeneous structures, and in the
mechanics of composites are developed in various publications and analyzed in
detail [1-10]. The first adhesion continuum theories were developed in the
framework of the classical theory of elasticity [1, 2, 11-14].

The theory of Gurtin-Murdoch [11], which has become classical, was called as
the theory of elasticity of surfaces. A generalization of this theory is proposed in

the paper [15].
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The adhesion theories listed above determined the adhesion properties of ideal
(defect-free) surfaces. Further generalization of the theory of adhesion on the
surface of defective media is given in [16-20].

Belov and Lurie [19, 20] formulated a model in which the adhesive properties
were attributed to the newly formed surface connected with a field of defects. A
variational model that takes into account the adhesive interactions of perfect (not
damaged) surfaces, surfaces damaged by defects, and their interaction was
presented. The surface of the defective medium can be represented as a perfect
surface and a defective surface. Each of them has its own adhesive properties, as
well as the properties of interaction with each other.

Adhesive interactions between the inclusion and the matrix in fine composites
[18] are of great interest, as they directly affect not only the stiffness, but also the
strength properties of composites.

So, as the adhesive properties of the surface are determined not only by the
tangential derivatives of the displacements but also the normal derivatives, the
boundary value problems for a classical body can be redefined due to the
presence of adhesive interactions proportional to the normal derivatives of the
displacements. On the other hand, in gradient theories, in nonclassical boundary
conditions, the inclusion of adhesive interactions gives new effects. In other
words, the surface of the body consists of the surface of a classical body and the
surface of a “gradient” body. They have different adhesion properties and can
even interact with each other as well as a defect-free (ideal) surface and a surface
damaged by defects.

Similarly, to the gradient theories of elasticity, which contain the quadratic
form of the second derivatives of displacements in potential energy, there are
adhesion theories that also take into account the quadratic form of the second
derivatives of displacements in the potential adhesion energy. A gradient theory of
second order, which can be considered as a generalization of the theory of
Steigmann and Ogden [1, 2], is described in Belov and Lurie [20].

The purpose of this chapter is the sequential analysis of variational formulations
of the theories of adhesive interactions and the classification of adhesion models
by the degree of accuracy of accounted scale effects. Classification of theories of
adhesion and gradient theories of elasticity in terms accounting for scale effects
was proposed in the work [21].

We have the following statement regarding the general structure of the adhesion
elastic moduli for the classical linearly elastic body [15, 17, 18].

In line with this, the Lagrangian L of the model is written as:

L=A— [JUydV — ffUrdF (1)

Here, A =[] Pqu,-dV + #Pf u;dF is the work of the volumetric forces PZV and

surface forces P/ during the displacements u;; Uy is the potential-energy density;
and Uy is the potential-energy surface density.

The difference between the potential surface energies of two solids in contact
in each contact spot is what determines their adhesive interaction. This is
why adhesion theories can be classified on the basis of the potential-energy surface
density inherent in an isolated solid.

A general expression for the potential-energy surface density Ur for an ideal
surface is written as:

2UF = Ajuitt + Ajjmnthi, jhm, n + AijemniWi, jelhm, nl + - (2)

where u;, u; j, and u; j, are the displacement vector, its first derivatives, and
second derivatives, respectively; Ajj, Ajjmn, Ajjimni are tensors of the rank-specific
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adhesive moduli, which are transversely isotropic to the unit normal vector to the
surface 7;. According to Green’s formulas, each summand in (2) corresponds to a
specific set of adhesive-force factors: adhesive forces a;, adhesive stresses a;;, or
adhesive couple stresses A, etc.

oUr
oUr
T oui; Ajjmntm, n (3)
oUFr
aijk = @ = Aijkmnlum, nl

Accordingly, adhesive-moduli tensors are structured as follows [20]:

A,‘j = AnNin; -+ 61551-7 (4)

i “mn imjn in~jm (5)
Ny (nmjé;‘;n + nmnn@;‘ > + & n,nm(‘)‘]j; + BF St + AF NN Ty,

At = A1(85 855,871+ 63,51 81 + 67 65,87+ 67,55 53
+ 05 0410mn + 0 imOn1 + 610005, + Gin g O + 0,65 O,
+ 81010 + 63305 Oy + +6i1 OO + 6in G4 S + 03,0y O
n 5;;15;].5,;‘,) A, (n,'nmé,;é;l 178, 5+ ninm(s;}a,:,)
+ As (ninjﬁ,;km&;, - M1} 85, + MB35y + Mo 5

+ nin;6y;6,,, + Ny, 5; ) + Ay <n,-nn5,:m5j’; + N1 6; O,

- iG55 + it 5 + nmn]-cs,;‘,a;,.)

+ As (njnnéi};é;l + nin,d; 6,;,[) + Aenin,d,,,0, + Azopninn,n, (6)

Here, #; is the unit normal vector to the surface and 61-;‘ = (5; — n,'nj) is the

planar Kronecker tensor (6; nj =6;n; =0,6;6; = 2),

2. Theory of adhesion with adhesive forces

The first summand in Eq. (2) identifies the contribution made by the “spring”
adhesion model [22]. The model derives its name from the specific nature of the
corresponding adhesive forces ;. In the spring theory of adhesion, adhesive forces
are proportional to displacement, which enables comparing them to the response of
the Winkler foundations from the classical theory of elasticity. In the spring model,
provided that the surface properties are isotropic, there are two adhesive parame-
ters per (4): the stiffness of the normal spring a,, and that of the tangential spring a,.

There is an approach based on comparing the adhesive properties to the proper-
ties of a fictitious finite-thickness surface layer; this approach can be reduced to the
spring theory. The algorithm of reducing a 3D surface layer to a spring model
consists in finding its thickness such that the deformations in the real contact
surface and in the surface layer are equivalent [23]. The disadvantage here is that

3
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the algorithm cannot explain the adhesive properties of 2D structures such as
graphene or single-wall nanotubes, since such structures feature no thickness and
therefore no surface layer.

The algorithm can be demonstrated by a simple example. Let an elastic solid be
presented as an internal solid plus a surface layer, or Skin, the thickness 2 whereof is
so small compared to the total size of the solid that the deformed state of this layer
can be deemed homogeneous. Then, the distribution of displacements in this layer
can be deemed linear across its thickness, which is equivalent to Timoshenko’s

kinematic hypotheses [24]:
( U=1uyg+u 2L 1
= ug 1775

v:vo+01<2—%) @)

n z 1
w=w wil——=
\ 0 T

Note that w; = w(h) — w(0) is the relative normal displacement of the
corresponding points on the opposite sides of the “surface” layer; uq = u(h) — u(0)
and v; = v(h) — v(0) are the projections of the tangential relative displacements;
and \/uqu1 + v10; is the magnitude of tangential relative displacements. The

classical-medium Lagrangian expression can be rewritten to obtain the following
equalities:

L=A—[JUydV=A— [ UvdV— [[] UydV =

V —Skin Skin
h
=A— fff Uvdv—#- /Uvdz dF = (8)
V —Skin 0
—A— [ UydV — fUdF
V —Skin

For a classical elastic solid, the volumetric portion of the “surface-layer” poten-
tial energy is written as:

h
1
/ Uvdsz = 5 {2u(uo,xtto,x +voy00,y)h + (1,101, + 01,5019 )h/12]
0

+ /1|:(u0,x + UO,y)zh + (1,x +v1,y)2h/12] —|—,u[(u0,y + vo,x)zh

+(u1,y + vl,x)zh/lz} + 1 [ (wo, xwo,x + wo,ywo,y )k

+ (w1, xw1,x + w1,yw1,y )1 /12] 4+ 2u(wo, <11 + wo,y01)
+2&(u0,x + Uo’y)wl + ,u(ulul + 1)11)1)/h + (2/1 + i)wlwl/h} 9)

The “adhesive properties” of this layer depend on many factors, including the
relative displacement of corresponding points on its fronts. Note that the sum-

mands in the first four lines of the expression (9) are proportional to 4'", the
summands in the fifth line are proportional to 1%, while the summands in the last

line are proportional to 4~ '. Provided a sufficiently thin layer, these summands
must make the greatest contribution to the potential-energy expression as long as all
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the layer deformations belong to the same order. These components are the energy
of springs resisting the relative normal and tangential displacement of the layer
front points; they determine the spring stiffness:

an = (2u+21)/h (10)
as = u/h (11)

The stiffness values are found via Young’s modulus, the surface-layer shear, and
the unknown thickness /.

Equations (10) and (11) indicate that in order for the spring stiffness values to
be independent, it is necessary to abandon the condition that the “surface layer”
modules must be the same as the modules inside a solid. Indeed, excluding the
“surface-layer” thickness from (10), (11) means that the springs are proportional
stiffness-wise:

as = anpp/(2u + 1) (12)

this contradicts the initial assumption that the adhesive properties of an isolated-
solid surface (1) do not depend on the internal mechanical properties of the same
solid; it also contradicts the empirical data, according to which one and the same
solid may have different adhesive properties depending on what chemical or phys-
icochemical method was used to activate its surface [25].

Thus, expression (1) is entively different from the adhesive surface layer model (8),
(9) even in the context of the simplest spring model. Potential adhesion energy in (1)
will have the following structure for the spring theory of adhesion:

2UF = Aiju,'uj (13)
while the tensor of second-rank adhesive moduli Aj; is structured as:

A,‘j = aAnNin; + a0 (14)

*
ij

3. Adhesion theories with adhesive stresses

As is outlined above, expressions (8) and (9) are not directly applicable to the
potential energy of adhesion; they only enable structuring the potential energy of
adhesion in (2) and finding some physical analogies and interpretations. In partic-
ular, the first summand in (2) can be interpreted as the potential energy of springs
and the stiffness whereof has the same physical dimensionality [Pa/m] as shown in
the ratios (10) and (11). In doing so, it is stated that the surface-layer deformations
belong to the same order. Let us now assume the opposite. Assume that the traverse
deformations are negligible compared to longitudinal deformations. Then the sum-
mands of the last and last-but-one lines in the expression (9) can be ignored. Let us
study such expression (9) for the potential “surface-layer” energy further to find
analogy to the second summand in (2).

4. Gurtin-Murdoch theory (surface elasticity theory)

The first, the third, the fifth, the tent, and the twelfth summands in (9) deter-
mine the potential tension-compression and shear energy in their corresponding
planes of the surface layer [11]. If Timoshenko’s static hypothesis (the
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noncompressibility hypothesis) is introduced to the kinematic hypotheses (7), then
the kinematic variable w; can be expressed in terms of the changing area

(uo,x + vo, y); then, the summands above are reduced to being written in terms of
the potential energy of the layer during tension or compression (Line 1) or in the
case of shear (Line 2):

h
1 (u+4) 2l
/UVdZ'MG = ih {4,Ll (2” +/1> Uo, x%0, x +2m

0
(n+2) 2
u+2) o o TH (10, +v0.1)

uO,va,y

+ 4u

Accordingly, the potential adhesion energy in (1) will have the following struc-
ture for the Gurtin-Murdoch theory of adhesion [12]:

2IJF — Aijmnui,jum,n (15)

while the tensor of fourth-rank adhesive moduli A, is structured as:

A = 27657 85+ 1 (87,87, + 536, (16)
This interprets the first to modules of the fourth-rank tensor in (5). Apparently,

the adhesive moduli A" and y are adhesive analogs to the Lame coefficients for

the planar stress-state problem in the classical theory of elasticity. What must not

be forgotten is that adhesive moduli have a different dimensionality: [Pa/m] rather
than [Pa].

5. Belov-Lurie theory (theory of ideal adhesion)

The Belov-Lurie theory of ideal adhesion [15] can be formulated by adding a
summand similar to the seventh summand ph (wo, xwo,x + wo,ywo,y) in (9) to the
summands that define the Gurtin-Murdoch theory in (2). The potential energy of
adhesion per (1) is structured as follows for this adhesion theory:

2Ur = Aijmnui,jum,n (17)

while the tensor of fourth-rank adhesive moduli Ajj,, is structured as:

A = 218557, + 4 (85,37, + 3,85, ) + S ninn; (18)

ij “mn im~jn in"jm n

Paper [15] shows that the adhesive modulus " is the Laplace capillary pressure
constant if the expressions (17) and (18) apply to liquids. This modulus is critical for
the adhesive properties of surfaces in solids, as it takes into account the adhesion
effects of the same order as in the Gurtin-Murdoch theory. The latter is incomplete
in this respect. Paper [26] compares the Gurtin-Murdoch theory against the Belov-
Lurie theory in terms of modeling the adhesive interactions between the edges of
cracks that differ in mode. It shows that the statements of boundary problems for
mode II and mode III cracks will coincide for both theories. However, for mode I
cracks, the ideal-adhesion theory takes into account the adhesive properties of the
crack edges, while the classical statement or Gurtin-Murdoch statement does not.



Classifying the Existing Continuum Theovies of Ideal-Surface Adhesion
DOI: http://dx.doi.org/10.5772/intechopen.850 89

6. Theory of adhesion surfaces of classical media

It shows that the adhesive properties of surfaces of a solid are closely related to
the models of the solid itself. Indeed, if the internal properties of a solid are defined
by the classical theory of elasticity, i.e., Uy = Uy (u,-’ j) = Cijmnlhi, jm, n, then (1)
means that:

oL = 6A — ff/aijéui,]-dV — #(aiéu,- + a,-jéui,j + a,-]-kéui’]-k)dF =
—fff(a,“%—PV)éudV—l—ﬂ{{ — oinj — a

+ (“ij - “zj’k,qélékq)’p@:j} ou; — (llij - aijk,qé,jq)njéui}dF =0 (19)

For simplicity, consider an edge-less solid, i.e., a solid that has a smooth rather
than piecewise-smooth surface. Analysis of the variational Eq. (19) shows that the
boundary problem for the classical theory of elasticity is redefined, as a correctly
formulated system will have three boundary conditions in each nonsingular surface
point. At the same time, the variational Eq. (19) provides six boundary conditions in
each non-singular surface point. To remove this contradiction, it must be required
that the force factors always equal zero on the surface of classical elastic solids when
varying the &u;. This requirement is equivalent to the conditions of adhesion-
moduli tensors:

Ajjmnnj = aanmé* +ﬂFnl-5;m + BFé;nnn + Afnin,m, =0 (20)
Ajjemnin = A3 (ni8p5, 0, + 1,6, + 1856,
+A4 (M Sy + N3 8,) + M8y 85;) + As (12858, + 18] 5y,
+Aen, 6,60 + A70pnin,n, =0 (21)

Thus, the adhesion theories for the surfaces of classical elastic media are limited
by the following structure for the potential adhesion energy:

2UFr = Ajuitt + Ajjmnthi, jhm, n + Aijkmnii, jeUm, nlj (22)

In the context of (4) and (18), the tensors of adhesive moduli will have the
following structure that is maximally general for a surface that confines a classical
medium:

A,']' = AnNin; -+ aséi;’.‘ (23)
A = 2565 8+ 15 (85,83 + 53,85, ) + S mim, (24)

Ajmntt = A (@] SionOrs + OB 55 51 BBy + 8,507 5

+5 5]615* +5zk5 5 +5m15m jk +6m5km5 + 6*'51?5*
+5in5lk5j>:n + 5 5 5*1 + 511 5km5* + 6zm5k]5 + 5zm51] 5

+5lm5n]5kl> + Ay, (5@ 5+ 65 55+ 5*;5,;;) (25)

This seems to be the first time to state the above.
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7. Steigmann-Ogden theory (instantaneous adhesion theory)

Transforming the surface-layer potential energy expression (9) according to
Kirchhoff’s rather than Timoshenko’s hypotheses, the energy is written as the
potential plate-bending energy:

h
1
/ Uvdsz|s o = 3 {Dwo, xxwo, xx + 20Dwo, xxwo, y
0

+ Dwo, yywo, yy + 2(1 — v)Dwo, xyWo, xy } (26)

In this case, the summands in (27) have a structure that corresponds to the
particular case (26), where A; = 0. In this case, the potential adhesion energy
depends only on the second tangent derivatives of the surface deflections [22]. In
the general case, it must also depend on the second tangent derivatives of the
displacement projections tangential to the surface of a solid. Thus, the Steigmann-
Ogden theory [2] is a special case of the gradient adhesion theory [27], which is
defined by the structure of the sixth-rank adhesive-moduli tensor (6) for Toupin’s
gradient media, or by the tensor of moduli (26) for classical elastic solids.

8. Gradient-media surface adhesion theories

Let the internal properties of a solid be determined by Toupin’s gradient
theory, i.e.,

Uy = Uv (i, i k) = (Cijmnthi, jtim, n + Cijemmithi, jetbm, ni ) /2
Then (1) means that:

oL = 6A — fff(a,-jéu,;j + Gijk5ui)jk)dv — #(aiéui + ajiou;
+ aijkéui,jk)dF = fff(aij,j — Oijk, kj + PZV)&/tidV

+ #{ [Pf — Ojjnj + Oij, k1 + (Gﬁknk)’p@fj

", (ﬂli = <aij - azjk,q5]:q) p(S;j)}&,ti — [al'jknjnk
+ (@ — ag g%, )] &i,}dF ~0 (27)

As in the case of deriving the variational Eq. (19), for simplicity, consider
an edgeless solid, i.e., a solid that has a smooth rather than piecewise-smooth
surface. Analysis of the variational Eq. (28) shows that the boundary problem for
Toupin’s gradient theory is correct, as the formulated system will have six pairs of
alternative boundary conditions in each non-singular surface point. Note that
the requirements (20) that define the structure of adhesive tensors for classical-
solid surfaces also specify a group of adhesive moduli that only manifest on the
surfaces of Toupin’s solids. It can therefore be stated that the adhesive moduli
of, pf, BE, AT and As, Ay, As, A, A7 are specific only to the gradient theories of
elasticity as generalized by Toupin’s theory. This also seems to be the first time to
state the above.
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9. Graphene-type surface adhesion theories

Consider the ratio (1) in its extreme case, in which the volumetric portion of the
potential energy of the solid is negligible compared to the surface energy:

L=A— fUgdF (28)

The potential-energy surface density structure is the same as in (2). Note that
the normal derivative to the surface is not defined for kinematic variables in 2D
structures. This is why the structure (29) can be the most general structure for the
adhesive-moduli tensors [30].

Paper [28] considers the properties of graphene-like structures without the
“spring” portion of potential energy. It has been found that graphene features the
bending properties of Timoshenko’s plates, while its cylindrical stiffness is deter-
mined by the adhesive modulus A, whereas the shear stiffness is determined by the
adhesion modulus &°. Therefore, the mechanical tension-compression and planar
shear properties are determined by the remaining moduli A7, yf and A;.

Paper [29-31] considers the properties of single-walled nanotubes (SWNT), the
potential energy of which is written specifically as (2).

2(JF - Aijmnui,jum,n + Aijkmnlui,jkum, nl

The resultant finding is that the mechanical properties of single-walled
nanotubes are determined by a nonclassical modification of the cylindrical-shell
theory equations.

10. Conclusion

This chapter presents an attempt to classify the existing continuum theories
of ideal-surface adhesion within the gradient theory of adhesion [20, 28, 31].
The classification is based on a formal quadratic form of potential surface
energy (2), which comprises contracting the first-rank tensors (adhesive-force
theory), second-rank tensors (adhesive-stress theory), and third-rank tensors (the-
ory of adhesive couple stresses). To interpret the physical sense of the summands in
the quadratic form of the potential-energy surface density, this research uses a
rather common method of dividing the elastic solid into an internal solid plus a
surface layer (6) (adhesive, contact, boundary, or inter-phase layer). The formal
structure of the adhesion-energy surface density (2) is compared to the structure
of the potential energy averaged over the thickness of the selected subsurface 3D
layer (7). There has been found the most general structure of adhesive-moduli
tensors for the surfaces of classical elastic solids (20). The chapter identifies
the adhesive moduli specific to the surfaces of solids in gradient theories of
elasticity (18).
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