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Chapter

Analysing Non-Linear Flutter
Vibrations Using System Dynamic
Approach

Cosmas Pandit Pagwiwoko and Louis Jezequel

Abstract

The objective of this work is to investigate the dynamic behaviour of aero-elastic
vibrations in the presence of non-linear stiffness such as free-play mechanism,
softening or hardening stiffness. A closed loop dynamic system is proposed to
represent the phenomenon of flow-structure interaction. In this approach a transfer
function for generating the aerodynamic forces based on the structural response is
constructed in the feedback loop of the dynamic system with the aid of Padé
rational function. The effects of the non-linear factors therefore can be included
conveniently in time domain simulation and the stability of limit cycle oscillations
(LCO) can be analysed accurately.

Keywords: LCO, non-linear structures, flow structure interactions, aero-elasticity,
self-excited vibration, binary classical flutter

1. Introduction

Aero-elasticity is a multi-physics discipline that involves the loads of aerody-
namics, elastic and inertial generated by the motion of structure. One of the most
important phenomena in this field is flutter regarding to its harmful effect to the
structure. This flow-induced vibration under certain conditions can be self-excited
and divergently unstable. In aerospace industry the boundary of flutter instability is
usually determined by V-g method, a computational technique in frequency
domain based on the balance of energy of the oscillating wing and the flow by
maintaining a harmonic function of the aero-elastic response. In this method
explained remarkably by Stanciu et al. [1], the critical velocity of the flow is deter-
mined by solving the complex eigen value problem of the aero-elastic system.
Although the method can give accurate results it is only effective for linear cases.
However in real aircraft there are non-linear factors of structure such as free-play,
hysteretic and large deformation that need to be taken into account. Trickey et al.
[2] observed that certain cases in regards to excessive LCO found in some Boeing
and Airbus aircrafts and stated that the characterization and explanation of this
non-linear vibration were important for fatigue and maintenance issues. In their
research, the methods of non-linear dynamics were developed for these purposes
and they proposed a novel system-identification technique to generate an approxi-
mation of LCO to be used for online monitoring of dynamic behaviour close to
bifurcation condition [8].

1 IntechOpen



Noise and Vibration Control - From Theory to Practice

Pereira et al. [3] showed an example of LCO due to the existence of hardening
nonlinearity of wing stiffness in pitching of F-16 aircraft that caused persistent
aero-elastic problems. Therefore the knowledge and comprehension of non-linear
aero-elasticity are of increasing importance in aircraft design. In their work an
investigation on the combined influence of hardening and free-play nonlinearities
on the bifurcation response was carried out.

A document regarding the missing of MH370 Boeing 777 is also concerned about
the phenomena of aero-elasticity. The failure analysis of the right-side flaperon that
was found in French territory’s Reunion Island [4] on 2015, reported that flutter
(LCO) caused to repetitive loading which in turn imparted stress fatigue in the
primary aluminum alloy attachment components.

This work has an intention to simulate numerically the interaction of flow-
structure as a dynamic system by arranging the structure part as a principle plant
and the aerodynamic part as a feedback loop subsystem. The analysis of structural
response in time domain enables to insert the nonlinearities conveniently. The part
of structures is reconstructed in a form of block-diagram representing a dynamic
system where the inertial loads are expressed explicitly as a result of the elastic loads
and frictions generated in the progressing structure response due to external aero-
dynamic excitations, while the part of aerodynamics is arranged as a feedback-loop
transfer function activated by the structural response. For this purpose, the
unsteady aerodynamic forces calculated by using singularity method in frequency
domain have to be converted to Laplace variable s by using Padé’s approximation
rational function. Botez et al. [5] in conducting flutter analysis of CL-604 Bombar-
dier, used a least-squares technique utilizing certain number of lagging-terms, and
the approximation showed the best aerodynamic forces conversion from frequency
into Laplace domain in terms of execution time and precision.

In analysing LCO on mechanical system in general where there is involvement of
various physical parameters such as non-linear stiffness, hysteretic and free-play,
and more specifically the influence of damping to the stability of the oscillations,
Sinou and Jézéquel [6] proposed to employ a two-degree-of-freedom model for the
sake of simplicity. With the same spirit, in this study we use a pitch-plunge two
dimensional wing-section model in analysing the effects of structural nonlinearities
on a binary classical flutter.

2. Stability analysis of aero-elastic system
2.1 Description of the two-degree-of-freedom model

Figure 1 shows schematically a two-degree-of-freedom pitch-plunge fluttering
aerofoil model. The support system consisting of axial and rotational springs are
attached to a rigid aerofoil on a point so-called elastic axis. These two flexible
supports restrict the motions of the aerofoil with the exception in the two modes of
translation and rotation. For the case of zero damping, the equations of motion of
the aerofoil subjected a uniform flow can be written as:

m mx b h ky O7(h) _ —L _ (F
mx b Ig+m(xab)2} a * {O kal{a} N {Lec-l—Mac} = {Faew}
(1)

where & and a are the degree of freedom in plunging and pitching, respectively,
as explained in Figure 1, while &, and k,, are the spring stiffness in translation and
rotation, respectively.
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Figure 1.
Two-degree-of-freedom aero-elastic model.

2.2 Unsteady aerodynamic model

Theodorsen’s unsteady aerodynamic model as explained by Brunton and Rowly
[7] excellently is used in this work. This method analyses the motions of the aerofoil
in frequency domain and it assumes that the amplitudes are small. In the analysis
the aerofoil is considered thin, the flow is inviscid incompressible with no separa-
tion or intrusion.

In this method the frequencies of the harmonic oscillating motions are consid-
ered relatively slow therefore the transversal and rotational velocities of the aerofoil
contribute as an additional angle of attack to the total lift. As a result the quasi-

steady of the lift coefficient C¥ can be expressed proportional to the total angle of

attack:
aC h 1 @
Qs l - _
C® = . <a+ U +b (2 a) Uoo> (2)

In thin aerofoil theory the lift gradient can be considered equals to 2=, the vortex
singularity is located at the aerodynamic center (a quarter of the chord from the
leading-edge) and the downwash velocity is focused at three quarter of the chord.

The aerodynamic loading consisted of lift and pitching moment can be
presented as:

L= %pUzcl C(k) C¥ (3)

M, = % pU%21 C(k) C¥ (4)
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where ¢ and [ are the chord and the span of the 2D wing, respectively. C(k) is
Theodorsen’s function showing that there is a phase difference between aerody-
namic loading and wing section’s motion. The parameter k called reduced
(nondimensional) frequency is defined as wb/U .

2.3 Flutter stability boundary

V-g method based on the balance of energy between the flow and the motion of
the structure is used to determine the flutter boundary for a linear aero-elastic
system. The analysis is conducted in frequency domain where harmonic motions in
pitching and plunging are imposed to the dynamic response of the structure to
represent the state of the aero-elastic system in the stability boundary. In order to
maintain harmonic motions of the structure, a virtual structural damping g is
inserted to the system hence the equation of motions adopting from Eq. (1)
becomes:

m mxab h C[kn O7(h
mx b I, —{—m(xab)z} { G } +(1+1g) [ 0 k(j { a} = {Faero } (5)

By imposing a harmonic functions to the motions in both plunging and pitching

as shown in Eq. (6):
{I’l}:{]’f}eiwt (6)
a o

Henceforth, the aerodynamic loading can be represented as the expression in

Eq. (7):

{Faero} = { LeCfMM } = %ﬂUz[Q(ik)]{ Z } 7)

where the generalized aerodynamic matrix Q(ik) in complex form can be writ-
ten as:

I
[Q(ik)] = clC(k) x o fa 1 +i 3 9e b .
[ m l m

(8)

subsequently the equations of motion showed in Eq. (5) will lead to the solution
of the eigen values problem as presented below:

ky 0171 m mx b pb* h (1+ig) [ h
710 (ik — T8
[ 0 ka} ([mxab I, + m(xab)z] + 2k? Q) a w? a ©)
Elaborating a certain range of reduced frequency k into Eq. (9) will give as a
result, a range of complex eigenvalues for both modes of motion. The real parts
relate to the natural frequencies while the imaginary parts to the artificial structural

damping of the aero-elastic system for certain values of flow velocity, associated
with the reduced frequency k (Table 1).
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An aero-elastic flutter model with NACA0015 wing section is fabricated and
installed in the wind-tunnel in vertical position as shown in Figure 2a and b. The
each end of the wing model is mounted on a support system consisted of a pair of
steel cantilever beams to allow the side-slipping translation motion and a warm
spring for the yawing rotational motion.

The solution of the eigenvalue problem in Eq. (9) yields two curves of natural
frequencies and two artificial structural damping depending to the flow speed as
presented in Figures 3 and 4, respectively. The critical speed is defined where one
of the artificial structural damping curves intercepts the real actual structural
damping of the structure.

Figure 4 shows the flutter boundary of this linear aero-elastic model where the
critical flow speed is around 15 m/s. The negative values of the damping curves
indicate that an amount of energy has to be supplied to the system to have a

Notation Description Value
a Relative distance to half chord from midchord -0.5
b Half chord 0.05m
c Chord 0.1m
l Span of the wing model 0.28 m
e Relative distance from E.A. to a.c. 0.0
Xo Relative distance from c.g. to mid-chord in b 0.34
m Plunging mass 1.35kg
m, Pitching mass 0.93 kg
I, Mass moment of inertia in pitching 7.741e " kg m*
ky, Axial stiffness in plunging 906.81 N/m
ky Rotational stiffness in pitching 11,445 Nm
E.A. Elastic axis
a.c. Aerodynamic center
cg. Centre of gravity
Table 1.

Value of physical parameters.

Figure 2.
Aero-elastic wind-tunnel model, NACA 0015 aerofoil, two-degree-of-freedom system in translation and
rotation, in the cross-section of 30 cm X 30 cm test-section.
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Figure 3.
Natural frequencies in translation and rotation modes (in Hertz) versus flow velocity (in m/s).
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Figure 4.
Avrtificial structuval damping parameters g in translation and rotation modes versus flow velocity (in m/s). The
solid horizontal ved colour line is the value of structural damping of steel (the material of the both springs).

harmonic response and for the positive ones the energy has to be dissipated such to
maintain the harmonic stable response. In Figure 3, the frequencies of two aero-
elastic modes, i.e. translation and rotation approach each other as the flow speed is
getting close to the critical speed of flutter boundary. The phenomenon so-called
internal resonance shows that there is an interchange of energy between the two
modes of vibration.

3. Non-linear behaviour of the aero-elastic system
3.1 System dynamic approach

Consider a structure with M, C, K as the matrices of mass, damping and stiffness
respectively, subjected to an external loads F(¢). The dynamic response x(¢) basi-
cally can be presented in an arrangement of block diagrams based on the equation
of motion by showing explicitly the inertial internal loads:
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Mx =F(t) —Cx —Kx (10)

The above expression can be considered as a junction with the input of F(t)
which consists of a disturbance and aerodynamic forces encountered by closed loop
teedback signals of C and K, brings forth the output of inertial load signals. Figure 5
explains the block diagram of this mechanical system.

To be able to model the effects of structural non-linearity accurately and to
simulate conveniently in time domain, the aero-elastic system needs to be
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Figure 5.

Block diagram for simulation of a structure subjected to an external load and some initial conditions.
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Figure 6.

(A) Matrix Q11 signifying the generalized aerodynamic forces where the points are values of calculated in
frequency domain for a certain range of reduced frequency k, and the solid line is the approximated curve in
Laplace variable s by using four parameters of lagging term p; of 01, 0.2, 0.3 and 0.4. (B) Matrix Q21
signifying the generalized aerodynamic forces where the points are values of calculated in frequency domain for
a certain range of veduced frequency k, and the solid line is the approximated curve in Laplace variable s by
using four parameters of lagging term B of 01, 0.2, 0.3 and 0.4.
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represented as a system dynamic model. In this system the aerodynamic forces are
generated by the lifting surface as a result of the structural temporal response in a
closed loop form. For this purpose the unsteady-aerodynamic forces calculated in
frequency domain based on harmonic motions of the natural modes as expressed in
Eq. (8), are now converted in Laplace variable using Padé rational function
approximation as shown in Eq. (11).

The lagging term parameters f3;, forj = 1, n, are real and chosen less than 1, where
the values and the numbers are determined to optimize the approximated curves.
The matrices Ag, A; and A; in real values are estimated with curve-fitting using
least square technique in complex plan to approximate the values of the aerody-
namic forces calculated in frequency domain.

QA + il () + (4 (b—) T S e

Uoo Uoo ]’:15 +ﬂ]%

Figure 6A and B explains the curve fitting of the generalised aerodynamic forces
in matrix Q11 and Q21 calculated in a range of frequency in discretized data with
the approximation rational function of Padé showed in solid lines.

The other matrix of the generalised aerodynamic forces Q12 and Q22 are zero as
the consequence of the location of the elastic axis coincides with the aerodynamic
center of the wing section.
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Figure 7.
Aerodynamic transfer function.
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Based on the dynamic response of structure in terms of x (), d/dt x (¢) and d2/dt2 x(t)
the aerodynamic forces in the forms of lift and pitching moment can be calculated by
using a transfer function constructed using Eq. (10). Figure 7 shows the arrangement of
the block diagrams to express the aerodynamic transfer function.

The interaction of flow and structure can be simulated by arranging the block
diagrams of structure showed in Figure 5 as a subsystem, coupled with the aerody-
namic forces showed in Figure 7 where the calculation is conducted in time domain
for each step of time discrete, simultaneously. The block diagrams of the plant
representing the structure and the aerodynamic forces subsystem as a feedback loop
have to be arranged such that all the processes are enhanced in integral operations
to ensure the minimum numerical errors and the convergence of the solutions.

By putting together the block diagram representing the structure as shown in
Figure 5 with the aerodynamic transfer function shown in Figure 7 as a feedback
loop based on the structural response to generated aerodynamic forces, the flow
structure interaction can be represented as two subsystems interconnected to each
other, triggered by a disturbance subsystem as explained in Figure 8.

For validating the numerical model and simulation showed in Figure 8, the case
of linear elastic of the aero-elastic system is conducted first. Figures 9 and 10 shows

Cut1

Ot ———p|In1
Out2
— | In2
Subsystemn Out3
Disturbance Subsystem
Structure
Ini [p—
Out1 InZ |g——
In3 fgp———
Subsystem

Unsteady-Asro

Figure 8.

Simulation of flow-structure interactions is carried out by avranging the subsystem of structure containing mass,
mass moment of inertia, structural stiffness and damping, coupled with aerodynamic forces in lift and pitching
moment as functions of the dynamic response of structure.
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Figure 9.
Convergent translation vesponse of the aerofoil at the flow speed of 13 m/s with initial condition of 4 cm
displacement.
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the response of the aerofoil in translation for the airflow speeds of below and above
the flutter boundary.

The simulation for the aero-elastic system at critical airflow under a certain
disturbance or initial condition will evidently yield a constant amplitude of sinusoi-
dal motions.

3.2 Flutter limit cycle oscillation

Phase portraits representing the relationships between the displacement and the
velocity of the response are used to analyse the dynamic behaviour of the non-linear
system.

Figure 11 presents the phase diagram or the case of linear aero-elastic system
where the ellipsoidal trajectories show a stable harmonic response of flutter bound-
ary at the wind speed of flutter boundary.
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Figure 10.
Divergent unstable vesponse of the aerofoil due to a small impulse disturbance at the flow speed of 16 m/s in
translation.
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Figure 11.
Phase portrait of the linear aero-elastic system at the flutter speed boundary of 14 m/s.
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A structural non-linear factor may influence the dynamic behaviour of an
aero-elastic system. The insertion a free-play in rotation into the support mecha-
nism of the model for an example, at the wind speed below the critical flutter, the
system will not reduce entirely the dynamic response of the aerofoil under a
certain perturbation as in the linear case, but introduce an oscillation with constant
amplitude at a certain frequency. Figure 12 shows a limit cycle oscillation at the
wind speed of 13.0 m/s of the aero-elastic system under an initial condition.

Furthermore structural non-linear factors may also influence the limit of stabil-
ity. The free-play mechanism reduces the flutter critical speed for around 0.5 m/s as
showed in Figures 13 and 14.

At the critical speed calculated for linear system but with the existence of the
free-play, the system will generate an unstable divergent structural response as
explained in Figure 14.

1.5 T

0.5+

0.5
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Figure 12.
Phase portrait of the aero-elastic system with free-play mechanism of 2° of votation at the wind speed of 13.0 m/s
due to initial displacement of 4 cm.
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Figure 13.
Phase portrait for the existence of 2° free-play mechanism in rotation at the wind speed of 13.5 m/s with the
initial condition of 4 cm displacement.
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Figure 14.
Phase portrait for the existence of 2° free-play mechanism in votation at the wind speed of 14.0 m/s.

From the wind-tunnel flutter testing it is observed that a moderate oscillation
starts at 13 m/s flow speed and becomes severe vibration at 18 m/s. It can be
concluded that a small free-play mechanism involves in the lower speed (less than
the critical boundary), and a hardening-stiffness behaviour for the higher speed.

4, Conclusion

A two-degree-of-freedom in transversal and rotational motions wing section for
describing classical binary flutter mechanism is used to investigate the effect of
free-play nonlinearity to the stability of the aero-elastic system and the associated
limit cycles. The aerodynamic forces are calculated by using Theodorsen’s method
in frequency domain based on thin aerofoil theory.

By representing the aero-elastic system as a closed loop block diagrams of a
dynamic system where the structural part serves as the main plant of the system
and the aerodynamic transfer function as a feedback loop calculated based on the
dynamic structural response, it is suitable to carry out the simulation on the plat-
form of Simulink-Matlab. For this purpose the aerodynamic forces have to be
conversed in Laplace domain.

The work shows the effectiveness of the flow-structure interactions when the
system is considered as a dynamic system where the response can be analysed in
time domain and the effects of non-linear factors can be conveniently included
simultaneously.

The limit cycle oscillation and stability can be showed numerically by
representing the phase portrait of the response. At the speed of airflow below the
critical speed of flutter, a constant oscillation may happen due to a free-play
nonlinearity. It can be shown that the stability boundary becomes smaller than the
critical speed.
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