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Abstract

This chapter presents an overview of dictionary learning-based speech enhancement
methods. Specifically, we review the existing algorithms that employ sparse representa-
tion (SR), nonnegative matrix factorization (NMF), and their variations applying for
speech enhancement. We emphasize that there are two stages in a speech enhancement
system, namely learning dictionary and enhancement. The two scenarios of learning
dictionary process, offline and online, are discussed carefully as well. We finally present
some evaluation methods and suggest the future lines of work.

Keywords: dictionary learning, nonnegative matrix factorization, projected gradient
descent, speech enhancement, sparse representation

1. Introduction

Speech is the most important tool of expression and it is crucial information carrier of language

communication. Speech signals in real-world scenarios are corrupted due to some disturbing

noise such as background noise, reverberation, babble noise, etc. The purpose of speech

enhancement (SE) is to extract the clean speech signal from the interferer components mixture

as much as possible, so as the clarity and intelligibility of the speech signal. The research of

speech enhancement technology is particularly important and difficult. Speech denoising is an

importance problem with increasing various applications as hearing aids, speech/speaker

recognition, mobile communications over telephone, and Internet [1]. The difficulties arise

from the nature of real-world noise that is often unknown, nonstationary, potentially speech-

like, overlapping between [1–3].

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Assume that the noisy speech x is a linear additive mixture of the clean speech s and the

interfere n as defined in the following equation:

x tð Þ ¼ s tð Þ þ n tð Þ (1)

where x(t) is the time-domain mixture signal at sample t, and s(t) and n(t) are the time-domain

speech and interferer signals, respectively. The speech enhancement algorithm attempts to

suppress noise without distorting speech and obtain the enhanced speech components ŝ from

the noisy signal and reconstruct the original clean speech. In other words, speech enhancement

algorithms try to reduce the impact of background noise on the speech signal. Most traditional

speech enhancers are implemented in the short-time Fourier transform (STFT) domain with

X ¼ STFT x tð Þf gj jγ where γ = 1 gives the magnitude of spectrum or the power spectrum by

γ = 2. The inverse Fourier transformation then is used to convert the estimated speech to the

time domain, assuming that the phase of the interferer can be approximated with the phase of

the mixture [4].

The speech enhancement techniques mainly focus on removal of noise from speech signal. The

various types of noise and techniques for removal of those noises are presented [5–13]. The

famous spectral subtraction technique [5] extracted the clean speech spectrum based on the

principle that the noise contamination process is additive. The major advantage of the spectral

subtraction method is their simplicity by subtracting an estimation of the interfere spectrum

from the observed mixture spectrum [5, 6]. The main problem with the magnitude spectral

subtraction is that it does not attenuate noise sufficiently negative magnitude by error in the

subtraction.

Filtering techniques [7, 8] or short-time spectral amplitude (STSA) estimators [9] or estimators

based on super-Gaussian prior distributions for speech DFT coefficients are [10–13] the statis-

tical models assumed for each of the speech and noise signals that estimate the clean speech

from the noisy observation without any prior information on the noisy type or speaker

identity. However, in the case of nonstation of background noise, these methods face much

difficulty in estimating the noise power spectral density (PSD) [14–16].

Recently, dictionary learning (DL) techniques, which build dictionary consisting of atoms and

represent a class of signals in terms of the atoms, have been shown to be effective in machine

learning, neuroscience, and audio processing [17–20]. In speech enhancement, the dictionary

models utilize specific types of the a priori information considered for both the speech and

noise signals [21–25]. This class of methods assumes that a target spectrogram can be gener-

ated from a set of basis target spectra (a dictionary) through weighted linear combinations.

Generally, this approach decomposes the time-frequency representations (the power or mag-

nitude spectrogram) of noisy speech in terms of elementary atoms of a dictionary. One of the

key issues in dictionary-based speech enhancement is how to precisely learn a dictionary.

Dictionary learning methods are commonly based on an alternating optimization strategy, in

which the signal representation is fixed, and the dictionary elements are learned; then the

sparse signal representation is found, while the dictionary is fixed. Two popular methods have

appeared to determine a dictionary within a matrix decomposition including sparse coding

[26] and nonnegative matrix factorization (NMF) [27].
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The observation that speech and other structured signals can be well approximated by few

atoms of a suitably trained dictionary [28], which lies at the core of sparse representation (SR).

In SR, sparse signals can be reconstructed with a few atoms of an overcomplete dictionary.

Recently, developed SR has been shown to be effective in data representation, which factorizes

given matrix with regularization methods or regularization term to constrain the sparsity of

desire representation. Since speech signals are generally sparse in the time-frequency domain

and many types of noise are nonsparse, the target speech signal was decomposed and

reconstructed from the noisy speech-driven sparse dictionary [21–23].

In many reality applications, the nonnegativities of the signals and the dictionary are required

such as multispectral data analysis [29, 30], image representation [31, 32], and some other

important problems [33, 34], the so-called nonnegative dictionary learning becomes necessary.

Nonnegative matrix factorization is a popular dictionary method, which projects the given

nonnegative matrix onto the subspace spanned by nonnegative dictionary vectors. Treating

speech enhancement as a source separation problem between speech and noise, NMF-based

techniques can be used to factorize spectrograms into nonnegative speech and noise dictionar-

ies and their nonnegative activations. On the one hand, a clean speech signal can be estimated

from the product of speech dictionaries and their activation.

In this chapter, we review the dictionary learning approaches for speech enhancement. After a

brief introduction to the problem and its characterization as a sound source separation task, we

present a survey on both theoretically and applicable of dictionary-based techniques, the main

subject of this chapter. We finally provide an overview of the evaluation methods and suggest

some future lines of works.

2. Background

Dictionary learning performs approximate matrix factorization of a data matrix into the prod-

uct of a dictionary matrix and a coding matrix, under some sparsity constraints on the coding

matrix. Dictionary learning is the generalization of gain-shape codebook learning. Signal

vectors are represented as linear combinations of multiple dictionary atoms, allowing for

lower approximation error while maintaining equal dictionary size. Two relatively different

methods are described for how to form the dictionary from the given data including sparse

representation (SR) and nonnegative matrix factorization (NMF).

2.1. Sparse representation (SR) and K-SVD algorithm

Let X be a matrix of M training signals X ¼ xmf gM
m¼1 ∈R

N. SR dictionary learning framework

consists in finding a dictionary D of K unit-norm atoms D ¼ d 1ð Þ…d Kð Þ

� �

∈R
N�K and sparse

coefficients C ¼ cmf gM
m¼1 ∈R

K such that the approximation error between X and DC is suffi-

ciently small. For example, if the exact sparsity level T0 is known, the problem can be formal-

ized as minimizing the error cost function OSR(D, C) defined as:
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f SR D;Cð Þ ¼ X�DCk k2F, s:t:∀i, cik k0 ≤T0 (2)

where :k kF, :k k0 denote the Frobenius and l0 norm, respectively.

Eq. (2) shows that a signal x can be expressed as the linear combination of only a few column

vectors in D. Matrix factorization problem (2) is a difficult problem, since the joint optimiza-

tion of D and C is nonconvex. Many dictionary algorithms follow an iterative scheme that

alternates between updates of dictionary D and sparse coding C to minimize the cost function

(2). K-SVD, one of the methods, goes under the category of sparse representation (SR), which

came from the theory of sparse and redundant representation of signals. It was first introduced

by Aharon et al. [34]. The K-SVD algorithm defines an initial overcomplete dictionary matrix

D0 ∈R
N�K and operates alternating two step iterations between optimizing the coding and the

dictionary as follows:

The sparse coding approximation step derives the column cm, m = 1. M by using the orthog-

onal matching pursuit (OMP) algorithm with given X and D to solve the following equation:

argmin cmk k0 s:t xm �Dcmk k2 ≤ σ (3)

The updating dictionary step is taken by minimizing the approximation error (2) with the

current coding C. Atom-by-atom is updated in an iterative process.

Because X�DCk k2F ¼ X�
X

K

i¼1

dic
i½ �

�

�

�

�

�

�

�

�

�

�
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F

¼ X�
X
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¼ R jð Þ � djc
j½ �

�

�

�

�

2

F
(4)

where c[i] is the ith row of C. The residual norm is minimized by seeking for a rank-one

approximation [35]. The approximation is based on computing the singular value decomposi-

tion (SVD) [23].

2.2. Nonnegative matrix factorization (NMF) theory

Nonnegative matrix factorization (NMF) can be viewed as an approach for dictionary learning.

NMF, first introduced by Paatero and Tapper [36] and later popularized by Lee and Seung [23,

27–37], has been known as a part-based representation model. Different to other matrix

factorization approaches, NMF takes into account the fact that most types of real-world data,

particularly sound and videos, are nonnegative and maintain such nonnegativity constraints

in factorization. Moreover, the nonnegativity constraints in NMF are compatible with the

intuitive notion of combining parts to form a whole, that is, they provide a parts-based local

representation of the data. A parts based model not only provides an efficient representation of

the data but can potentially aid in the discovery of causal structure within it and in learning

relationships between the parts.

Given a nonnegative matrix X ¼ x1; x2;…; xM½ �∈RN�M
þ , a positive integer K < < min{N, M},

NMF projects X onto a space by a linear combination of a set of nonnegative basis vectors

D = {dnk}, that is, X ≈ DC where C = {ckm}, ckm ≥ 0. In order to find an approximate factorization
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for the matrix X, cost function that quantifies the quality of the decomposition needs to be

defined. Operationally, NMF can be described as the following objective function

min
D,C ≥ 0

f X DCk Þð (5)

where f is denoted a distance metric.

Different the similarity measures between X and the product DC lead to different variants of

NMF. The common choices include Euclidean distance [38], generalized Kullback-Leibler

divergence [39], Itakura-Saito divergence [40]… For instance, the NMF based on Kullback–

Leibler (KL) divergence is formulated as follows:

f KL X;DCð Þ ¼
X

i, j
xij log

xij

DCð Þij
� xij þ DCð Þij

 !

(6)

There exist different optimization models for the approximation factorization (5) [36, 39, 40].

The most popular solution is alternative multiplicative update rules (MURs) [36], which do not

have required user-specified optimization parameters. For a KL cost function (6), the itera-

tively updating rules are given by:

caμ  caμ

P

idiaxiμ= DCð Þiμ
P

tdta
(7)

dia  dia

P

μ
caμXiμ DCð Þiμ
P

scas
; (8)

However, it is found that the monotonicity guaranteed by the proof of multiplicative updates

may not imply the full Karush-Kuhn-Tucker conditions [39, 40]. MUR is relatively simple and

easy to implement, but it converges slower in comparison with gradient approaches [41]. More

efficient algorithms equipped with stronger theoretical convergence property have been intro-

duced. One popular method is to apply gradient descent algorithms with additive update

rules, which are represented by the projective gradient descent method (PGD) [42]. In PGD

framework, to select the learning step size, a line search method with the Armijo rule is applied

[42] and the new estimate is obtained by first calculating the unconstrained steepest-descent

update and then zeroing its negative elements. In addition, considering the separate convexity,

the two-variable optimization problem is converted into the nonnegative least squares (NLS)

optimization subproblems, which alternate the minimization over eitherD or C, with the other

matrix fixed.

Because of the initial condition K < < min{N, M}, the obtained basis vectors are incomplete over

the original vector space. In other words, this NMF approach tries to represent the high-

dimensional stochastic pattern with far fewer bases, so the perfect approximation can be

achieved successfully only if the intrinsic features are identified in D.

NMF will not get the unique solution under the sole nonnegativity constraint. Hence, to

remedy the ill-posedness, it is imperative to introduce additional auxiliary constraints on D
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and/or C as regularization terms, which will also incorporate prior knowledge and reflect the

characteristics of the issues more comprehensively. The constrained NMF models can be

unified under the similar extended objective function

min
D,C ≥ 0

f constrainedNMF X DC

�

¼ min
D,C ≥ 0

f X DCk Þ þ αg Dð Þ þ χh Cð Þð �½

�

�

�

�

�

(9)

where the regularization parameters αand χ are used to balance the trade-off between the

fitting goodness and the constraints g(D) and h(C).

The performance of NMF can be improved by imposing extra constraints and regularizations.

For the sparseness learning, the sparse term h(C) expects to constraint the mount of nonzero

elements in each column of the projection matrix. The L0 norm could be selected to count

nonzero elements in C [43]. One limitation of using L0 norm is that the solution is not unique

because of many local minima of the cost function. In this situation, the L1 norm of the

projection matrix is usually replaced as a relaxation of the L0 penalty [44, 45].

Ck k1 ¼
X

M

j¼1

c
:j

�

�

�

�

1
¼
X

M

j¼1

X

K

i¼1

cij
�

�

�

�

 !

(10)

3. Dictionary learning-based speech enhancement

A major outcome of speech enhancement techniques is the improved quality and reduced

listening effort in the presence of an interfering noise signal. The decomposition of time-

frequency representations, such as the power or magnitude spectrogram in terms of elemen-

tary atoms, has become a popular tool in speech enhancement since their success in finding

high-“quality” dictionary atoms that best describe latent features of the underprocessed data.

The dictionary-based techniques utilize specific types of the a priori information of speech or

noise [21, 23, 46–50]. A priori information can be typical patterns or statistics obtained from a

speech or noise database. Dictionary-based speech enhancement consists of two separate

stages: a training stage, in which the model parameters are learned, and a denoising stage, in

which the noise reduction task is carried out. In the first step, dictionary D is learned while

fixing coefficient matrix C, and in second step, C is computed with the fixed dictionary matrix

D. This process of alternate minimization is repeated iteratively until a stopping criterion is

reached. In order to learn dictionary atoms capable of revealing the hidden structure in speech,

long temporal context of speech signals must be considered. Two major classes of dictionary-

based speech enhancement techniques may be the offline learning and online learning. Offline

algorithms for dictionary learning are second-order iterative batch procedures, accessing the

whole training set at each iteration in order to minimize a cost function under some constraints

[21–23]. In speech enhancement, learning spectrotemporal atoms spanning several consecutive

frames is done through training large volumes of datasets, which places unrealistic demand on

computing power and memory. In large-scale tasks, online dictionary learning tends to gain

lower empirical cost than conventional batch learning [46–50].
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Speech enhancement herein is implemented in the short-time Fourier transform (STFT) mag-

nitude domain, assuming that the phase of the interferer can be approximated with the phase

of the mixture. The number of frequency bins per frame is determined by the length of the

time-domain analysis window, where a Hamming window was chosen for the STFT. The

temporal smoothness frames are determined by the time-domain analysis window overlap,

where a minimum amount of overlap is necessary to avoid aliasing.

3.1. Offline dictionary

Sparse representation has been described as an overcomplete models wherein the number of

bases is greater than the dimensionality of spectral representations. In sparse representation,

sparse signals can be expressed as the linear combination of only a few atoms in an over-

complete dictionary. While speech signals are generally sparse in the time-frequency domain

and many types of noise are nonsparse, the target speech signal reconstructed from the noisy

speech is considered as clean speech. A possibly overcomplete dictionary of atoms is trained

for both speech and interferer magnitudes, which are then concatenated into a composite

dictionary. The training process of updated dictionary is drawn in Figure 1.

When applying the sparse coding technique to speech enhancement, it is desirable to have the

trained offline clean speech dictionary Dspeech to be coherent to the speech signal and incoher-

ent to the background noise signal as well as a coherent noise dictionaryDnoise. In the enhance-

ment step, the noisy speech is sparsely coded in the composite dictionary [Dspeech, Dnoise]. As a

result, this mixture of speech and interferer x is explained by a sum of a linear combination of

atoms from the speech dictionary Dspeech and a linear combination of atoms from the interferer

dictionary Dnoise. The noisy x is coded using the least angle regression (LASSO) [51] with a

preset threshold θ as follows:

arg min
cspeech, cnoise

x� Dspeech Dnoise

� � cspeech

cnoise

� 	�

�

�

�

�

�

�

�

2

s:t:
ck k1
xk k2

≤θ (11)

The clean speech magnitude is estimated by disregarding the contribution from the interferer

dictionary, preserving only the linear combination of speech dictionary atoms (analogously for

the interferer) and

Figure 1. The training process of updated dictionary.
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ŝ ¼ Dspeechcspeech (12)

It is known that NMF represents data as a linear combination of a set of basis vectors, in which

both the combination coefficients and the basis vectors are nonnegative. Although the basis

learned by NMF is sparse, it is different from sparse coding [26]. This is because NMF learns a

low rank representation of the data, while sparse coding usually learns the full rank represen-

tation. Treating speech enhancement as a source separation problem (speech and noise), NMF-

based techniques can be used to factorize spectrograms into nonnegative speech and noise

dictionaries and their nonnegative activations. Assume that a clean speech spectrogram as

Xspeech and a clean noise spectrogram as Xnoise. Consider a supervised denoising approach

where the clean speech basis matrix Dspeech and the clean noise basis matrix Dnoise are learned

separately by performing NMF on the speech and the noise. During training process, mini-

mized f Xspeech DspeechCspeech

�� 
�
and f Xnoise DnoiseCnoisek Þð are employed.

To reduce the noise in the noisy speech, the concatenated dictionaryD = [Dspeech,Dnoise] is fixed

and utilized in decomposing the noisy speech Xnoisy by

min
Cnoisy ≥ 0

f Xnoisy DCnoisy

�� 
�
(13)

where the time-varying activation matrix is formulated Cnoisy ¼
C0

noise

C0
speech

" #

.

Discarding the noise coding matrix, the target speech is estimated from the product of speech

dictionaries and their activations as

bXspeech ¼ DspeechC
0
speech (14)

The clean speech waveform is estimated using the noisy phase and inverse DFT and the

general framework of NMF-based speech enhancement is drawn in Figure 2.

3.2. Online dictionary learning

The aforementioned dictionary learning approaches access the whole training set to determine

the bases, which are referred as offline training process. These methods were reported to have

good performance on modeling nonstationary noise types, which had been seen during train-

ing. For the time-frequency analysis of audio signals, however, the obtained basis may not be

adequate to capture the temporal dependency of repeating patterns within the signal, and the

success of these methods strongly relies on the prior knowledge of noise or speech or both,

which limits implementations of the models. Recently, the online dictionary learning methods

have been proposed in two aspects of implementing scheme [46–50] and circumventing the

mismatch problem between the training and testing stages [24, 52].

One drawback of the multiplicative update procedure on offline dictionary learning is the

requirement of all the training signals to be read into memory and processed in each iteration.
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This high demand on both computing resources and memory is prohibitive in large-scale tasks.

To address this problem, the online optimization algorithms were developed in an incremental

fashion, which processes one sample of the training set at a time based on stochastic approxima-

tions or only a part of the training data at a time and updates patterns gradually until completely

processed whole training corpus [46–48, 51]. More specifically, given M samples

x1; x2;…; xMf g∈RN
þ distributed in the probabilistic space ℘∈R

N
þ , the conventional NMF learns

subspace Q⊂℘ spanned by a base d1;d2;…;dKf g∈RN
þ and satisfies the expected cost:

min
D∈R

N�K
þ

XM

i¼1

f xi Dcik Þ with fixed cið (15)

or min
D∈R

N�K
þ

Exi ∈℘ f xi Dcik Þð Þð (16)

where Exi ∈℘ denoted the expectation on ℘.

The coefficient matrix is computed by

min
C∈R

K�M
þ

f X DCk Þð (17)

For the online NMF framework, at step t, on the arrival of sample x(t), the corresponding

coefficient c(t) is formulated by

Figure 2. Block diagram of NMF-based speech enhancement.
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min
c tð Þ

∈R
K
þ

f x tð Þ D t�1ð Þc tð Þ
�

�

�


(18)

where D(t�1) is the previous basis matrix. The matrix D(t) is updated by

D tð Þ ¼ arg min
D∈R

N�K
þ

Ex∈℘ tð Þ f x Dck Þð Þð (19)

where ℘ tð Þ
⊂℘ is the probabilistic subspace spanned by the arrived elements

x 1ð Þ
; ; x 2ð Þ

;…; ; x tð Þ
� �

∈R
N
þ and the corresponding c 1ð Þ

; ; c 2ð Þ
;…; ; c tð Þ

� �

∈R
K
þ are computed avail-

able in the previous t steps.

In [50], an online noise basis learning scheme is proposed that uses the temporal dependencies

of speech and noise signal to construct informative prior distribution. In this model, the noise

basis matrix is learned from the noisy observation. To update the noise basis, the past noisy

DFT magnitude frames are stored into a buffer and the buffer will be then updated with fixed

speech basis when a new noisy frame arrives.

Kwon et al. [52] present a speech enhancement technique combining statistical models and

NMF with online update of speech and noise bases. A cascaded structure of combining a

statistical model-based enhancement (SE) (the first state) [53] and NMF approach (second

stage) with simultaneous update of speech and noise bases is proposed. In this model, the

output clean speech at current frame is fed as an input to update the speech and noise bases in

the following frame. In other words, at each frame, the clean speech estimation is obtained; the

speech and noise bases for the NMF analysis in the following frame are updated. This online

bases update makes it possible to deal with the speech and noise variations that cannot be

covered by the training noise database and is considered a promising way to cope with the

nonstationary nature of the signal. The noisy data X0(t) used for the online bases update herein

is constructed by concatenating preenhanced output XSE(t) of performing statistical model-

based enhancement (SE) with the current frame input X(t). The updating dictionary process

will be learned by adding a regular term to the original objective function as follows:

f onlineSEþNMF X0 tð Þ D0 tð ÞC0 tð Þ
�

�

�

�

¼ f X0 tð Þ D0 tð ÞC0 tð Þ
�

�

�

�

þ α D tð Þ �D0 tð Þk k
2





(20)

where D0(t) = [D0
speech, (t)D

0
noise(t)] denotes the basis matrix in NMF decomposing of the

concatenated noisy data X0(t) and D(t) = [Dspeech, (t)Dnoise(t)] is the basis matrix used to analyze

the t-frame X(t) in the second state.

4. Summary and discussion

In the experimental simulations, speech and noise materials were selected from TIMIT [53]

(192 sentences), NOISEX-92 DBs (15 types of noise: birds, casino, cicadas, computer keyboard,

eating chips, f16, factory1, factory2, frogs, jungle, machineguns, motorcycles, ocean, pink, and

volvo) [54], the GRID audiovisual corpus (34 speakers of both genders) [55], the NOIZEUS
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speech corpus (30 utterances with clean samples) [1]. The noisy speech examples were synthe-

sized by adding clean speech to different types of noises at various input SNRs.

Speech enhancement algorithms aim to improve both the speech quality and the speech

intelligibility. A high-quality speech signal is perceived as being natural and pleasant to listen

to, and free of distracting artifacts. An effective technique should suppress noises without

bringing too much distortion to the enhanced speech. Measuring speech quality is challenging,

as it is subjective and can be classified into subjective and objective measures. The speech

enhancement performance was commonly evaluated in terms of three criteria including the

signal to noise ratio (SNR) of enhanced speech [56], the segmental SNR (segSNR) [56], or the

perceptual estimation of speech quality score (PESQ) [57–59]. Given the true and estimated

speech magnitude spectra, the frequency-weighted segmental SNR is defined as:

SNR ¼ 10� log

P
t Xnoisy tð Þ � Xspeech tð Þ
� 
2

P
t

bXspeech tð Þ � Xspeech tð Þ

 �2

0

B@

1

CA (21)

segSNR is a conceptually simple objective measure, computed on individual signal frames,

and the per-frame scores are averaged over time.

segSNR ¼
1

N

XN

b¼1

10� log

P
t X

2
b, speech tð Þ

P
t Xb, speech tð Þ � bXb, speech tð Þ

 �2

0

B@

1

CA (22)

where Xb,speech (t) is the frequency-domain representation of the clean speech signal, for fre-

quency b and time frame t, bXb, speech tð Þ is the frequency-domain representation of the estimated

speech signal. PESQ indicates the quality difference between the enhanced and clean speech

signals. PESQ is analogous to the mean opinion score, which is a subjective evaluation index.

The PESQ score ranges from 0.5 to 4.5, and a high score indicates that the enhanced utterance

is close to the clean utterance.

Contrary to spectral subtraction, dictionary approach does not assume a stationary interferer,

optimizes the trade-off between source distortion and source confusion, and thus shows

superiority over objective quality measures like cepstral distance, in the speaker-dependent

and -independent case, in real-world environments and under low SNR condition. One possi-

ble reason could be due to lack of plenty of data to estimate a noise dictionary. At low SNR

levels, the total volume of noise is much higher than that at high SNR levels, which offers a

higher chance to obtain a good dictionary or noise modeling. However, under high SNR

conditions, a lot of noise spectrum is buried in speech spectrum, which could make the

learning of a noise dictionary difficult. The pretrained speech dictionary models outperform

state-of-the-art methods like multiband spectral subtraction and approaches based on vector

quantization [21–23]. Offline speech dictionary learning in a joint decomposition framework of

the noisy speech spectrogram and a primary estimate of the clean speech spectrogram. Online

learning approach processes input signals piece-by-piece by breaking the training data into
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small pieces and updates learned patterns gradually using accumulated statistics. With this

approach, only a limited segment of the input signal is processed at a time. The online

estimated dictionary is sufficient enough in basis subspace to avoid speech distortion. The

online approaches tend to give better performance than batch learning [53].

The computing demand for both offline learning and online learning consists of updating the

coefficient matrix C and the pattern matrix D. The learning task is defined as an optimization

problem, which aims to minimize an objective cost function f(D) with respect to the pattern

matrix D. It is observed that the reconstruction error for both the online and offline methods

converges to a similar value after several iterations and not monotonically decreasing at the

beginning. Both batch and online learning converge to a stationary point of the expected cost

function f(D) with unlimited data and unlimited computing resources. This situation is only

valid in theory. For small-scale tasks where data are limited, but computing resources are

unlimited, batch learning converges to a stationary point of the cost function ft(D), while online

learning fails to converge, resulting in suboptimal patterns. For large-scale tasks, the more

common situation is where training data are abundant but computing resources are limited. In

this situation, due to its early learning property, online learning tends to obtain lower empirical

cost than batch learning [49]. For sparse coding where the pattern matrix is overcomplete, for

example, (K > M), then online learning is slower than batch learning. The online learning is

significantly faster than the batch alternating learning by a factor of the large number of

spectrograms reconstructed at each iteration [60].

In short, dictionary learning plays an important role in machine learning, where data vectors

are modeled as sparse linear combinations of basis factors (i.e., dictionary). However, how to

conduct dictionary learning in noisy environment has not been well studied. In this chapter,

we have reviewed speech enhancement techniques based on dictionary learning. The dictio-

nary learning-based algorithms have gained a lot of attention due to their success in finding

high-“quality” dictionary atoms (basis vectors) that best describe latent features of the

underprocessed data. As a multivariate data analysis and dimensionality reduction technique,

two relatively novel paradigms for dimensionality reduction and sparse representation, NMF

and SR, have been in the ascendant since its inception. They enhance learning and data

representation due to their parts-based and sparse representation from the nonnegativity or

purely additive constraint. NMF and SR produce high-quality enhancement results when the

dictionaries for different sources are sufficiently distinct. This survey chapter mainly focuses

on the theoretical research into dictionary learning-based speech enhancement where the

principles, basic models, properties, algorithms, and employing on SR and NMF are summa-

rized systematically.
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