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Chapter

Breakup Morphology and
Mechanisms of Liquid
Atomization
Hui Zhao and Haifeng Liu

Abstract

Fuel atomization, the transformation of bulk liquid into sprays, is of importance
in jet engines. In this chapter, we will introduce the latest research advances on
breakup morphology and mechanism of liquid atomization. On primary atomiza-
tion, based on the morphological difference, the twin-fluid atomization could be
classified into different regimes. The influence of Kelvin-Helmholtz and Rayleigh-
Taylor instability on breakup morphology and fragment size is great and
nonmonotonic. On secondary atomization, Rayleigh-Taylor instability is considered
as the main driving mechanism in different bag-breakup modes; for higher Weber
number, it will be in concurrence with the shear instability. Based on ligament-
mediated spray formation model, ligament breakup is found to be well represented
by the gamma distributions. Atomization of complex fluids has special characteris-
tics and mechanisms. There are also a lot of research advances recently in this field.

Keywords: atomization, sprays, breakup, drop, instability

1. Introduction

Transformation of bulk liquid fuel into sprays is of importance in many engines.
Most fuels employed in engines are liquid that must be atomized before being
injected into combustion zone. Atomization could produce a very high ratio of
surface to mass in the liquid phase, thereby promoting rapid reaction and combus-
tion. In addition, liquid atomization is also common in a wide array of applications,
such as agriculture, coatings, gasification, water scrubber, pharmaceuticals, metal
powder production, 3D printing, spray drying, fire suppression, and cooling.

Atomization quality can be described in terms of mean drop size and distribu-
tion. Important factors in atomization include the flow conditions, liquid proper-
ties, gas properties, atomizer (or nozzle, injector) dimensions, and environment
conditions. So, there are many atomizer types in the industry and laboratory, such
as pressure atomizers, air-blast atomizers, air-assist atomizers, rotary atomize,
effervescent atomizers, electrostatic atomizers, ultrasonic atomizers, etc. Then, the
key is to select the suitable atomizers for the given application, which can have a
well performance in operating conditions.

Atomization process usually consists of the initial removal of liquid mass from
the surface to form large liquid drops and the subsequent breakup of these drops
into tiny droplets; the phenomena are, respectively, known as primary and
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secondary atomization. Atomization has been quantitatively studied for more than
a century. However, liquid atomization is a complicate, multiparameter two-phase
flow process, which is not well understood. Many empirical theories and equations
have been developed and used in atomization. So, there is still a lot of unknown
work to be done [1–15].

2. Dimensionless number

The physical processes and fluid properties are important in atomization mor-
phology and performance, and the mathematical and numerical analysis of atomi-
zation is very challenging, so a number of dimensionless numbers are used. First of
all, the most important one is Weber number, which represents the ratio of disrup-
tive hydrodynamic forces to the stabilizing surface tension force,

We ¼
ρg ug � ul
� �2

D

σ
, (1)

where ρg is the gas density, ug is the gas velocity, ul is the liquid velocity, D is the

characteristic size (in general, nozzle diameter in primary atomization and drop
diameter in secondary atomization), and σ is the surface tension. Liquid viscosity
will hinder deformation and dissipates energy supplied by aerodynamic forces. The
viscosity effect is highly correlated with the Ohnesorge number,

Oh ¼
μl
ffiffiffiffiffiffiffiffiffiffi

ρlDσ
p , (2)

where μl is the liquid viscosity, and ρl is the liquid density. Other important
dimensionless groups are gaseous Reynolds number

Reg ¼
ρgugD

μg
, (3)

liquid Reynolds number

Rel ¼
ρlulD

μl
, (4)

Mach number

Ma ¼ ug=c, (5)

Strouhal number

St ¼
fD

ul
, (6)

the characteristic time [16]

T ¼
tug
D

ffiffiffiffiffi

ρg

ρl

r

, (7)

gas-liquid momentum flux ratio
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M ¼
ρgu

2
g

ρlu
2
l

, (8)

momentum ratio

MR ¼
ρgu

2
gAg

ρlu
2
lAl

(9)

and mass ratio

GLR ¼
ρgugAg

ρlulAl
: (10)

Here μg is the gas viscosity, c is the speed of sound in themedium, f is the frequency,

t is the real time, andAg andAl are the area of gas exit and liquid exit, respectively.
Complex fluid is usually a kind of complicated non-Newtonian fluid, which has

more dimensionless groups on atomization. For example, in the Bingham model,
the flow is characterized by the following constitutive equations,

τ ¼ τ0 þ ηγ and μl ¼ τ0=γ þ η, (11)

where τ is the shear stress, τ0 is the yield stress, η is the plastic viscosity, and γ is
the shear rate. Hedstrom number is the useful nondimensional number, which
depends only on material properties and geometrical parameters,

He ¼
τ0D

2ρ

η2
: (12)

The ratio of the yield stress to the stabilizing surface tension force is [17]

X ¼ τ0D=σ, (13)

and the ratio of the aerodynamic force to the yield stress is [17]

Y ¼ ρgu
2
g=τ0: (14)

For viscoelastic fluids, Weissenberg number compares the elastic forces to the
viscous forces

Wi ¼ N1=τ or Wi ¼ tRγ, (15)

where N1 is the first normal-stress difference, and tR is the relaxation time.
Another dimensionless number on the ratio of first normal stress difference to
surface tension force could be defined as follows [18]

Z ¼
N1

σD
: (16)

3. Primary atomization

Nozzle is generally used to produce spray. Fuel injection process plays a major role
in many aspects of combustion performance. The influence of nozzle structure is
remarkable on the atomization performance [19–22]. With the progress of technology
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[23], it is found that the properties of breakup morphology and fragment distribution
in different regimes are different [24–28]. Coaxial air-blast atomizers have many
applications [29–31]. In order to obtain the desired results of atomization in the
industrial scale, the suitable range of nozzle size and operating condition could be
determined with the help of the regime map. There are two basic types on coaxial
gas-liquid jets: (I) a cylindrical liquid jet surrounded by an annular gaseous stream
and (II) an annular liquid sheet with an inner round gaseous stream [32–35].

In cylindrical liquid jet and annular gas jet, the common atomization modes are
Rayleigh-type breakup (axisymmetric and non-axisymmetric), the membrane-type
breakup (bag-type and membrane-fiber), fiber-type breakup, superpulsating
breakup, atomization, and so on [36–42]. For the traditional classification, the

Figure 1.
Influence of Ag=Al on atomization mode.

Figure 2.
Influence of h=D on atomization mode.
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We-Rel map or M-Reg map is common. However, these criteria cannot reflect the
impact of gas-liquid nozzle exit size. So, there is the modified map of classification
by the gas-liquid nozzle exit area ratio Ag=Al. Figure 1 shows that atomization
performance will improve with the increase of Ag=Al, but the oversized value of
Ag=Al will produce very little effect and waste energy [41]. These results are con-
ducive to the design of nozzles.

In cylindrical gas jet and annular liquid jet, the common atomization modes are
bubble (shell) breakup, Christmas tree (cellular) breakup, fiber breakup, and so on
[43–55]. Here, the characteristic size is the liquid film thickness h, which has an
important impact on liquid film breakup. Then, there is the h=D-We map of
breakup regimes based on the Rayleigh-Taylor instability is proposed, which is in
well agreement with the experimental results as shown in Figure 2. Note that outlet
wall thickness of nozzle can affect the flow field at nozzle outlet [56–61].

4. Secondary atomization

Drop is subjected to aerodynamic forces when there is the relative velocity
between drop and gas. This force results in drop deformation and, if sufficiently
large, will lead to breakup and fragmentation. Differing gas flow conditions can lead
to differing drop breakup modes. Based on the morphology, as We increases, the
vibrational, bag, bag-stamen, multimode, sheet-thinning, shear, and catastrophic
breakup mode appear in turn [62–66]. This classification method would lack the
quantitative physical mechanism, which may result in the criterion of mode based
primarily on subjective experience.

The mechanism of drop breakup is a key and hot research area of secondary
atomization. The investigation [67] shows the structure and location of turbulent
eddies, which do not appear to correlate with drop breakup morphology. The
average gas flow fields show no significant differences of drop morphology
between bag breakup and sheet-thinning breakup. The results show that the wake
structure of gas is unlikely to be the dominant mechanism of secondary atomiza-
tion. These results agree well with experimental photos that the morphological
transition of drop breakup is a strong function of We, and the influence of Reg is
little [68].

Interfacial instability is very important in atomization [69, 70]. Rayleigh-Taylor
(RT) instability is considered as the main driving mechanism responsible for drop
breakup in the general bag breakup or Rayleigh-Taylor piercing (including bag
breakup, bag-stamen breakup, dual-bag breakup, bag/plume breakup, multibag
breakup, etc.) [65, 71–77]. All of these breakup modes have the same characteristic
bag structure. With the increase of Weber number, the thin sheet (or membrane) at
the periphery of deforming drop appears and breaks up continuously. These
breakup types that have continuing shearing and entraining action are all governed
by the Kelvin-Helmholtz (KH) instability mainly. This mode can be named as shear
breakup (or sheet-thinning breakup, shear-induced entrainment) [65, 78]. So based
on the instability in secondary atomization, there are two main modes: general bag
breakup and shear breakup.

In order to classify the submode of general bag breakup, a dimensionless num-
ber of RT instability wave number is proposed [71]

NRT ¼ D=λRT, (17)

where λRT is the wavelength of the most R-T unstable wave. NRT is the number
of R-T wave on the windward side, which can also be considered as the bag number
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approximately. So the theoretical criterionNRT could be the new criterion instead of
We in the range of general bag breakup as shown in Figure 3.

When the viscosity of liquid cannot be neglected, Oh will be another key
parameter [79–84]. Many researches show that theWe range of drop breakup mode
will increase with the increase of Oh nonlinearly. The most important transition We
is the critical Weber number Wec occurring at the start of bag breakup. It can
establish the criteria for the onset of secondary atomization. Based on the RT
instability, the theoretical formula for predicting Wec is [81]

We0
Wec

� �1=2

þ C
Oh2

Wec

 !1=3

¼ 1, (18)

Figure 3.
Theoretical criterion NRT for general bag breakup.

Figure 4.
Drop interaction regime map.
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whereWe0 is the critical Weber number when Ohnesorge number tends to zero,
We0 ¼ 11� 2, and C can be considered as a constant 1.48.

Drop interaction in the continuous gas jet is the important atomization process
between primary atomization and secondary atomization [85]. It is the important link
between the jet breakup and final spray. Due to airflow, the interaction of two drops
evolves in a highly interactive and variablemanner. The drop interaction in the airflow
yields evenmore rich atomization morphologies andmechanisms. Behaviors of drop
group and the isolated drop in the airflow are significantly different. Experimental
photos in Figure 4 show that there are four main interaction modes, which are coales-
cence mode, puncture mode, side by side mode, and no direct contact mode [86].

5. Fragment size and distribution

Drop size in atomization is a key parameter that is needed for a lot of funda-
mental researches and applications [87]. Due to the complicated nature of atomiza-
tion, most nozzles cannot produce sprays of uniform droplet size. Instead, the spray
can be regarded as a spectrum of drop sizes distributed about some defined mean
drop size. Now, the most widely used mean diameter is Sauter mean diameter,

D32 or SMD ¼
∑nid

3
i

∑nid
2
i

(19)

where ni is the number of droplets per unit volume in size class i, and di is the
droplet diameter [7, 88–91].

The liquid in prefilming air-blast nozzle is first spread into a very thin sheet or
film, which is then exposed to gas operating at the high velocity causing breakup
and atomization. By spreading bulk liquid into film, contact area between liquid and
gas increases. Generally speaking, SMD will decrease with the increase of gas
velocity. However, under some conditions of prefilming atomization, the droplet
size increases with the increase of gas velocity, and then decreases with the increase
of gas velocity. So, the classical KH-RT atomization model [92–94] is modified and
extended to the prefilming air-blast atomization [95].

Droplet size distribution is a crucial parameter of atomization process besides
droplet mean diameter. Atomization and spray presents a wide distribution of
fragment sizes. Many empirical relationships have been proposed to characterize
the distribution of droplet sizes in atomization, for example, Rosin-Rammler,
Nukiyama-Tanasawa, log-normal, root-normal, and log-hyperbolic. Atomization
process involves a succession of changes of liquid topology, the last being the
elongation and capillary breakup of ligaments torn off from the liquid surface.
Breakup of liquid ligament (filament or fiber) is the key in primary atomization and
secondary atomization, so ligament-mediated spray formation model is proposed
[96, 97]. Drop fragments after ligament breakup is found to be gamma distribution.
Then, the broad statistics of atomization shows Marshall-Palmer exponential shape
of overall distribution in spray [98–101].

6. Complex fluids

Complex fluids are mixtures that have a coexistence between two or multi-
phases, which are common in our society and industry [102–104]. Many complex
fluids are non-Newtonian fluid, whose characteristics of breakup and atomization
are unusual [82, 105–107].
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The particle concentration in the pinch-off zone of suspension or slurry
decreases as its minimal diameter decreases, resulting in a pure liquid interstitial
fluid. There are three successive stages during suspension pinch-off, referred to
as suspension, transition, and liquid stages, which is different from pure liquids
[108–111].

For evaluating the breakup of non-Newtonian fluid, the mean apparent viscosity
of liquid during deformation and breakage is the key parameter. Three methods for
determining the apparent viscosity of non-Newtonian fluid have been presented:
(1) calculation of mean apparent viscosity according to the shear rate equal to
γ ¼ ug=D [112], (2) increase the constant k determined by other test parameters,
γ ¼ kug=D [17, 113], and (3) numerical analysis or analytical solution of energy and
motion equations to determine dynamic shear rate [114–117].

Based on morphology, the breakup regimes of slurry jet can be classified into
different modes: Rayleigh-type breakup, fiber-type breakup, superpulsating
breakup, and atomization [113, 118, 119]. The particles in slurry will make mem-
brane breakup very fast, so the membrane structure is not obvious in slurry atom-
ization as shown in Figure 5. The dimensionless slurry jet breakup length can be
correlated by the KH-RT hybrid model [92, 93, 113, 120]. There are two kinds of
periodic structures, which are shear wave and jet oscillation. The deformation and
breakup regimes of slurry drops can be classified into different modes: deformation,
multimode breakup (including two submodes: hole breakup and tensile breakup),
and shear breakup [17, 117].

Atomization of solution is a common phenomenon in numerous practical appli-
cations [121–124]. In the breakup of surfactant-laden liquid, critical micelle con-
centration (CMC) has an important influence [125–129]. The micelle can be
considered as the source term, which can supply the monomers [130]. The diffusion
rate of surfactant is limited, and liquid breakup is very fast sometimes. So, dynamic
surface tension will change with the process of liquid deformation and atomization.
According to the competition of the amplification rate of KH instability ωkm and RT
instability ωRm, the criterion on transition Weber number between general bag
breakup and shear breakup is obtained [131],

Figure 5.
The breakup regimes of slurry jet.
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ωkm=ωRm ¼ 1: (20)

Atomization of viscoelastic liquids is widely known to be more difficult to
atomize than typical Newtonian liquids [18, 132–138]. The addition of viscoelastic-
ity is found to stabilize the rim of liquid. Viscoelasticity can enhance the growth of
the bead and delay pinch off. Viscoelasticity increases the mean drop diameter and
broadens the size distribution. Liquids with atypical properties, such as gels, liquid
metal, and strain-thickening liquids, are also studied widely [139–147].

7. Conclusions

The available literature on liquid atomization is countless. Many researchers and
engineers have done a lot of excellent work in this field. Unfortunately, the clear
physical mechanisms on atomization have not yet been fully revealed. Some topics
have received only cursory attention, such as non-Newtonian liquids, charged liq-
uids, and turbulence influence. There are many challenges ahead for research in
atomization and spray technology [148, 149]. On the other hand, it is lucky for us.
Due to the fundamental nature of the problem and its many important applications,
we can expect great progress in the fields of atomization and spray technology in
the future.
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