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Chapter

TBL-Induced Structural Vibration
and Noise
Zhang Xilong, Kou YiWei and Liu Bilong

Abstract

One of most import noise sources in a jet powered aircraft is turbulent boundary
layer (TBL) induced structural vibration. In this chapter, the general model for the
prediction of TBL-induced plate vibration and noise is described in detail. Then
numerical examples for a typical plate are illustrated. Comparisons of plate
vibration and radiated noise between numerical results and wind tunnel test are
presented. The effects of structural parameters on modal-averaged radiation
efficiency and therefore the radiated noise are discussed. The result indicates that
an increment of flow velocity will increase the acoustic radiation efficiency below
the hydrodynamic coincidence frequency range. The main reason for this
phenomenon is that a higher convection velocity will coincide with lower order
modes which have higher radiation efficiencies.

Keywords: turbulent boundary layer, plate vibration, radiated noise,
modal radiation efficiency

1. Introduction

The interior noise level in a jet aircraft is mainly depend on noise which
generated by turbulent boundary layers (TBL), if the rest of noise sources such as
ventilation systems, fans, hydraulic systems, etc. have been appropriately
acoustically treated. When the aircraft passes through the atmosphere, the turbu-
lent boundary layer creates pressure fluctuations on the fuselage. These pressure
fluctuations cause the aircraft fuselage to vibrate. The noise generated by the
vibration is then transmitted to the cabin.

The noise emitted by the aircraft fuselage depends on the speed of the vibrating
plate, which in turn depends on the speed of the aircraft, the geometry and size of
the plates, and the loss or damping of the plates. It is obvious that the acoustic
performances of the internal system, trim panels etc., will also affect the noise
inside the aircraft. Graham [1] came up with a model in aircraft plates to predict
TBL induced noise, in which the modal excitation terms were calculated by an
analytical expression. In Graham’s another research [2], the advantages of various
models describing the cross power spectral density induced by a flow or TBL across
a structure was discussed. Han et al. [3] tried to use energy flow analysis to predict
the noise induced by TBL. The method can better predict the response caused by
the TBL excitation. However, the noise radiation caused by the flat panel cannot be
predicted well. To avoid this deficiency, Liu et al. [4–6] described a model to predict
TBL induced noise for aircraft plates. In their work, the modal excitation terms and
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acoustical radiation efficiency can be predicted properly and the predicted results
are also compared with that of the wind tunnel and in-flight test. Rocha and
Palumbo [7] further investigated the sensitivity of sound power radiated by aircraft
panels to TBL parameters, and discussed the findings by Liu [4] that ring stiffeners
may increase TBL induced noise radiation significantly.

The radiation efficiency of a plate plays an important role in vibro-acoustic
problems. In recent related research, the sound medium around the fuselage of the
aircraft is often considered to be stationary. Under this assumption, Cremer and
Heckl [8] used a more concise formula to predict the acoustic radiation efficiency of
an infinite plate. Wallace [9] derived an integral formula based on far-field acoustic
radiation power to calculate the modal acoustic radiation efficiency of a finite plate.
Kou et al. [10] proposed modifications to the classical formulas given by Cremer
and Leppington, regarding the influence of structural damping on the radiation
efficiency.

A comparison of the acoustic radiation of the plate with stationary fluid and
convective fluid-loaded can be found in [11–13]. Graham [11] and Frampton [12]
studied the influence of the mean flow on the modal radiation efficiency of a
rectangular plate. They found that at high speeds, as the modal wave moves
upstream, the increase of flow velocity would reduce the modal critical frequency.
As a consequence, the acoustics radiation efficiency under the critical frequency of
the plate would be higher. Kou et al. [13] also conducted a research for the effect of
convection velocity in the TBL on the radiation efficiency. Kou et al. found that
the modal averaged radiation efficiency will increase with the increase of the
convection velocity below the hydrodynamic coincidence frequency. The study also
showed that the increase of the structural loss factor could increase the modal
average radiation efficiency at the subcritical frequencies, and the damping effect
increases with the increase of the flow velocity.

For a plate subjected to a TBL fluctuation, although a large amount of research
work used experimental and computational methods for the vibro-acoustical
properties of plates, it is worth a chapter to introduce the prediction model and
summarize recent findings for TBL induced plate vibrations and noise radiations.
The following sections begins with a description of models for the wavenumber-
frequency spectrum of TBL, and then a specific presentation of the calculation of
vibro-acoustic responses of the wall plate excited by TBL is followed. In the end,
the effect of flow velocity (Mc) and structural damping on the modal averaged
radiation efficiency is discussed.

2. Models for the wavenumber-frequency spectrum of turbulent
boundary layer fluctuating pressure

As for the research about wavenumber-frequency spectrum of turbulent
boundary layer, Corcos [14], Efimtsov [15], Smolyakov-Tkachenko [16], Williams
[17], Chase [18, 19] and other researchers put up with a series of widely used of
wavenumber-frequency spectrum model. The models are established according to a
large number of experimental data and statistical theory of turbulence. The follow-
ing parts introduce some typical wavenumber-frequency spectrum models.

2.1 The Corcos model

The model proposed by Corcos during the last few decades has been widely used
for many different types of problems. The model is applicable in the immediate
neighborhood of the so-called convective ridge [20], as long as ωδ/U∞ > 1. In this
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expression δ is the thickness of the boundary layer and U∞ the velocity of the flow
well away from the structure. The flat-plate boundary layer is taken to lie in the x-y
plane of a Cartesian coordinate system, with mean flow in the direction of the
x-axis. Corcos assumes that the cross power spectral density, between the pressures
at two different positions separated by the vector n can be expressed as

Spp ξx; ξy;ω
� �

¼ Φpp ωð Þ exp �γ1kc ξxj jð Þ exp �γ3kc ξy

�

�

�

�

�

�

� �

exp �jkcξx
� �

(1)

where Φpp(ω) is the auto-power spectral density of turbulent boundary layer
fluctuating pressure, kc = ω/Uc is the convection wave number. γ1 and γ3 can be
obtained by fitting experimental data, γ1 and γ3 are 0.11–0.12 and 0.7–0.12
respectively for smooth rigid siding.

The Fourier Transform of ξx and ξy can obtain wavenumber-frequency spectrum

Spp kx; ky;ω
� �

¼
ð ð

Spp ξx; ξy;ω
� �

exp j kxξx þ kyξy

� �h i

dξxdξy

¼ Φpp ωð Þ 2γ1kc

kx � kcð Þ2 þ γ1kcð Þ2
� 2γ3kc

k2y þ γ3kcð Þ2
(2)

So, the normalized wavenumber-frequency spectrum in wavenumber domain is

Ŝpp kx; ky;ω
� �

¼ k2c
Φpp ωð Þ Spp kx; ky;ω

� �

¼ 2γ1
kx=kc � 1ð Þ2 þ γ21

� 2γ3

ky=kc
� �2 þ γ23

(3)

2.2 The generalized Corcos model

Caiazzo and Desmet [21] proposed a generalized model which based on the
Corcos model. The model uses butterworth filter to replace exponential decay of x
and y direction in the Corcos model. It can make the wavenumber-frequency
spectrum attenuation rapidly near the convection wave number by adjusting the
parameters. Expression of this model is as follows

Spp ξx; ξy;ω
� �

¼ �Φpp ωð Þ sin π=2Pð Þ sin π=2Qð Þ exp �jkcξx
� �

� ∑
P�1

p¼0
exp j θp þ γ1kc ξxj j

� �� �

� ∑
Q�1

q¼0
exp j θq þ γ1kc ξxj j

� �� �

(4)

where θp = (π/2P)�(1 + 2p), θq = (π/2Q)�(1 + 2q). When P = Q = 1, Eq. (4) is equal
to the Corcos model.

Analogously, the normalized wavenumber-frequency spectrum in wavenumber
domain is

Ŝpp kx; ky;ω
� �

¼ � k2c
π2

PQ γ1kcð Þ2P�1

kx � kcð Þ2P þ γ1kcð Þ2P
h i

∑
P�1

p¼0
ejθp

� Q γ3kcð Þ2Q�1

ky
� �2Q þ γ3kcð Þ2Q
h i

∑
Q�1

q¼0
ejθq

(5)
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2.3 The Efimtsov model

The Efimtsov model assumes, as in the Corcos model, that the lateral and the
longitudinal effects of the TBL can be separated. However, in the Efimtsov model the
dependence of spatial correlation on boundary layer thickness, δ, as well as spatial
separation is taken into account. Correlation length 1/γ1kc and 1/γ3kc in Corcos model
are replaced with Λx and Λy. The Efimtsov model gives the cross power spectral
density of the pressure at two different positions separated by the vector ξ as

Spp ξx; ξy;ω
� �

¼ Φpp ωð Þ exp � ξxj j=Λxð Þ exp � ξy

�

�

�

�

�

�=Λy

� �

exp �jkcξx
� �

(6)

where

Λx ¼ δ
a1Sh

Uc=Uτ

	 
2

þ a22
Sh2 þ a2=a3ð Þ2

" #�1=2

(7)

Λy ¼
δ a4 Sh

Uc=Uτ

� �2
þ a25

Sh2þ a5=a6ð Þ2

� ��1=2

, M∞ <0:75

δ a4 Sh
Uc=Uτ

� �2
þ a27

� ��1=2

, M∞>0:9

8

>

>

>

<

>

>

>

:

(8)

where Sh is the Strouhal number and equal to Sh = ωδ/Uτ and Uτ the friction
velocity which varies with the Reynolds number but is typically of the order
0.03 U∞–0.04 U∞. At high frequencies these expressions correspond to a Corcos
model with γ1 = 0.1 and γ3 = 0.77. Coefficient a1–a7 are 0.1, 72.8, 1.54, 0.77, 548, 13.5
and 5.66 respectively. When 0.75 < M∞ < 0.9, the Λy can be determined by
numerical interpolation. At high frequency, the Efimtsov model and the Corcos
model are equal while γ1 = 0.10 and γ3 = 0.77.

The normalized wavenumber-frequency spectrum is

Ŝpp kx; ky;ω
� �

¼ 2Λ�1
x

kx=kc � 1ð Þ2 þ Λxkcð Þ�2 �
2Λ�1

y

k2y þ Λ
�2
y

(9)

2.4 The Smolyakov-Tkachenko model

Like Efimtsov model, Smolyakov-Tkachenko model also takes the boundary
layer thickness and scale space separation of boundary layer effect of fluctuating
pressure into account. Based on the experimental results, the difference is that
the Smolyakov-Tkachenko model amend the space scale function index

exp � ξxj j=Λx þ ξy

�

�

�

�

�

�=Λy

� �h i

to exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2x=Λ
2
x þ ξ2y=Λ

2
y

� �

r� �

, in order to make

the computing result is consistent with the experimental results.
The normalized wavenumber-frequency spectrum is

Ŝpp kx; ky;ω
� �

¼ 0:974A ωð Þh ωð Þ F kx; ky;ω
� �

� ΔF kx; ky;ω
� �� �

(10)

where

A ωð Þ ¼ 0:124 1� 1

4kcδ
∗ þ 1

4kcδ
∗

	 
2
" #1=2

(11)
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h ωð Þ ¼ 1� m1A

6:515
ffiffiffiffi

G
p

� ��1

(12)

m1 ¼
1þ A2

1:025þ A2 (13)

G ¼ 1þ A2 � 1:005m1 (14)

F kx; ky;ω
� �

¼ A2 þ 1� kx=kcð Þ2 þ ky=kc
6:45

	 
� ��3=2

(15)

ΔF kx; ky;ω
� �

¼ 0:995 1þ A2 þ 1:005

m1
m1 � kx=kcð Þ2 þ ky=kc

� �2 �m2
1

n o

� ��3=2

(16)

where δ* is the thickness of boundary layer, which is also set as δ* = δ/8.

2.5 The Ffowcs-Williams model

Ffowcs-Williams using Lighthill acoustic analogy theory to deduce a frequency-
wave spectrum model, in which the speed of the pneumatic equation is set as the
source term by Corcos form. A number of parameters in the model and function
need further experiments to determine, which is not widely used at present. Hwang
and Geib [22] ignore compression factor of the influence of this model to put
forward a simplified model. The normalized wavenumber-frequency spectrum is

Ŝpp kx; ky;ω
� �

¼ kj j
kc

	 
2 2γ1
kx=kc � 1ð Þ2 þ γ21

� 2γ3

ky=kc
� �2 þ γ23

(17)

2.6 The Chase model

Chase’s model is another model commonly used and believed to describe the
low-wavenumber domain better than Corcos’s model, which has the same starting
point with the Ffowcs-Williams model. The normalized wavenumber-frequency
spectrum can be described as

Ŝpp kx; ky;ω
� �

¼ 2πð Þ3ρk2cU3
τ

Φ ωð Þ CMk
2
xK

�5
M þ CT kj j2K�5

T

� �

(18)

where

K2
M ¼ ω� Uckxð Þ2

h2U2
τ

þ kj j2 þ bMδð Þ�2 (19)

K2
T ¼ ω� Uckxð Þ2

h2U2
τ

þ kj j2 þ bTδð Þ�2 (20)

Φ ωð Þ ¼ 2πð Þ2ρ2hU4
τ

3ω 1þ μ2ð Þ CMFM þ CTFTð Þ (21)

FM ¼ 1þ μ2α2M þ μ4 α2M � 1
� �� �

= α2M þ μ2 α2M � 1
� �� �3=2

(22)

FT ¼ 1þ α2T þ μ2 3α2T � 1
� �

þ 2μ4 α2T � 1
� �� �

= α2T þ μ2 α2T � 1
� �� �3=2

(23)
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α2M ¼ 1þ bMkcδð Þ�2, α2T ¼ 1þ bTkcδð Þ�2 (24)

μ ¼ hUτ=Uc (25)

CM ¼ 0:0745, CT ¼ 0:0475, bM ¼ 0:756, bT ¼ 0:378, h ¼ 3:0 (26)

2.7 Comparison of models

Figure 1 shows the comparison of the above models. In the figure, the parame-
ters used by the Corcos model are γ1 = 0.116, γ3 = 0.77, the order of Generalized
Corcos model is (P = 1, Q = 4). From the comparison among those models, it can be
seen that the Generalized Corcos model attenuates quickly in the vicinity of the
convective wave number, and its order is adjustable, which can effectively control
the computational accuracy. The model can obtain more accurate prediction results
by adjusting parameters. In addition, the Chase model is considered to be able to
better describe the pressure characteristics of TBL pulsation at low wave number
segment, while other models have some defects at low wave number segment.
However, Corcos model is the most commonly used in practical application.
Because the model is simple in form and has clear physical significance, a simple
calculation formula can usually be obtained when solving the structural vibration
and sound response induced by turbulent boundary layer. It should be noted that
the structure radiated sound predicted by Corcos model tends to be larger at low
wave number.

3. Calculation of vibro-acoustic responses of the wall plate excited
by TBL

Consider a simply supported thin rectangular plate excited by TBL, as shown in
Figure 2. In the figure, Uc is turbulent flow velocity, and the direction of the
incoming flow is parallel to the X-axis. In this chapter, vibro-acoustic responses are
solved by modal superposition method [23].

Figure 1.
A comparison of models for different wavenumber-frequency spectrum of turbulent boundary layer fluctuating
pressure, reproduced from Ref. [23].
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Assume that point s on the plate is excited by a normal force F at points, and the
vibration displacement response at point rcan be calculated by

W r;ωð Þ ¼ H r; s;ωð Þ � F s;ωð Þ (27)

where s = (xo, y0), r = (x, y).
The impulse response H satisfies the following governing equation

D 1þ jηð Þ∇4 �msω
2

� �

H r; s;ωð Þ ¼ δ r� sð Þ (28)

The impulse response can be expanded as

H r; s;ωð Þ ¼ ∑
M

m¼1
∑
N

n¼1
Hmn ωð ÞΨmn rð ÞΨmn sð Þ (29)

The modal amplitude of impulse response by using the Galerkin method can be
described as

Hmn ωð Þ ¼ 1

DKmn 1þ jηð Þ �msω2
(30)

3.1 Vibro-acoustic responses of plate solved by spatial domain integration

Cross spectral density of displacement response for any two points on the plate
can be defined as

SWW r1; r2;ωð Þ ¼
Ð

S

Ð

SSpp s1 � s2;ωð ÞH ∗
r1; s1;ωð ÞH r2; s2;ωð Þds1ds2

¼ Φpp ωð Þ ∑
M

m¼1
∑
N

n¼1
Hmn ωð Þj j2Ψmn r1ð ÞΨmn r2ð ÞJmn ωð Þ

(31)

where

Jmn ωð Þ ¼
ð

S

ð

S
Spp s1 � s2ð ÞΨmn s1ð ÞΨmn s2ð Þ ds1ds2 (32)

In the above equation, Jmn(ω) is called modal excitation term.
When using the Corcos model, the coordinate transformation of the quadruple

integral in the modal excitation term can be obtained

Jmn ωð Þ ¼ 4

S

1

kmkn
J1mn þ J2mn þ

1

km
J3mn þ

1

kn
J4mn

	 


(33)

Figure 2.
Schematic diagram of simply supported thin rectangular plate excited by TBL.
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Where

J1mn

J2mn

J3mn

J4mn

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

¼
ðb

0

ða

0

1

a� xð Þ b� yð Þ

b� yð Þ

a� xð Þ

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

�

sin kmx � sin kny

cos kmx � cos kny

sin kmx � cos kny

cos kmx � sin kny

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

~Spp x; y;ωð Þdxdy

(34)

~Spp x; y;ωð Þ ¼ exp �γ1kcxð Þ exp �γ3kcyð Þ cos kcxð Þ (35)

When r1 = r2, the auto-spectral density of displacement response can be
obtained as

SWW r;ωð Þ ¼ Φpp ωð Þ ∑
M

m¼1
∑
N

n¼1
Hmn ωð Þj j2Ψ 2

mn rð ÞJmn ωð Þ (36)

As for vibration (V = jωW) the auto-spectral density is

SVV r;ωð Þ ¼ ω2SWW r;ωð Þ

¼ ω2Φpp ωð Þ ∑
M

m¼1
∑
N

n¼1
Hmn ωð Þj j2Ψ 2

mn rð ÞJmn ωð Þ
(37)

So, vibration energy and acoustic radiation energy can be expressed as

V2
� �

¼ 1

S

ð ð

SVV x; y;ωð ÞdS

¼ 1

S
ω2

Φpp ωð Þ ∑
M

m¼1
∑
N

n¼1
Jmn ωð Þ Hmn ωð Þj j2

(38)

Π
r ¼ ρ0c0ω

2
Φpp ωð Þ ∑

M

m¼1
∑
N

n¼1
σmnJmn ωð Þ Hmn ωð Þj j2 (39)

According to the definition, the modal average acoustic radiation efficiency
excited by TBL of the thin plate is

σ ¼ ∑M
m¼1∑

N
n¼1σmn Jmn ωð Þ Hmn ωð Þj j2

∑M
m¼1∑

N
n¼1 Jmn ωð Þ Hmn ωð Þj j2

(40)

3.2 Vibro-acoustic responses of plate solved by wavenumber domain
integration

Another approach to obtain the cross spectral density of vibration response is to
solve it directly by using the separable integral property of some turbulent bound-
ary layer pulsating pressure models in the wavenumber domain [24].

The wavenumber-frequency spectrum of TBL satisfies the following relationship

Spp s1 � s2;ωð Þ ¼ 1

2πð Þ2
ð

Spp k;ωð Þ exp �jk s1 � s2ð Þ½ �dk

¼ 1

2πð Þ2
ð ð

Spp kx; ky;ω
� �

exp �j kxξx þ kyξy

� �h i

dkxdky

(41)
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where s1 � s2 ¼ ξx; ξy

� �

, k ¼ kx; ky
� �

.

The formula can be obtained by substituting the cross spectral density of the
vibration response

SWW r1; r2;ωð Þ ¼
ð ð

Spp s1; s2;ωð ÞH ∗
r1; s1;ωð ÞH r2; s2;ωð Þds1ds2

¼ 1

2πð Þ2
ð

Spp k;ωð Þ exp �jk s1 � s2ð Þ½ �dk
ð ð

H ∗
r1; s1;ωð ÞH r2; s2;ωð Þds1ds2

¼ 1

2πð Þ2
ð

Spp k;ωð Þdk
ð

H ∗
r1; s1;ωð Þ exp �jks1ð Þds1

ð

H r2; s2;ωð Þ exp jks2ð Þds2

¼ 1

2πð Þ2
ð

Spp k;ωð ÞG ∗
r1; k;ωð ÞG r2; k;ωð Þdk

(42)

where

G r; k;ωð Þ ¼
ð

H r; s;ωð Þ exp jksð Þds

¼ ∑
M

m¼1
∑
N

n¼1
Hmn ωð ÞΨmn rð Þ

ð

Ψmn sð Þ exp jksð Þds

¼ ∑
M

m¼1
∑
N

n¼1
Hmn ωð ÞΨmn rð ÞImn kð Þ

(43)

Imn kð Þ ¼
Ð

Ψmn sð Þ exp jksð Þds

¼ 2
ffiffiffiffiffi

ab
p

ðb

0

ða

0
sin kmxð Þ sin knyð Þ exp j kxxþ kyy

� �� �

dxdy

¼ 2
ffiffiffiffiffi

ab
p � km 1� cos mπð Þ exp jkxa

� �� �

k2x � k2m
�
kn 1� cos nπð Þ exp jkyb

� �h i

k2y � k2n

(44)

Similarly, the spectral density of the vibration velocity can be obtained as

SVV r;ωð Þ ¼ ω2

2πð Þ2
ð

Spp k;ωð Þ G r; k;ωð Þj j2dk

¼ ω2

2πð Þ2
∑
M

m¼1
∑
N

n¼1
Ψ 2

mn rð Þ Hmn ωð Þj j2
ð

Spp k;ωð Þ Imn kð Þj j2dk
(45)

As for the Corcos model, we can obtain that

ð

Spp k;ωð Þ Imn kð Þj j2dk ¼ 4

S
Φpp ωð Þ 2γ1kcΛm ωð Þ½ � 2γ3kcΓn ωð Þ½ � (46)

where

Λm ωð Þ ¼ 2k2m

ð∞

�∞

1� cos mπð Þ cos kxað Þ
k2x � k2m
� �2

kx � kcð Þ2 þ γ1kcð Þ2
h i dkx (47)
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Γn ωð Þ ¼ 2k2n

ð∞

�∞

1� cos nπð Þ cos kyb
� �

k2y � k2n

� �2
k2y þ γ3kcð Þ2
h i

dky (48)

According to the residue theorem, Λm(ω) and Γn(ω) can be further simplified as

Λm ωð Þ ¼ 2k2m

ð∞

�∞

1� cos mπð Þ cos kxað Þ
k2x � k2m
� �2

kx � kcð Þ2 þ γ1kcð Þ2
h i dkx

¼ 2πk2m
a

4k2m km þ kcð Þ2 þ γ1kcð Þ2
h iþ a

4k2m km � kcð Þ2 þ γ1kcð Þ2
h i

8

<

:

þ 1� cos mπð Þ exp � jþ γ1ð Þkca½ �

2γ1kcð Þ k2c 1� jγ1ð Þ2 � k2m

h i2 þ 1� cos mπð Þ exp j� γ1ð Þkca½ �

2γ1kcð Þ k2c 1þ jγ1ð Þ2 � k2m

h i2

9

>

=

>

;

(49)

Γn ωð Þ ¼ 2k2n

ð∞

�∞

1� cos nπð Þ cos kyb
� �

k2y � k2n

� �2
k2y þ γ3kcð Þ2
h i

dky

¼ 2πk2n
b

2k2n k2n þ γ3kcð Þ2
h iþ 1� cos nπð Þ exp �γ3kcbð Þ

γ3kcð Þ k2n þ γ3kcð Þ2
h i2

9

>

=

>

;

8

>

<

>

:

(50)

Vibration energy and sound radiation energy are

V2
� �

¼ ω2

2πð Þ2S

ð ð

Spp k;ωð Þ G r; k;ωð Þj j2dkdr

¼ ω2

2πð Þ2S
∑
M

m¼1
∑
N

n¼1
Hmn ωð Þj j2

ð

Spp k;ωð Þ Imn kð Þj j2dk

¼ 1

S
ω2

Φpp ωð Þ 4

S

γ1kc
π

γ3kc
π

	 


∑
M

m¼1
∑
N

n¼1
Λm ωð ÞΓn ωð Þ Hmn ωð Þj j2

(51)

Π
r ¼ 1

2πð Þ2
ρ0c0ω

2 ∑
M

m¼1
∑
N

n¼1
σmn Hmn ωð Þj j2

ð

Spp k;ωð Þ Imn kð Þj j2dk

¼ ρ0c0ω
2Φpp ωð Þ 4

S

γ1kc
π

γ3kc
π

	 


∑
M

m¼1
∑
N

n¼1
σmnΛm ωð ÞΓn ωð Þ Hmn ωð Þj j2

(52)

Compare the above two equations, it can be seen that

Jmn ωð Þ ¼ 4

S

γ1kc
π

Λm ωð Þ
� �

� γ3kc
π

Γn ωð Þ
� �

(53)

Finally, the modal average acoustic radiation efficiency can be obtained as

σ ¼ ∑M
m¼1∑

N
n¼1σmnΛm ωð ÞΓn ωð Þ Hmn ωð Þj j2

∑M
m¼1∑

N
n¼1Λm ωð ÞΓn ωð Þ Hmn ωð Þj j2

(54)
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By observing the above equation, it can be found that only the modal excitation
term in the modal averaged radiation efficiency is related to turbulence.

Figure 3 shows the comparison of two methods for calculating the modal aver-
aged radiation efficiency excited by TBL. The size of the plate is 1.25 � 1.1 m, and
the thickness is 4 mm, structural loss factor of aluminum plate is 1%, mach number
is 0.5. Obviously, the accuracy of the two methods is equal. Computation speed of
analytical method is much faster than integral method, but its range of application
has limitations. Only the Corcos model and Efimtsov model can be used to separate
integrals in the wave number domain.

The comparison of measured and predicted velocity spectral density and the
radiated sound intensity of a plate (a � b = 0.62 � 0.3 m, and the thickness is
1.1 mm) is shown in Figure 4, which is only compared in narrow band. In this
study, the loss factor of the plate assumes as 1.5%. The measured and predicted
results for radiated sound intensity and auto spectrum of velocity have a good
agreement with the frequency ranges from 100 to 3500 Hz. The agreement of the
two type curves provides solid verification to test measured and predicted results.

3.3 Characteristic frequency in hydrodynamic coincidence

When the velocity of bending wave in the wall plate is close to the sound
velocity in the air, the sound radiation efficiency reaches the maximum value. The
corresponding frequency is the so-called critical frequency, and its expression is

f c ¼
c20
2π

ffiffiffiffiffiffi

ms

D

r

(55)

In the case of flow, when the velocity of flexural wave propagation in the wall
plate is close to the turbulent convection velocity, the wall plate is most excited by
the fluctuating pressure of TBL. The corresponding frequency is defined as the
hydrodynamic coincidence frequency

Figure 3.
Comparison of calculation methods of the modal averaged radiation efficiency excited by TBL. Reproduced
from Ref. [23].

11

TBL-Induced Structural Vibration and Noise
DOI: http://dx.doi.org/10.5772/intechopen.85142



f h ¼
U2

c

2π

ffiffiffiffiffiffi

ms

D

r

(56)

Similarly, for order (m, n) mode, its critical frequency and hydrodynamic coin-
cidence frequency are

f c,mn ¼
c0
2π

kmn (57)

f h,mn ¼
Uc

2π
kmn (58)

In conclusion, the relationship between critical frequency and hydrodynamic
coincidence frequency can be summarized as follows

f h ¼ M2
c � f c (59)

f h,mn ¼ Mc � f c,mn (60)

In the above two equations, Mc = Uc/c0 is mach number. Subsonic turbulence is
generally considered, so the hydrodynamic coincidence frequency is always less
than the critical frequency of the plate. It is important to note that the characteris-
tics of frequency is a reference value which is based on the infinite plate hypothesis.
Actually, the characteristics frequency of the limited plate slightly higher than a
reference value. In addition, for the transverse flow problem, modal power line
frequency can be thought of only related to the transverse mode. That is to say,
fh,mn ≈ Uckm/2π, where km = mπ/a is lateral modal wave number.

Figure 4.
Measured and predicted velocity auto spectrum and the radiated sound intensity of the plate with the size of
a � b = 0.62 � 0.3 m. Narrow band analysis in per Hz. Flow speed 86 m/s.
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4. Effect of flow velocity and structural damping on the acoustic
radiation efficiency

4.1 Effect of convection velocity on the modal averaged radiation efficiency

The specific parameters and dimensions used in the calculation are listed in
Table 1.

The increment of vibration power and acoustic radiation energy are different
with the increase of the velocity, which indicates that the changing of velocity can
affect the modal averaged radiation efficiency. The modal averaged radiation effi-
ciency of the aluminum plate at three flow velocities (Mc = 0.5; 0.7; 0.9) is shown in
Figure 5. It can be seen that when the Mc increases from 0.5 to 0.9, the modal
averaged radiation efficiency will increase by 3–7 dB below the hydrodynamic
coincidence frequency. And the corresponding hydrodynamic coincidence fre-
quencies (fh) are 1482, 2905, and 4802 Hz, respectively. The results show that the
modal averaged radiation efficiency increases in the frequency range below the
hydrodynamic coincidence frequency. The increase of the modal averaged radiation
efficiency indicates that with the increase of flow velocity, the increment of the
radiated sound power is larger than that of the mean square velocity.

The phenomenon that the modal averaged radiation efficiency increases with
the flow velocity can be explained by the hydrodynamic coincidence effect. For
the lateral incoming flow problem, the hydrodynamic coincidence is mainly

Plate length a 1.25 m

Plate width b 1.1 m

Plate thickness h 0.002 m

Plate surface density ms 5.4 kg/m2

Plate bending stiffness D 52 Nm

Air density ρ0 1.21 kg/m3

Sound speed c0 340 m/s

Table 1.
Parameters used in calculation.

Figure 5.
Effect of the convective Mach number on the modal averaged radiation efficiency of the finite aluminum plate.
Reproduced from Ref. [23].
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determined by the lateral modal trace speed and the convection velocity. When the
bending wave velocity of the lateral mode is the same as the turbulent flow velocity
(Uc = 2πf/km), the corresponding hydrodynamic coincidence frequency is f =mUc/2a.
Thus a higher convection velocity at the same frequency will lead the TBL excita-
tion to coincide with a lower order lateral mode.

The reason for above phenomenon may be further explored through the modal
excitation terms. As illustrated in Figure 6, the lateral modal excitation term
(10log10Λm(ω)) is plotted with the lateral mode number (m) and frequency for
different flow velocity (Mc). In the figure, the peak of the lateral mode excitation
term corresponds to the maximum excitation and its position depends on the
hydrodynamic coincidence frequency. The black bold lines in the two sub graphs
are the positions where the hydrodynamic coincidence occurs. It can be seen that
the slope of the hydrodynamic coincidence line is inversely proportional to the flow
velocity, and the higher the velocity is, the lower the order of a certain frequency is.
In addition, the lateral modes near the hydrodynamic coincidence line are all
strongly excited. As the frequency increases, the number of these modes increases,
but the amplitude of their corresponding mode excitation term decreases. Below the

Figure 6.
Variation of the lateral modal excitation term with the lateral mode number and the frequency of a finite
aluminum plate. (a) Convective Mc = 0.5 and (b) convective Mc = 0.9. Reproduced from Ref. [13].
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critical frequency, a lower order lateral mode always has higher modal averaged
radiation efficiency than that of a higher order lateral mode with the same n, since
the modal critical frequency moves to lower frequency. So plate with higher flow
velocity is supposed to have higher modal averaged radiation efficiency.

As an example, the hydrodynamic coincidence lines for different flow velocity
(Mc) and the modal radiation efficiencies of mode (m, 1) are illustrated in Figure 7.
The black solid lines in the figure are the hydrodynamic coincidence line
corresponding to the mode order and frequency. It can be seen that at a certain
frequency, the modal averaged radiation efficiency of the hydrodynamic coinci-
dence modes at higher velocity is always greater than that of the low velocity. In a
word, an increase of the flow velocity will increase the modal radiation efficiency of
the coincided mode, and then results in the increase of the modal averaged radiation
efficiency. Besides, owing to the low pass property of the modal excitation term, the
increase of the modal radiation efficiency is restrained above the hydrodynamic
coincidence frequency. As a consequence, the modal averaged radiation efficiency
is great affected by the flow velocity which only occurs below the hydrodynamic
coincidence frequency.

4.2 Effect of structural damping on modal averaged radiation efficiency

The modal averaged radiation efficiency changes with structural loss factors for
different flow velocity (Mc), as shown in Figure 8. The reference value is calculated
according to Leppington’s formula [25]. Though Leppington’s formula is widely
used in statistical energy analysis, it does not take the flow and structural damping
into account. Figure 8 indicates that an increase of the structural loss factor will
increase the modal averaged radiation efficiency under the critical frequency, but
the increments are different for different flow velocity. It is found that the modal
averaged radiation efficiency is not sensitive to the change of structure loss factor at
low Mach number. For example, for a typical high-speed train (Mc = 0.25), the
increased modal averaged radiation efficiency is less than 2 dB in the frequency
band below the critical frequency when the structural loss factor increases from 1 to
4%. In the case of high flow velocity, the effect of structure loss factor on the modal
averaged radiation efficiency is much obvious. When Mc = 0.7, the modal averaged
radiation efficiency will increase by about 5 dB if the structural loss factor has the
same increment. The results show that the influence of structural damping on the

Figure 7.
Hydrodynamic coincidence lines and variation of the modal radiation efficiency with the lateral mode number
and the frequency of a finite aluminum plate. m varies, n = 1. Reproduced from Ref. [13].
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modal averaged radiation efficiency is related to the flow velocity, and the influence
of structural damping can be enhanced by increasing the flow velocity.

The effect of structural damping on the modal averaged radiation efficiency can
be qualitatively explained by Eq. (61)

σav ¼
Qt

ρ0c0S V2
� � ¼ ∑∞

m¼1∑
∞
n¼1σmn ωð ÞJmn ωð Þ Vmn ωð Þj j2

∑∞
m¼1∑

∞
n¼1 Jmn ωð Þ Vmn ωð Þj j2

(61)

Figure 8.
Effect of the structural loss factor on the modal averaged radiation efficiency of a finite aluminum plate.
(a) Convective Mc = 0.25 and (b) convective Mc = 0.7. Reproduced from Ref. [13].
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Eq. (61) shows that the modal averaged radiation efficiency is equivalent to the
weighted average function of the modal velocity response, and the weighted coef-
ficient is the modal averaged radiation efficiency. In the frequency band below the
critical frequency, the radiation efficiency of each mode varies in the range from
0 to 1. Due to this weighted effect of Eq. (61), the vibration energy (denominator in
the equation) decreases more effectively than the acoustic radiation power (mole-
cule in the equation). Thus the radiation efficiency increases in the frequency band
below the critical frequency. However, the phenomenon that the radiation effi-
ciency of a damped plate is enlarged with increment of flow velocity has not yet
been clearly interpreted.

Moreover, it is observed that the effect of structural damping on modal averaged
radiation efficiency has a good agreement with the research of Kou [23] at low flow
velocity. In their work, it is shown that the modal averaged radiation efficiency of
heavily damped structures is sensitive to the change of structural loss factor without
turbulent flow. It also implies that Leppington’s equation is not applicable to the
prediction of modal averaged radiation efficiency of damped structures at high flow
velocity.

5. Conclusion

This chapter studies the vibro-acoustic characteristics of the wall plate structure
excited by turbulent boundary layer (TBL). Based on the modal expansion and
Corcos model, the formulas for calculating the modal averaged radiation efficiency
are derived. The results indicate that an increment of flow rate will increase the
vibration energy and the radiated sound energy of the structure. However, the
amplitude of two cases varies with the velocity are not the same, and when the
velocity increases, the acoustic radiation efficiency will increase below the hydro-
dynamic coincidence frequency range. The main reason for this phenomenon is that
a higher convection velocity will coincide with lower order modes which have
higher radiation efficiencies.

The modal averaged radiation efficiency increases with the increase of structural
damping below the critical frequency band. The larger the flow rate, the more
significant the effect of structural damping on acoustic radiation efficiency. In the
case of low flow velocity, the modal averaged radiation efficiency is not sensitive to
the change of structural damping. The structural damping increases from 1 to 4%,
and the increase of modal averaged radiation efficiency less than 2 dB. In the case of
high flow rate, the modal averaged radiation efficiency will increase by 5 dB when
the increment of the structural damping is from 1 to 4%.
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