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Abstract

In today’s world, type 2 diabetes has become a part of every household and leads 
to various complications including high blood sugar level, diabetic retinopathy, 
diabetic foot, diabetic nephropathy and diabetic neuropathy. Yet people lack aware-
ness about this disease and its detrimental effects. For a better understanding of this 
disease we must know about the causes and preventive measures since the medica-
tions used in treating type 2 diabetes have moderate to severe side effects. Type 
2 diabetes is characterized by loss of insulin receptor activity in skeletal muscle 
and adipocytes, compensatory insulin secretion from pancreatic β-cells, β-cell 
dysfunction and death. The proper functioning of β-cells is a major criterion for 
preventing advent of type 2 diabetes. The different natural or physiological insulin 
secretagogues include glucose, amino acids and fatty acids, which stimulate insulin 
secretion under the influence of various hormones like incretins, leptin, growth 
hormone, melatonin and estrogen. However, excess of nutrients lead to β-cell 
dysfunction and dearth of insulin involving various signal molecules like SIRT1, 
PPARγ, TLR4, NF-ΚB, Wnt, mTOR, inflammasomes, MCP1, EGFR, and Nrf2. A 
deeper insight into the functioning of these signaling molecules will also create new 
avenues for therapeutic interventions of curing β-cell dysfunction and death.

Keywords: insulin resistance, pancreatic β-cell dysfunction, lipotoxicity, 
glucotoxicity, type 2 diabetes

1. Introduction

Changing food habits, sedentary lifestyle and obesity has made type 2 diabetes 
(T2D) a global epidemic. T2D has various characteristic features such as insulin 
resistance caused when peripheral tissues such as liver, muscle and adipocytes have 
a decreased response to insulin. The progression from normal glucose tolerance 
to type 2 diabetes involves several transitional stages of impaired fasting glucose 
and impaired glucose tolerance which is known as prediabetes. The mechanism 
leading to the development of these glucose metabolic alterations is multifactorial. 
The most prevalent factor of T2D is insulin resistance that occurs when peripheral 
tissues such as liver, muscle and adipocytes, the main target organs of Insulin 
hormone, loses the ability to respond to insulin [1]. Generally in the obese patients 
without T2D and initially in people who develop insulin resistance, pancreatic 
β-cells are able to compensate for insulin resistance by increasing insulin secre-
tion by increasing β-cell mass via increased proliferation and hypertrophy [2, 3]. 
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Increasing of β-cells in a compensatory mechanism to avoid the complications 
caused due to insulin resistance and henceforth prevents diabetes [4]. This unique 
mechanism of β-cell mass expansion has been observed in normal individuals 
during physiological growth [5] as well as in insulin resistant patients, especially 
pregnant women [6] and obese people [7]. In patients having T2D the initial stage 
of β-cell compensation is followed by dysfunction or failure of β-cells due to less 
proliferation and increased apoptosis [1, 8].

Pancreatic β-cell dysfunction plays a critical role in progression of T2D. Insulin 
is produced as preproinsulin and then processed to proinsulin. Proinsulin is then 
converted to insulin and C-peptide and stored in secretory granules. Synthesis of 
insulin is regulated at both transcription and translational level. Several transcrip-
tion factors in the cis-acting sequences within the 5′ region and trans-activators 
regulate insulin gene transcription. These transcription factors are paired homeo-
box gene 6 (PAX6), pancreatic and duodenal homeobox-1 (Pdx-1), MafA and B-2/
Neurogenic differentiation 1 (NeuroD1). Insulin secretion from β-cells contains a 
series of events and is controlled by variety of factors and signaling pathways that 
ultimately leads to the fusion of secretory granules with the plasma membrane. The 
various stimulants that regulate insulin secretion are glucose, free fatty acids, amino 
acids, also various hormones like melatonin, estrogen, leptin, growth hormone and 
glucagon like peptide-1 [9].

2. Structure of insulin

The monomeric structure of insulin is made up of “A” chain with 21 amino acids 
and “B” chain with 30 amino acids, which are bound by disulfide bonds. Actually 
three disulfide bonds are present in the structure of insulin monomer, two in 
between the A and B chains (A7–B7, A20–B19) and one within the A chain  
(A7–A11) [10]. The secondary structure of the A chain is made up of two anti-
parallel α-helices in between A2–A8 and A13–A19 residues. Also the helices are 
connected by residues at A9–A12. As a result of this particular arrangement the two 
ends remains in close proximity to each other and side by side [11].

The B chain is made up of α-helices and β-pleated sheets [11] and in the T state 
it exists in two different conformations in crystallized form [12]. The α-helix exists 
between B9 and B19, a β-turn between B20 and B23 and the chain folds in a “V” due 
to Gly20 and Gly23. An extended β-strand structure in between residues B24 and 
B30 which allows the chain to be in close proximity to form a β-sheet with PheB24 
and TyrB26 which are in close contact with B11 and B15 leucine residues of α-helix. 
There is a continuous α-helix from B1 to B19 in the R state. The stability of the 
native insulin structure is due to the disulfide bonds in between Cys residues A7–B7 
and A20–B19. The affinity of insulin towards the insulin receptor is determined by 
the side chain interactions in between A chain and B chain. These disulfide bonds 
between the A and B chain provide the tertiary structure of insulin monomer which 
is very highly organized. The various amino acid interactions in the side chain also 
contribute to the stable tertiary structure of the insulin monomer molecule. These 
interactions are also responsible for the interaction or affinity of insulin towards its 
receptor [11].

The hydrophobic inner core of the insulin monomer is composed of the follow-
ing amino acids residues: A6–A11 and Leu A11, B1 and B15, Ile A2, Phe B24, Val A3, 
Ile A13, Val B18 and Val B12. The amino acid residues from B20 to B23 are necessary 
for stabilizing the β-turn thereby leading to the folding of the β-sheet in between 
B23 and B30 towards the α-helix and hydrophobic inner core. In the dimeric form of 
insulin these non-polar amino acids remain in the inner side. The insulin subunits 
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generally remain as dimers [12]. The dimeric form of insulin is stabilized by the 
antiparallel β-sheets at the carboxy terminals of the B chains which remain expose 
on the surface of the dimeric structure. The hydrophobic core of the insulin dimer is 
composed of non-polar residues [11].

There are three dimers made up of six molecules of insulin peptide to make a 
hexamer. Some differences in the side chain like in the 25th residue (Phe) in the B 
chain, which is arranged to be inside the hydrophobic core of the peptide chain on 
one side of the dimer, deforms the perfect two-fold symmetry [11]. Also there are 
two zinc atoms with the imidazole groups in three histidine residues in the B chain 
along with two water molecules in the insulin hexamer [12].

The knowledge about the structure of insulin is necessary to understand its 
interaction with insulin receptor. The amino acids in the specific regions of the 
insulin molecule that facilitate its binding with the receptor are located at the amino 
terminal of the A chain: GlyA1, IleA2, ValA3, GluA4: carboxy terminal of the A 
chain: TyrA19, CysA20, AsnA21; and carboxy terminal of the B chain: GlyB23, 
PheB24, PheB25, TyrB26. These residues have are denoted as the “cooperative site” 
of the insulin due to their negative cooperativity [13, 14].

• Out of the two chains in the structure of insulin, the A chain has more signifi-
cant role for binding to the receptor. Acetylation of the amino terminal reduces 
binding to receptor by 30% which makes a free amino terminus necessary for 
binding to receptor [15].

• Gly1 deletion reduces binding to receptor by 15% which may be due to some 
salt bridge formation between Gly1 and B chain carboxy terminus [16].

• Also TyrA19, CysA20 and AsnA21 in the carboxy terminus of the A chain are 
also necessary for insulin receptor activity [16].

• The carboxy terminal of the B chain has also a significant role in the receptor 
binding activity, specially the first four residues, whose deletion reduces recep-
tor binding activity by 30% [17, 18].

• Fifteen percent of the receptor binding activity is detained when HisB5 is 
deleted and 1% of binding activity is reduced when LeuB6 is deleted [19].

• For the maintenance of disulfide bonds between A and B chain, CysB7 is  
critical [20].

Figure 1. 
Structure of insulin [10, 11, 12, 20].
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• HisB10 is necessary for activity because when substituted with AspB10, proin-
sulin is not converted to insulin [21].

• However, synthetic insulin containing AspB10 has 500% greater binding affin-
ity than normal insulin [22].

• PheB24 forms hydrogen bonds important for dimer formation and PheB25 is 
important for conformation of the native insulin structure [16].

• GlyB23, PheB24, PheB25 and TyrB26 in the B chain carboxy terminus are 
evolutionarily conserved residues needed for receptor binding [16] (Figure 1).

3. Insulin synthesis

The various stimulants in blood that lead to insulin secretion are glucose, mono-
saccharide, amino acid and fatty acid.

3.1 Glucose stimulated insulin secretion

Glucose acts as the main stimulus for insulin secretion in rodents as well as 
human beings because it is one of the major constituents of their diet and enters the 
circulation immediately after digestion of food. Glucose transporter 2, i.e., GLUT2 
is the main glucose sensor found in the plasma membrane of β-cells. Translocation 
of GLUT2 to plasma membrane is dependent on insulin and it bears low substrate 
affinity, hence leading to high uptake of glucose. Upon entry into β-cell glucose 
is phosphorylated to glucose-6-phosphate by glucokinase, a type of hexokinase. 
Glucokinase is the rate-limiting step in the glucose metabolism in β-cells [23]. 
Since pyruvate dehydrogenase is not found in β-cells, pyruvate is metabolized to 
produce metabolic coupling factors via two pathways: (a) pyruvate is metabolized 
to acetyl-coA and thereby it enters glucose oxidation: the main signaling pathway 
couple to pyruvate oxidation through the tricarboxylic acid cycle (TCA) by mito-
chondria “ATP-sensitive potassium (KATP) channel-dependent insulin release.” The 
other pathway is anaplerosis where pyruvate, like other TCA cycle intermediates 
is replenished. However, some of the products of these processes can act as signals 
stimulating release of insulin, like malonyl-CoA, NADPH, and glutamate. These 
products are known to amplify KATP channel-dependent insulin secretion [24, 25].

Formation of glycerol-3-phosphate (Gly3P) is the third glucose signal. 
Glucokinase phosphorylates glucose into glucose-6-phosphate (G6P), G6P then 
enters glycolysis to produce pyruvate. Gly3P can also be produced by G6P via 
dihydroxyacetone phosphate (DHAP) pathway. These compounds stimulate insulin 
secretion. Gly3P also promotes β-cell glycolysis via the mitochondrial Gly3P NADH 
shuttle process, which activates mitochondrial energy metabolism and augments 
insulin secretion [26, 27]. Dysfunction of β-cells after prolonged exposure to 
elevated levels of glucose has been linked to changes in glucose detection and 
metabolism, apoptosis, and calcium handling. Now it has already been reported 
that glucotoxicity impedes final steps in insulin secretion, i.e., exocytosis [28].

3.2 Fatty acids and insulin secretion

Free fatty acids (FFAs) exert both positive and negative effects on β-cell survival 
and insulin secretory function, depending on concentration, duration, and glucose 
abundance. Insulin secretion from β-cell is also stimulated by free fatty acids (FFAs). 
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The FFAs can also upregulate glucose stimulated insulin secretion (GSIS) from 
β-cells. In total absence of FFAs the β-cells lose their insulin secreting capability 
which can again be restored when exogenous fatty acids are added [29–31]. The FFAs 
act upon β-cells through free fatty acid receptor (FFAR)-1, hence controlling β-cell 
function [32, 33]. The intracellular metabolism of FFA leads to the production of 
lipid signal molecules like long-chain acyl-CoA and DAG [34]. DAG in turn activates 
protein kinase C (PKC), which in turn tales part in insulin secretion [35]. The effect 
of fatty acids on pancreatic islet insulin release depends mainly on degree and time 
of exposure. Circulating low levels of free fatty acids in the range of physiologic 
postprandial values actually aids in enhancing glucose-induced insulin secretion. 
However, excessive accumulation of lipids within islets impairs insulin secretion [36].

3.3 Amino acid stimulated insulin secretion

At individual concentrations amino acids found in physiological concentrations 
are poor insulin secretagogues. Some combinations of amino acids at physiological 
concentrations are capable of enhancing GSIS [37], like that of, glutamine cannot 
stimulate insulin secretion or enhance GSIS alone, but in combination with leucine, 
glutamine is capable of stimulating insulin secretion from β-cells and enhancing 
GSIS [38]. Leucine activates glutamate dehydrogenase, and glutamate dehydroge-
nase can convert glutamate to α-ketoglutarate, leading to production of ATP and 
stimulating insulin secretion [37]. Two important incretin hormones secreted from 
K-cells and L-cells in the gastrointestinal tract, Glucose dependent insulinotropic 
peptide (GIP) and glucagon-like peptide-1 (GLP-1), are stimulated to be secreted 
after ingestion of nutrients like glucose and amino acids. These hormone levels rise 
in the circulation after feeding food rich in protein and carbohydrates. Then they 
directly trigger insulin secretion from β-cells by binding to their specific cell-surface 
receptors, hence enhancing GSIS [39–41].

4. Regulation of insulin secretion

4.1 Neural and hormone regulation

4.1.1 GLP-1

GLP-1 is an incretin hormone secreted from small intestinal L-cells along with 
GIP when the nutrient content in blood is high generally after ingestion [42, 43]. 
Nutrient load from oral route triggers more insulin secretion than intravenous 
nutrient load [44]. GLP1-agonists and analogues are already used as an effective 
therapy for type 2 diabetes that are safe due to the glucose dependent effect on the 
insulin secretion and large randomized clinical trials proved their additional cardio-
vascular benefits [45]. GLP-1 acts upon β-cells due to the presence of GLP-1 recep-
tor (GLP-1R). Activation of GLP-1R leads to activation of adenylyl cyclase, which in 
turn generates cAMP. Elevated level of cAMP in the cytosol enhances GSIS. Hence 
GLP-1 secretion is dependent on high blood glucose levels [45, 46].

4.1.2 Leptin

Leptin, secreted from adipocytes, regulates function of insulin upon the glucose 
storing fat and liver cells [47, 48]. However, in absence of leptin, hyperinsulinemia 
leads to drop in blood glucose levels [47, 49]. The inhibitory action of leptin has 
been well known in clonal β-cells [50], cultured rodent islets [51], perfused rodent 



Type 2 Diabetes - From Pathophysiology to Modern Management

6

pancreas [50, 52], human islets [51, 53, 54] and mice islets [51]. Leptin inhibits 
insulin secretion by antagonizing the action of elevated intracellular cAMP [55]. 
3-isobutyl-1-methylxanthine (IBMX) induces leptin, elevating cAMP content by 
inhibiting phosphodiesterases (PDEs) [56], the enzymes which catalyze hydrolysis 
of cAMP. GLP-1-induced insulin secretion is also inhibited by leptin, and GLP-1 
which augments insulin secretion by activation of the cAMP signaling pathways [52].

4.1.3 Estrogen

In the “classical” mechanism of action of estrogen, the estrogen molecules dif-
fuse into cell and bind to the estrogen receptor ER located in the nucleus. Rapid or 
“nongenomic” effects of estrogen are thought to occur through the ER located in or 
adjacent to the plasma membrane and may require presence of “adaptor” proteins, 
which target the ER to the membrane. Activation of the membrane ER leads to 
a rapid change in cellular signaling molecules and stimulation of kinase activity, 
which in turn may affect transcription [57].

β-cells are not general estrogen targets but the presence of estrogen receptor in 
islets makes the effect of 17β-estradiol on β-cells noteworthy [58, 59]. 17β-estradiol 
enhances insulin secretion from β-cells [60] and in humans, it is known to increase 
insulin secretion in postmenopausal women [61, 62], thus it augments glucose-
stimulated insulin secretion (GSIS) [63]. Two types of are present in β-cells: (1) the 
estrogen receptors in the nucleus, i.e., nuclear ERs (ERα and ERβ) and (2) the estro-
gen receptors in the membrane, i.e., the membrane ER (ERγ) [64]. 17β-estradiol 
significantly decreases activity of KATP channel [60], causing membrane depolar-
ization and opening of voltage-gated Ca2+ channels, thereby potentiating glucose-
induced intracellular [Ca2+] oscillations, in a reversible manner.

4.1.4 Melatonin

Melatonin, a hormone secreted by pineal gland, helps in maintaining circadian 
rhythm and biological clock [65]. However, melatonin receptors are found on clonal 
β-cells [66, 67] and human islets [68]. Melatonin shows both stimulatory [69] and 
inhibitory effects [70, 71], as well as neutral effects [72] on insulin section. However 
a decent number of reports have been found in literature about the inhibitory effect 
of melatonin in clonal β-cells [66, 68, 69, 73]. Melatonin inhibits glucose- and KCl-
stimulated insulin secretion in rat islets [74]. Long term melatonin administration 
enhances hyperinsulinemia in vivo [75]. The signaling pathway of melatonin shows 
that melatonin receptor is coupled to Gi, which inhibits G protein [76]. Melatonin 
mediates stimulatory effect on insulin secretion through its receptor MTNR1A, by 
activation of Gq/11 which provokes release of IP3 by activating PLC-ε to augment 
insulin secretion [69, 77, 78].

4.1.5 Growth hormone

Growth hormone (GH) stimulates production of insulin-like growth factor-I 
(IGF-I) and its binding proteins [79]. Human IGF1 and IGF2 show high sequence 
similarity with insulin. Insulin receptor (IR) has two isoforms, IRA and IRB. IRB 
only binds insulin with high affinity while IRA binds both insulin and IGF2 with 
equal affinity. The IGF1 receptor (IGF1R) has high affinity towards both IGF1 and 
IGF2 but it binds insulin with very low affinity. According to the conventional view 
regarding the actions of insulin and IGF-1 in mammals, insulin mediates mainly 
a metabolic response, and IGF-1 mediates growth promoting effects in vivo [80]. 
Recombinant human IGF-I decreases serum levels of insulin and C-peptide in 
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human [81]. IGF-1 also suppresses insulin secretion in isolated rat islets [82]. This 
inhibitory activity of growth hormone is mediated through PDE3B activation [83], 
which is responsible for breaking down cAMP in β-cells.

4.1.6 Adrenergic and cholinergic agents

Adrenergic drugs (epinephrine, norepinephrine and isoproterenol) are known 
to inhibit insulin secretion by binding to alpha receptors present in rat pancreas. On 
the other hand cholinergic drugs (acetylcholine and carbamylcholine) stimulate 
insulin secretion but this effect is suppressed by simultaneous addition of atropine. 
Thus the autonomic nervous system regulates insulin secretion under physiological 
conditions [84] (Figure 2).

4.2 Regulation by signaling pathways

4.2.1 SIRT1

SIRT1, mammalian sirtuin homolog, plays a key role in energy homeostasis and 
extends a cell lifespan by calorie restriction [85]. Glucose metabolism is tightly 
coupled to the regulation of insulin secretion and β-cell function [86]. Till now 
there are two reports showing SIRT1 positively regulates glucose-stimulated insulin 
secretion in pancreatic β-cells [87, 88]. In β-cells, FoxO1 is constitutively phosphor-
ylated in cytoplasm, and activates insulin receptor signaling [89]. Accumulation 
of FoxO1 in the nucleus of insulin-secreting cells is triggered by palmitate during 
induction of lipotoxicity and impairs insulin secretion [90, 91]. Increased expres-
sion of SIRT1 in pancreatic β cells in mice improves glucose tolerance by enhancing 
insulin secretion [87]; deletion of SIRT1 can impair glucose-stimulated insulin 
secretion [88]. In both these reports, SIRT1 enhances insulin secretion by transcrip-
tional repression of uncoupling protein 2 (UCP2) [92]. Activation of SIRT1 gives 

Figure 2. 
Hormonal and nutrient regulation of insulin secretion [23, 26, 27, 32–35, 45, 46, 55, 57, 60, 64, 72].
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protection from high-fat-induced obesity and insulin resistance [92–94], and slight 
overexpression of SIRT1 has a protective role from high-fat induced glucose intoler-
ance [95–97]. If SIRT1 is inhibited then insulin promoter activity is suppressed, 
insulin regulatory genes such as v-maf musculoaponeurotic fibrosarcoma oncogene 
homolog A (MafA) and NK6 homeodomain 1 (NKX6.1) mRNA expressions are 
down regulated leading to decreased insulin secretion. On the contrary, activation 
or overexpression of SIRT1 antagonizes reduced insulin transcriptional activity 
by exerting negative effect on pancreatic and duodenal homeobox 1 (PDX1)-
stimulated insulin promoter activity and also abolishes forkhead box O1 protein 
(FOXO1)-insulin transcriptional activity [98].

4.2.2 PPARγ

PPAR-γ regulates the major β cell genes involved in glucose sensing, insulin 
secretion and insulin gene transcription and protects from glucose, lipid, cytokine 
and islet amyloid polypeptide (lAPP)-induced stress pathways [99]. PPAR-γ is a 
member of nuclear hormone receptor superfamily of ligand-activated transcrip-
tion factors and TZDs are oral agents that are high-affinity activators of PPAR-γ 
[100]. PPARγ ablation protects mice from high fat diet induced insulin resistance 
[101] and isolated islets from these mice show blunted TZD response towards 
GSIS [102]. Mice with PPAR-γ ablated pancreas show glucose intolerance at 
baseline with downregulated Pdx-1 and GLUT2 expression in their isolated islets 
[103]. Chronic high glucose can decrease PPAR-γ mRNA levels in mouse islets 
[104]. PPAR-γ is upregulated after 60% pancreatectomy procedure in rats chang-
ing to pro differentiation state from proliferative state [105]. Promoters of GLUT2 
and glucokinase have functional PPREs that bind PPAR-γ/RXRα heterodimer, and 
lead to transcriptional upregulation of these genes in β cell [106, 107]. The expres-
sion of these genes is impaired in diabetic rodent models [108, 109].

PPARγ agonists modulate IAPP-induced ER stress [110]. The islet-specific KO of 
the ATP-binding membrane cassette transporter protein A1 (ABCA1) and PPAR-γ 
KO model both show increased intra-islet triglyceride accumulation and lowered 
GSIS [101, 111]. Rosiglitazone restores GSIS and decreases apoptosis in isolated 
human lipotoxic islets with a reduction in intra-islet triglyceride accumulation 
and reduced inducible nitric oxide synthase (iNOS) expression [112, 113]. PPAR-γ 
agonists also inhibit cytokine-induced activation of JNK in insulinoma cell lines 
[114]. PPAR-γ agonists have been shown to increase AKT phosphorylation in the 
setting of both IAPP-and lipid-inducted toxicity. These effects were blocked by PI3 
kinase inhibitors and associated with increased levels of insulin receptor substrate 2 
(IRS2) proteins [115].

Activation of PPAR-γ inhibits IL-1β and IFN-γ stimulated nuclear translocation 
of p65 subunit of NF-ΚB and DNA binding activity leading to reduced inducible 
nitric oxide synthase and cyclooxygenase-2 expression [116].

PPAR-γ activation also increases intracellular calcium mobilization, insulin 
secretion, and β-cell gene expression through GPR40 and GLUT2 gene upregula-
tion [117]. Thus PPAR-γ agonists not only improve insulin sensitivity in the target 
tissues, but also act within the β-cells.

4.2.3 Wnt

Wnt signaling stimulates β-cell proliferation, specifically Wnt3a promotes 
expression of Pitx2, a direct target of Wnt signaling, and Cyclin D2, an essential 
regulator of cell cycle progression [118]. Single nucleotide polymorphisms (SNPs) 
in TCF7L2 are linked to etiology of T2D [119]. Expression of three Tcf genes  
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(Tcf7, Tcf7l1, Tcf7l2) in pancreas is reduced by treatment with insulin or high fat 
diet feeding [120]. A significant elevation of TCF7L2 mRNA expression occurs in 
pancreatic islets along with impaired insulin secretion [121]. TCF7L2 depletion 
in isolated human or mouse pancreatic islets results in significant increased β-cell 
apoptosis and decreased proliferation with attenuated GSIS. Over-expression of 
TCF7L2 protects islets from glucose- and cytokine-mediated apoptosis [122]. These 
findings suggest that β-cell function and survival are positively regulated by the 
expression of Tcf7l2 in type 2 diabetes.

4.2.4 mTOR

Rapamycin, an mTORC1 complex inhibitor, reduces the number and prolifera-
tion of pancreatic and endocrine progenitors. Mice lacking mTOR in pancreatic 
progenitors suffer from hyperglycemia in neonates, hypoinsulinemia and pancreatic 
agenesis/hypoplasia with pancreas rudiments containing ductal structures lacking 
differentiated acinar and endocrine cells [123].

AMP-activated protein kinase (AMPK) is a controller of β-cell function. 
Inhibition of AMPK in β-cells by high glucose inversely correlates with activation 
of the mammalian Target of Rapamycin (mTOR) pathway. Glucose and amino 
acid sensing ability of AMPK is important in regulation of insulin secretion [124]. 
Rapamycin also induces fulminant diabetes by increasing insulin resistance and 
reducing-cell function and mass [125].

Obesity induced by excess nutrient intake leads to the upregulation of mTORC1/
S6K1 signaling in insulin-sensitive tissues, including β-cells [126–128]. mTORC1 
activation play an initial role in adaptation to nutrient excess and obesity, but 
chronic and persistent hyperactivation could lead to development of insulin resis-
tance by a negative feedback loop on IRS signaling [129].

4.2.5 MCP1

Monocyte chemoattractant protein-1 (MCP-1) a chemokine that regulates 
migration and infiltration of monocytes/macrophages, is constitutively present in 
normal human islet β-cells in the absence of an inflammatory infiltrate and plays 
a key role in monocyte recruitment [130]. NF-kappaB plays an important role for 
MCP-1 expression in β-cells [131]. MCP-1 also induces amylin expression through 
ERK1/2/JNK-AP1 and NF-κB related signaling pathways independent of CCR2. 
Amylin upregulation by MCP-1 may contribute to elevation of plasma amylin in 
obesity and insulin resistance [132].

4.2.6 Nrf2

The Keap1-Nrf2 signaling plays an important role in oxidative stress response and 
metabolism. Nrf2 prevents reactive oxygen species ROS mediated damage in pancre-
atic β-cells [133]. β-cells have low expression levels of antioxidant enzymes, making 
them susceptible to damage caused by ROS. GLP-1 effectively inhibits oxidative 
stress and cell death of β-cells induced by the pro-oxidant tert-butyl hydroperoxide 
(tert-BOOH) [134]. NOX activation through Src signaling plays an important role in 
ROS overproduction and impaired GSIS caused by lipotoxicity [135].

4.2.7 EGFR

Epidermal growth factor receptors are crucial regulators of β-cell proliferation 
and β-cell mass regulation. Partial tissue-specific attenuation of EGFR signaling in 
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islets leads to significantly reduced beta-cell proliferation [136]. Phosphorylation of 
ribosomal S6 kinase, a mammalian target of rapamycin (mTOR) target, is upregu-
lated in islets from glucose and interleukin injected 6-month-old rats. β-cell mass 
expansion occurs in presence of chronic nutrient excess EGFR signaling, mTOR 
activation, and FOXM1-mediated cell proliferation [137].

4.2.8 ER stress

In pancreatic β-cells, the endoplasmic reticulum (ER) is an important cellular 
compartment involved in insulin biosynthesis. ER stress elicits a signaling cascade 
known as the unfolded protein response (UPR) which regulates both function and 
survivability of β-cells [138]. Chronic high glucose leads to insulin mRNA degrada-
tion by IRE1α activation, profuse XBP-1 splicing, and induction of pro-apoptotic 
effectors, such as Jun N-terminal kinase (JNK) and C/EBP homologous protein 
(CHOP), causing β-cell dysfunction and death [139–142]. Free fatty acids (FFAs) 
and inflammatory cytokines also induce ER stress in β-cells through upregulation 
of the proapoptotic effector CHOP, and JNK and caspase-12 activation by UPR 
[143–146].

4.2.9 Inflammasome

ER stress, oxidative stress and high glucose concentrations activates NLRP3 
inflammasome leading to interleukin (IL)-1β production and caspase-1 dependent 
pyroptosis. Whether IL-1β or intrinsic NLRP3 inflammasome activation contributes 
to β-cell death is disputed [147].

The Nlrp3 inflammasome plays important role in obesity-induced insulin resis-
tance and β-cell failure. Endocannabinoids contribute to insulin resistance through 
activation of peripheral CB1 receptors (CB1Rs) promoting β-cell failure [148]. 
NLRP3-knockout mice showed improved glucose profiles after a high-fat diet, due 
to attenuated IL-1β release from islet cells. Hyperglycemia-induced IL-1β release 
leads to increased ROS, dissociation of TXNIP from thioredoxin and its binding to 
NLRP3 and activation of NLRP3 [149].

4.2.10 TLR4

Toll-like receptor 4 (TLR4), a pattern recognition receptor, is a crucial element 
in the triggering of innate immunity, which binds to pathogen-associated molecules 
such as Lipopolysaccharide (LPS), and initiates a cascade of pro-inflammatory 
events [150]. TLR4 is also known to occur in pancreatic β-cells but its function is 
yet to be clearly established. β-cells respond to palmitate via TLR4/MyD88 path-
way and produce chemokines that recruit M1-type proinflammatory monocytes/
macrophages to the islets [151]. High fat diet-induced obesity stimulates TLR4 
up-regulation in pancreatic β-cells, and lead to the recruitment of macrophage into 
pancreatic islet, which finally results in pancreatic β-cell dysfunction [152].

Fetuin-A, a secreted glycoprotein, can promote lipotoxicity in β-cells through 
the TLR4-JNK-NF-κB signaling pathway [153]. Later it was also discovered that 
pancreatic β-cells are capable of secreting fetuin-A under free fatty acid stimulation 
which ultimately leads to inflammation [154].

4.2.11 G-proteins

Medium- to long-chain fatty acids activate FFAR1/GPR40 and it is pre-
dominantly coupled to Gαq which signals through PLC-mediated hydrolysis of 
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membrane phospholipids leading to the formation of IP3 and DAG [155, 156]. 
Glucose tolerance and insulin secretion is impaired in mice due to β-cell-specific 
inactivation of the genes encoding the G protein α-subunits Gαq and Gα11. Thus, 
Gq/G11-mediated signaling pathway mediates insulin secretion by glucose stimula-
tion [157] (Figure 3).

5. Conclusion

In conclusion, insulin secretion is stimulated by glucose, free fatty acids and 
amino acids after their breakdown in gut following ingestion. Glucose potentiates 
KATP channel-dependent insulin secretion. Free fatty acids result in insulin secretion 
from β-cells through free fatty acid receptor (FFAR)-1. Under incretin stimulation 
the amino acids trigger insulin secretion by binding to their cell surface receptors. 
Hormones like GLP-1 and estrogen stimulate insulin secretion, melatonin has both 
stimulatory and inhibitory effect and leptin and growth hormone have only inhibi-
tory effects upon insulin secretion. Discussing about the various signaling pathways, 
mainly Wnt, G-proteins, EGFR, mTOR, SIRT1, PPARγ mediate increased insulin 
secretion, β-cell proliferation and improved GSIS in presence of nutrients, while 
in case of excessive nutrient load TLR4, MCP1, inflammasomes and Nrf2 impairs 
insulin secretion and conduces β-cell death. These excess of nutrients are the key 
players behind glucotoxicity and lipotoxicity, which ultimately lead to compensa-
tory insulin secretion, β-cell mass expansion initially and β-cell death under chronic 
nutrients overload. Our major concern should be leading a healthy lifestyle, active 
routine, regular exercise, balanced diet and constant awareness about the incidence 
of type 2 diabetes, for eradication and curing of the disease to some extent.

Figure 3. 
Various signaling pathways regulating insulin secretion signaling [90, 91, 98, 99, 106, 107, 120, 129, 132, 134, 135, 
137, 139–142, 153–157].
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