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Chapter

Matrix Factorization on Complex
Domain for Face Recognition

Viet-Hang Duong, Manh-Quan Bui and Jia-Ching Wang

Abstract

Matrix factorization on complex domain is a natural extension of nonnegative
matrix factorization, but it is still a very new trend in face recognition. In this
chapter, we present two complex matrix factorization-based models for face recog-
nition, in which the objective functions are the real-valued functions of complex
variables. Our first model aims to build a learned base, which is embedded within
original space. The second model finds the base whose volume is maximized.
Experimental results on datasets with and without outliers show that our proposed
algorithms are more effective than competitive algorithms.

Keywords: complex matrix factorization, face recognition, nonnegative matrix
factorization, projected gradient descent

1. Introduction

Face recognition is a central issue in computer vision and pattern recognition.
The variations in lighting conditions, pose and viewpoint changes, facial expres-
sions, makeup, aging, and occlusion are challenges that significantly affect recogni-
tion accuracy. Generally, the challenges in face recognition can be classified into
four main categories as follows:

Illumination variations: The face of a person can appear dramatically different
when illumination changes. This occurs because of spectra or source distribution
and intensity changes. In practice, many two-dimensional (2D) methods show that
recognition performance is notably decreased when illumination strongly occurs
[1, 2]. Therefore, the problem of lighting variation is considered as one of the key
challenges for face recognition system designer. Several methods have been pro-
posed to handle variable illuminations such as extraction of illumination invariant
features [3-7]; images with variable illuminations transformed to a canonical rep-
resentation [8, 9]; modeling the illumination variations [10-11]; facial shapes and
albedos are based on 3D face models [12].

Pose/viewpoint changes: Deformed face and self-occluded face usually occur by
pose or viewpoint changes which affect the recognition process [13]. Generally,
viewpoint face recognition approaches are divided into two categories: viewpoint-
transformed and cross-pose based [14]. Viewpoint transformed recognition
methods aim to transform the probe image to match the gallery image in the pose,
whereas cross-pose-based approaches attempt to estimate the light field of the face
[15, 16]. Besides, other approaches integrated 2D and 3D information [17, 18] in
order to cope with pose and illumination variations.
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Facial expression: Face recognition tasks are more challenging when dealing with
emotional states of a person in an image. In addition, hairstyle or facial hair such as
beard and mustache can change facial appearance. To handle with difficulties of
expression, facial expression recognition (FER) systems, including static image FER
[19-21], and dynamic sequence FER [22-24] are designed. In static-based methods,
the spatial information from the current single image is extracted to obtain the
feature representation. In contrary, the dynamic-based methods consider the tem-
poral relation among adjacent frames in the sequence of input facial expression.

Occlusion: Faces may be partially occluded by other objects such as sunglasses,
scarf [62], etc. Other situations of occlusion are some faces may be occluded by
other faces of a group of people [25]. It is very difficult to be observed and recog-
nized because the available part of the face is very small. Therefore, occlusion
problems become harder and need to be solved in face recognition.

In face recognition, image representation (IR) techniques play an important role
in improving the accuracy performance. Commonly, an IR system is to transform
the input signal into a new representation which reduces its dimensionality and
explicates its latent structures. Over the past decades, the subspace methods, such
as principal component analysis (PCA) [26], linear discriminant analysis (LAD)
[27, 28], and nonnegative matrix factorization (NMF) [29, 30] have been success-
fully used in feature extraction. In particularly, PCA is known as a powerful tech-
nique for dimensionality reduction and multivariate analysis. PCA seeks a linear
combination of variables such that the maximum variance is extracted from the
variables by projecting data onto an orthogonal base which is represented in the
directions of largest variance. In image representation, eigenfaces (PCA) result in
dense representations for facial images, which mainly applied the global structure
of the whole facial image. Likewise, LAD finds a linear transformation that maxi-
mizes discrimination between classes.

NMF is known as an unsupervised data-driven approach in which all elements of
the decomposed matrix and the obtained matrix factors are forced to be nonnega-
tive. Furthermore, NMF is able to represent an object as various parts, for instance,
a human face can be decomposed into eyes, lips, and other elements. In order to
make NMF algorithms more efficient, one has proposed some constraints into the
cost function such as sparsity [31, 32], orthogonally [33], discrimination [34], graph
regularization [35, 36], and pixel dispersion penalty [37]. Additionally, proposing
an appropriate distance metric for an NMF model plays an important role in
enhancing the efficacy of the estimated linear subspace of the given data. NMF
techniques commonly apply the squared Frobenius norm (Fr) or the generalized
Kullback-Leibler (KL) divergence for the independent and identically distributed
noise data. But in many cases, they produce an arbitrarily biased subspace when
data is corrupted by outliers [38]. To overcome this drawback, L, and L; norms
were proposed by Kong et al. [39] to obtain a robust NMF, in which the noise was
assumed to follow the Laplacian distribution. Similarly, the earth mover’s distance
(EMD) and the Manhattan distance were also suggested in the work of Sandler et al.
[40] and Guan et al. [41], respectively. A family of cost functions parameterized by
a single shape parameter beta, called the beta-divergence [42], is commonly used on
NMEF approaches. Although NMFs are able to learn part-based representations and
capture the Euclidean structure of high-dimensional data space, they are still lim-
ited to comprise the nonlinear sub-manifold structure behind the data.

Recently, matrix factorization techniques have been extended to complex
matrix factorizations (CMFs) where the input data are complex matrices. These
models have been obtaining promising results in facial expression recognition and
data representation tasks [43-45]. The main idea of complex methods for face and
facial expression recognition is that the original signal is projected on to the complex
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field by a mapping such that the distances of two data points in the original space
and projection space are equivalent. Particularly, by transforming the real values of
pixel intensive to complex domain, it is shown that the squared Frobenius norm of
corresponding complex vectors and the cosine dissimilarity of real-valued vectors
are equivalent. As a result, the real optimization problem with cosine divergence is
replaced by optimizing a complex function with the Frobenius norm. Most of the
mentioned CMF models were applied to facial expression and object recognition.
In this chapter, we present two complex matrix factorization-based models for
face recognition. In the following sections, we denote M-dimensional column vector

V= (91 yM)T €RY to be an observed sample. Let Y be a dataset comprising of

N-observations; Y is expressed in the matrix form as Y = (yl, vl yN) € ij 5,
where R denotes the set of nonnegative real numbers. In the proposed models, the
real data set Y is transformed to the complex domain, and the complex data
matrix Z is factorized under imitating NMF frameworks. The contributions of this
chapter are summarized as follows:

1. The image analysis methods on the complex domain, which are called
structured complex matrix factorization (StCMF) and constrained complex
matrix factorization (CoCMF), are proposed.

2.In complex domain, the updating rule for StCMF and CoCMF is derived based
on gradient descent method.

3. A thorough experimental study on face recognition is conducted, the results
show that the proposed StCMF and CoCMF yield better performance
compared to extensions of the real NMFs.

2. Background

2.1 Nonnegative matrix factorization
Assume that we are given an initial data matrix Y € RY*" and a positive integer
K< min{M, N}. NMF methods aim to find a basis matrix U e R{‘f *K and a coding

variable matrix V€ RN, such that Y ~ UV. The standard NMF is usually formu-
lated as an optimization:

min D(Y||UV) s.tU20, V20 (1)

where D(Y||UV) is a divergence function to measure the distance between
Y and UV.

Most NMF techniques estimate the linear subspace of the given data by the
Frobenius norm (F) or the generalized Kullback-Leibler (KL) divergence which
have the following forms:

2

Dr(A|B) = A — B2 = 3 (A; - B) 2)
l,]
. A;
Dy (A|B) = lim Dy(A|[B) = ¥, Aylog 5~ — A + By 3)
L] Ul

The problem (1) is non-convex; thus, it may result in several local minimal
solutions. To find an optimization solution, the iterative methods are commonly used.
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Generally, there are three classes of algorithms for solving this problem including
multiplicative update, gradient descent, and alternating nonnegative least squares
algorithms. The most popular approach to solve (1) is the multiplicative update rules
proposed by Lee and Seung [30]. For example, the iteratively updating rules of a
Frobenius NMF cost function are given by

(t=1)T
vyt (UT Y); : (4)
ij i (1) 1 >
U (U,
t-1)T
w9 ey Vs )
T ey vt
ij oy

2.2 The cosine divergence

Given the representations of two images, I, and I; are M-dimensional vectors y;,
y; in the lexicographic order, respectively. First, y,, y, € RM is normalized to get the
values y,(c), y,(c) € [0,1], where c is the element vector index or the vector spatial
location. The correlation between images I, and I; through the cosine dissimilarity
between y, and y;, is introduced by

M

Dc¢(y,.y,) = X {1-cos (any,(c)-ary(c)) } (6)

c=1

One of interesting properties of the cosine distance measurement is suppression
outlier which is proved in [46]. The comparison between Frobenius norm and
cosine divergence is showed in Figure 1. Liwiki et al. [46] show that the Frobenius
distance between the original and the same subject is smaller; in contrary, a large
distance between the original image and the image of a different person or occlusion
image results from the cosine-based measure.

2.3 Euler’s formula and a space transformation

Let us consider two mappings:
g RM — R™ such that

8(3.) = == [cos(y) " sin ()] sy, Y %
where cos(y,) = [cos(yt(l)),cos(yt(Z)),...,cos(yt(M))]T (8)
sin (y,) = [sin (y,(1)), sin (y,(2)), ..., sin (yt(M))}T 9)

Original image same subject occluded subject  difference subject

Figure 1.
Sample images for making comparison between dissimilarity measuves.
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()l =1 (10)
and i : RM — CM is defined by

ei“”Yt(l)
1 1

:h = — ia”yt = — . 11
“ =M= A o

The nonlinear function / is to transform the real-valued features to complex
feature space. In other words, a complex vector space with M-dimensions can be
regarded as a 2 M-dimensional real vector space.

It is proven that the cosine dissimilarity distance of a pair of data in the input
real space equals to the Frobenius distance of the corresponding data in complex
domain [47]. This observation is the first motivation of StCMF and CoCMF by
mapping the samples into the complex space with a nonlinear mapping function
h and performing matrix factorization in this complex feature space.

2.4 Wirtinger calculus

Any function of a complex variable z can be defined asf(z)|,_, Ly = Flxyy) =

U(x,y) +iV(x,y), where i* = —1and x, y €R. Palka et al. [48] defined the complex
differentiability as follows:

Definition 1. Let A C C be an open set. The functionf : A — C is said to

fl)-f

be differentiable at z¢ € A if there is a limit lim,_,, z—z(()ZO) which exists

independently on the manner where 2 — 2.

A necessary condition for f being holomorphic is that the Cauchy-Riemann

equations hold, that is, 27 = % and % = —%; otherwise, it is nonholomorphic. In

statistical signal processing, the functions of interest are real-valued and have com-
plex arguments z and hence are not analytic on complex plane. In this case we can
use Wirtinger calculus [49], which writes the expansions in conjugate coordinate
system by considering the function f(z) as a bivariate function f(z, 2*) and treating z
and 2" as independent arguments.

Definition 2. The pair of partial derivative operators for functionf(z) =f(z,2*)
referred to as the Wirtinger derivative [49] is defined by

In case of real-valued function of complex variables, we also have one special
property which is useful for optimization theory described later.

Lemma 1. The differential df of a real-valued functionf : A — R with complex
valued 2 € A C C can be expressed as

df = 2Re (%dz) (13)
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3. Complex matrix factorization

Let the input data matrix Y = (Y4, Y5,..., Yy) contain N data vectors as columns.
As described in previous sections, the elements of real matrix Y are normalized and
transformed into a complex number field to yield the complex data matrix Z. Two
unconstraint and constrained optimization problems in an unordered complex field
is introduced in the following sections, respectively.

3.1 Structured complex matrix factorization (StCMF)

The idea of structured complex matrix factorization (StCMF) is to build a
learned base which is embedded within original space. The basis matrix in StCMF is
constructed by the linear combination of the complex training examples. Given the
complex data matrix Z € CM*V, StCMF factorizes Z into the encoding matrix

V € CX*N and the exemplar-embed basis matrix U = ZW where W € C"*K,
Therefore, the objective function of StCMF problem can be formulated as follows:

. .1 2
Vn\},“\} fsiemr(W, V) = Vn\}}{}i |1Z—ZW V|5 (14)

where ||| denotes the Frobenius norm and K< min{N, M}

and |Z-ZWV|; = Tr(Z—ZWV)!(Z-ZWV)
= Tr(Z"Z — VAWHZPZ — ZPZWV + VIWHZHZWV)

3.2 Constrained complex matrix factorization (CoCMF)

Considering a dataset of N complex vectors Z = [Z,, Z,,..., Zy], each of Z;
represents a data instance. The proposed CoCMF model decomposes Z into a prod-
uct of two matrices W and V such that each instance Z; is a convex combination of
latent components W. We call V and W the encoding matrix and the basis matrix,
respectively. Geometrically, the data points Z;, i = 1, 2, ..., N all lie in or on the
surface of a simplicial cone Sy, whose vertices correspond to the columns of W and

K
Sw = {ZIZ: ZWiVi;ViER+} (15)
i—1
Note that Syy lies in the positive orthant and the volume of Sy (Vol (Sw)) is
given by the following formula [48]:

Vol (Sw) % (16)

In [51], Zhou et al. illustrated that the small-cone constraint on the bases W will
impose suitable sparseness on V. Inversely, the large-cone penalty will result in
sparseness on the bases of factorization and the reconstruction errors on the train-
ing data, and the test data will be simultaneously decreased [50, 52]. Therefore, all
observed data can be reconstructed by linearly combining the bases of a dictionary.
Combining the goals of enlarging the volume of the simplex base, the constrained
complex matrix factorization (CoCMF) problem is formulated as follows:
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2_|det(W)]

" R-1)! )

. 1
Vr{,{lr\} fCoCMF(W7 V) = Vrffl,lei HZ_WV”
K
st WeCM¥, veRN and Zlvij =1V
1=

Since 0 < det(W"W) < 1 holds under the assumptions 1"W; = 1. To simply the
model, in this work, the log-determinant function is exploited to modify the volume
penalty, and Eq. (17) can be written as the following form:

. ! 5
VI{II’I% feserr(W, V) = Vn\}’lgi |Z—WV||z-log (det(WTW)) (18)
K K
st We ", veRON ;Vg =1,and ;1 [Wji| = 1v)

3.3 Complex matrix factorization via projected gradient descent

It can be seen that (12) and (16) are non-convex minimization problems with
respect to both variables W and V, so they are impractical to obtain the optimal
solution. These NP-hard problems can be tackled by applying the block coordinate
descent (BCD) with two matrix blocks [53] to obtain a local solution. The specific
problems (14) and (18) were solved by the following scheme:

Fixing W and solving the following one variable optimization problems

. o1
m\}nf StCMF_V(V) = m‘}ni “Z—ZWVH% (19)
) 1
minf cocue_v(V) = min3 [ Z-WV/[; (20)
v - v 2
KxN K .
stVeR], ’Zlvilevj
1=

Then, W is updated based on the Moore-Penrose pseudoinverse [54], which is
dented by t and W = (Z'Z) V" for Eq. (14) and W = ZVT for Eq. (18) with fixed V.
Taking advanced of Wirtinger calculus, the gradient is evaluated in the forms

Algorithm 1: Complex projected gradient (CPG) with Armijo rule

Input: Z, W
Output: v
1. Initialize any feasible Vo, 0 <f<1,0<0c<1

2. Iterations, fork =1, 2, ...
Vi1 = PV — a, Vyf (W, V)]
where a, = ', t;, is the first nonnegative integer such that

f(W, Vi) = f(W, V) <26Re{(Vy f(W, V), Vi1 = Vi) }
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Vv fsiemr v(V) = —~WHzHz + WHZEZWV (21)
Vy foocmr v (V) = WHWV - Wrz (22)

7 \4 \% A% —
where V = ! 2 N _1,v>o0 (23)

IVally Va2l ™ 1 Varll )™

We summarize the projected gradient method for optimizing (21) and (22) in
Algorithm 1.

4. Experiments

To investigate the recognition performance of the proposed StCMF and CoCMF
methods, we have conducted extensive experiments on the ORL dataset [55] and
the Georgia Tech face dataset [56] in two scenarios for face recognitions including
holistic face and key point occluded face.

First, we give brief description about the data collections and experiment set-
ting. Second, the performance comparisons and corresponding results are shown.

4.1 Datasets and experiment setting

The ORL dataset contains 400 grayscale images corresponding to 40 people’s
face. The images were captured at different times, under different lighting condi-
tions, with different facial expression (open or close eyes, smiling or non-smiling)
and facial details (glasses or no glasses). All the face images are manually aligned
and cropped. For the computational efficiency, each cropped image is resized to
28 x 23 for face recognition without occlusion and 32 x 32 pixels for face recogni-
tion with occlusion. Figure 2 shows some instances of such random face on ORL
dataset.

The Georgia Tech face dataset (GT) contains images of 50 people taken during
1999 and stored in JPEG format. For each individual, there are 15 color images
captured at resolution of 640 x 480 pixels. Most of the images were taken in two
different sessions to take into account the variations in illumination conditions,
facial expression, and appearance. In our experiments, original images are normal-
ized, cropped and scaled into 31 x 23 pixels, and finally converted into gray level
images. Examples of GT dataset are shown in Figure 3.

Figure 2.
Sample facial images from ORL dataset [55].
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Figure 3.
Sample facial images from GT dataset [56].

We use the nearest neighbor (NN) classifier for all face recognition with/with-
out occlusion experiments. The platform was a 3.0 GHz Pentium V with 1024 MB
RAM running Windows. Code was written in MATLAB.

4.2 Performance and comparison
4.2.1 Face vecognition on ORL dataset

For this case, in order to evaluate the performance of the proposed StCMF and
CoCMF, we make the comparisons with seven representative algorithms, namely,
NMF [29], P-NMF [57], P-NMF (Fr) [58], P-NMF (KL) [58], OPNMF (Fr) [59],
OPNMF (KL) [59], NNDSVD-NMF [60], and GPNMF [60]. Different training
numbers ranging from five to nine images were randomly chosen from each indi-
vidual to construct the training set, and the rest images constitute the test set which
was used to estimate the accuracy of face recognition [61]. The learning basic
images in all selected algorithms are K = 40, and the mean recognition rate are
described in Table 1.

Table 1 shows the detailed recognition accuracies of compared algorithms. As
can be seen, our algorithms significantly outperform the other algorithms in all the
cases. Almost algorithms achieve the best accuracy when the number of training
face images per class is eight exceptionally our proposed methods and GPNMF.
Besides, there is the same trend between the number of training images and accu-
racy rate; that is, the lower training numbers lead to a decreasing rate of

No. StCMF CoCMF GPNMF NMF PNMF P-NMF P-NMF OPNMF OPNMF NNDSVD-
Trains (Fr) (KL) (Fr) (KL) NMF

5 90.85 90.30 86.5 84.5 82.4 83.7 85.0 80.0 79.0 43.0

6 91.75 92.25 87.5 84.4  85.81 85 84.4 83.0 82.0 39.3

7 91.17 94.75 87.5 83.3 8733 85.6 85.9 84.4 80.0 36.8

8 93.75 93.88 88.75 88.75 885 88.8 88.0 84.3 83.0 40.8

9 97.50 95.50 92.5 85 90.75 87.25 87.5 84.0 83.0 42.3
Avg. 93.00 93.34 88.55 85.19 86.96 86.07 86.16 83.14 81.4 40.44

Table 1.

Face recognition accuracy on the ORL dataset with different train numbers.
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recognition. StCMF achieves the best performance (97.50%) when the number of
training samples is chosen largest. However, CoOCMF achieves higher improvement
in general.

It is observed that the above-selected algorithms employ a different kind of
measurements such as Frobenius (Fr) and Kullback-Leibler (KL) and add more
graph to regularize as well as adjust basic NMF to projective NMF. In a reprocessing
image, centered aligning image technique is applied for other methods to enhance
effective recognition rate that cannot be focused on our StCMF and CoCMF models.
However, the best recognition rate of all obtained by our proposed CoOCMF method
which has extra regularizes term.

One of the difficulties in NMF is the estimation of the number of components or
K. The choice of K results in a compromise between data fitting and model com-
plexity; that is, a greater K leads to a better data approximation, but a smaller K
makes a model being easier to estimate and fewer parameters to transmit. In almost
NMFs, K is typically chosen such that it is larger than the estimated number of
sources and follows the constraint (N + M)K < NM. This limit of NMFs illustrated
by the observation that among all results, the lowest rate belongs to NNDSVD-
NMEF, one NMF method utilizes SVD to get initialization which results from signif-
icant independency of NNDSVD-NMF on the number of bases K.

4.2.2 Face recognition on GT dataset

Table 2 shows the recognition rates versus feature dimension by the competing
methods on GT dataset. GT dataset exists with many challenging samples that are
harder to recognize. Thus, the performance of all methods is lower than those of
ORL dataset. In this dataset, the implement was done similarly as those in the
previous section in choosing algorithms to compare as well as dividing randomly
into two different sets, each containing a different number of testing and training
images. In our experiments, we set K = 50 and range the number training being five
odd numbers as {5, 7, 9, 11, 13}. The experimental results show that as the number
of training images increases, the efficiency of the recognition system also increases.
We can see that CoOCMF method achieves the best performance and StCMF holds
the second place in overall. All the methods obtain their best results when 13
training samples are used (the largest number of training sample in our experi-
ment). In this case, the highest recognition rate belongs to the StCMF method again.

4.2.3 Face recognition on occluded ORL images

For a more convincing experimental assessment of the power of our proposed
models in occlusion processing, we test the performance on occluded images of

No. StCMF CoCMF GPNMF NMF PNMF P-NMF P-NMF OPNMF OPNMF NNDSVD-
Trains (Fr) (KL) (Fr) (KL) NMF
5 39.64 59.40 59.14 5470 46.84 58.90 57.97 57.89 48.08 23.80
7 54.80 62.25 60.96 59.38 52.50 60.20 60.88 60.44 48.68 23.83
9 75.20 69.67 62.5 62.40 54.93 64.03 63.35 62.48 48.84 24.30
11 69.50 70.50 65.37 6520 57.25 63.75 63.38 63.17 49.36 27.35
13 77.60 73.00 69.00 67.40 61.60 65.60 64.05 63.50 49.50 30.20
Avg. 63.35 66.96 63.39 61.82 54.63 62.50 61.93 61.50 48.90 25.90
Table 2.

Face recognition accuracy on the GT dataset with different train numbers.
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Figure 4.
Occluded face samples from ORL dataset with patch sizes of 15 X 15, 20 X 20, 25 X 25, 30 X 30, and
35 X 35.

Occluded StCMF CoCMF GPNMF NMF PNMF P-NMF P-NMF OPNMF OPNMF NNDSVD-

Size (Fr) (KL) (Fr) (KL) NMF
15x15 79.58 80.21 75.16 74.32 7255 69.16 71.25 74.18 45.16 54.46
20x20 72.08 73.79 64.52 6545 62.15 67.52 71.23 65.00 41.52 25.62
25%25 70.00 7117 6554 5518 5238 6554 62.19 55.00 35.54 19.83
30%30 52.08 6154 5453 4562 43.87 4853 55.21 45.89 28.53 13.22
35x35 39.17 4100 4325 3363 31.06 4325 38.79 33.39 23.25 16.13
Avg. 62.58 6554  60.60 54.84 5240  58.80 59.73 54.69 34.80 25.85
Table 3.

Face recognition accuracy on the occluded ORL image with different occlusion sizes.

ORL database. In cropped 112 x 92 dimension test image gallery, occlusion was
simulated by using a sheltering patch with different size ranges in set {10 x 10,

15 x 15,20 x 20, 25 x 25, 30 x 30} and placed at random locations before resized in
28 x 21. Figure 4 shows examples of occluded ORL images.

In this experiment, we take randomly the training images with the ratio 4:6 for
training/testing and test several times on each sort of percent of randomly occluded
test image. Table 3 shows the detailed recognition accuracy on all selected algo-
rithms and our proposed methods. It can be seen that the recognition rate of all
methods is increased when the size of occlusion batch is decreased. Obviously,
StCMF and CoCMEF outperform other tested approaches even if occlusion. This
reveals that StCMF and CoCMF are more robust outlier than the other.

5. Summary and discussion

In this paper, we have proposed a new approach to complex matrix factorization
to face recognition. Preliminary experimental results show that StCMF and CoCMF
achieve promising results for face recognition by utilizing the robustness of cosine-
based dissimilarity and extend the main spirits of NMF from real number field to
complex field which adds flexible constraints for the real-valued function of com-
plex variables. We have also noted how strong is the proficiency of StCMF as well as
CoCMF on face recognition task. Our proposed methods are simple frameworks
which do not need more complicated regularizes like NMFs in the real domain. We
believe that this capability of proposed methods will be stable in other application
tasks. In future work, three aspects of the proposed system will be centered on.
First, we add more regularized rules into objective function to a range of further
application such as speech and sound processing. Second, we employ other classi-
fiers such as complex neural network or complex SVM to treat well the complex-
valued feature. Last, kernel methods will be exploited in both feature extraction and
classification of StCMF and CoCMF constructed paradigm to develop the perfor-
mance of nonlinear contexts.
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