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Chapter

Satellite Data and Supervised
Learning to Prevent Impact of
Drought on Crop Production:
Meteorological Drought

Leonardo Ornella, Gideon Kruseman and Jose Crossa

Abstract

Reiterated and extreme weather events pose challenges for the agricultural
sector. The convergence of remote sensing and supervised learning (SL) can
generate solutions for the problems arising from climate change. SL methods build
from a training set a function that maps a set of variables to an output. This function
can be used to predict new examples. Because they are nonparametric, these
methods can mine large quantities of satellite data to capture the relationship
between climate variables and crops, or successfully replace autoregressive
integrated moving average (ARIMA) models to forecast the weather. Agricultural
indices (Als) reflecting the soil water conditions that influence crop conditions are
costly to monitor in terms of time and resources. So, under certain circumstances,
meteorological indices can be used as substitutes for Als. We discuss meteorological
indexes and review SL approaches that are suitable for predicting drought based on
historical satellite data. We also include some illustrative case studies. Finally, we
will survey rainfall products existing at the web and some alternatives to process the
data: from high-performance computing systems able to process terabyte-scale
datasets to open source software enabling the use of personal computers.

Keywords: remote sensing, supervised learning, meteorological index, wavelet

1. Introduction

Climate change is shifting the rainfall patterns and increasing the severity of
droughts and floods around the Earth. Australia [1], Europe, and the rest of the
continents have been affected by a number of major drought events [2]. In 2018,
drought and heat waves reduced harvests up to 40-50% in some countries of
northern and central Europe [3].

Drought is by far the Earth’s most costly natural disaster and can have wide-
spread impacts [4]. Globally, it is responsible for 22% of the economic damage
caused by natural disasters and 33% of the damage in terms of the number of people
affected [5]. Though average yields rose steadily between 1947 and 2008, there is
no evidence that relative stress tolerance has improved [6, 7]. Therefore, until
breeding programs develop adapted germplasm, drought forecasting will be
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important to determine when to take contingency actions to prevent drought and
mitigate its risk and impacts.

The practice of drought forecasting remains challenging and is subject to great
uncertainty partly due to the instability of the components of the hydrologic cycle
(e.g., rainfall, soil moisture, groundwater level, etc.); temporal variability involving
trends, oscillating behavior, and sudden shifts that appear in hydroclimatic records,
thus posing challenges to drought prediction [8, 9].

Although agricultural indices (Als) better reflect the soil water situation that
influences crop conditions, monitoring of soil moisture is costly in terms of time
and resources [10]. On the other hand, some meteorological indices (e.g., the
Standard Precipitation Index) can be calculated just knowing the precipitation (pp)
data, and then the expert can give a very close condition of the vegetation [11].

A variety of methods has been developed to predict drought occurrence: statis-
tical run theory [12], Markov chain [13], loglinear [14], renewal process [15], and
Poisson process [16], among others.

A valuable alternative to the aforementioned methods is machine learning (ML),
a branch of artificial intelligence that studies how to extract information from big
data sets with minimal human intervention. ML has been successfully tested in very
different areas such as bioinformatics [17], crop protection [18], and economics
[19], among others. Therefore, its potential for predicting the climate seems far
from being fully exploited.

The remainder of this chapter is organized as follows: in Section 2, we introduce
some representative ML methods that have been proposed for drought forecasting;
in Section 3, we present the concept of meteorological drought, in particular the
standardized precipitation index that is considered a primary drought indicator.
Section 4 describes some forecast examples using the abovementioned methods. In
Sections 5 and 6, we review satellite precipitation products and how to access and
process them; and finally, in Section 7 we present the conclusions of this work.

2. Machine learning

ML is the science of algorithms and statistical models that computer systems use
to progressively improve their performance of a specific task. They can be broadly
categorized into supervised and unsupervised learning. In SL (classification or
regression), the algorithm builds a function from a set of data relating the inputs to
the outputs. In regression, the outputs are continuous, meaning they may have
any value within a range (e.g., temperature and moisture), while in classification,
the outputs are restricted to a limited set of values.

In unsupervised learning, the algorithm builds a mathematical model of a data
set that contains inputs and no outputs. These unsupervised learning procedures
are used to find structure in the data (e.g., cluster data) or reduce its dimensionality.

Examples of ML are land classification using remote sensing [20-22],
amending satellite data assimilation [23], or decomposing the causes of climate
change [24].

2.1 Support vector regression (SVR) and least squares support vector
regression (LS-SVR)

SVR is based on the Vapnik-Chervonenkis (VC) theory [25], which character-
izes the properties of learning machines that enable them to generalize the
unobserved data well.
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Starting with the simplest example, that is, linear regression, the objective of
both SVR [26] and LS-SVR [27] is to fit a linear relation y = w”x + b between the x
regressors and the dependent variable y in the so-called feature space. In SVR, the
problem is solved by minimizing

1 l
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under the constraints
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while for LS-SVR, the objective is to minimize
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under the constraints
Y — wlix; — b (4)

Both methods are very similar, but in LS-SVR, the objective is to minimize the
more usual sum of the squares of the errors, by replacing the e-tube or e-insensitive
loss of SVR, that is, by ignoring all regression errors smaller than & (Figure 1).
Solving a nonlinear regression demands a “kernel trick” [26]. This trick uses kernel
functions to transform the data of the input space into a higher dimensional feature
space to make it possible to perform a linear regression. Common kernels are

polynomial k(x,-,xj) = (xl- -xj)d (5

2
Gaussian radial basis function k(x;,x;) = exp <— M) (6)

LS-SVR is an economic alternative to the original SVR model. It only relies on
the cost function on a sum-of-squared-error (SSE) and equality constraints, instead
of the computationally complex and time-consuming quadratic programming
problem in SVR [28].

For optimal performance, parameter tuning is necessary [29]: for SVR, C and
¢ and the kernel-related parameters (e.g., 6> for the RBF kernel) and for LS-SVR,

g (the regularization parameter determining the trade-off between the fitting error
and the smoothness of the estimated function) and the kernel-related parameters.
For further information about SVR in general, the reader should refer to [30].

2.2 Artificial neural network (ANN)

An ANN is a supervised learning model based on the operation of biological
neurons. There are many architectures and training algorithms for ANN. The mul-
tilayer perceptron network (MLPN), the most common ANN architecture used for
forecasting, consists of a feedforward neural network with at least three layers of
neurons: an input layer, one or more hidden layers, and an output layer with a
directed acyclic graph representation network (Figure 2). The input layer receives
the data vector x, while the output layer gives the output vector y. An activation
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function is applied to activate the neurons in the hidden layer. For a three-layer
network system, the nonlinear mapping between input x and output y is given by
the equation:

@)

(A)

Feature space

. 5
Cal Cal

(B)

e-insensitive loss function quadratic loss function

Figure 1.
(A) Kernel trick: mapping the data from the input space into a feature space. (B) Loss function used in support
vector regression (e-insensitive loss) and least squares support vegression (quadratic).
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Figure 2.

Avchitectures of forecasting artificial neural networks. Recursive multistep neural network versus direct
multistep neural network.
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An ANN is usually learned by adjusting the weights and biases in order to
minimize a cost function, usually MSE using the error back-propagation algorithm.

Of the activation functions, we should mention the hyperbolic
tangentf (x) = £—%= and the sigmoidal function: (x) = 1£~.

The number of hidden neurons is no less important, since a wrong number may
cause either overfitting or underfitting problems. Normally it is selected via trial
and error, but this is computationally costly. Several heuristics or formulas have
been proposed to avoid this cuambersome work, and success depends on the type of
data, the complexity of the network architecture, etc. [31].

Last but not least, ANN forecasting models can be separated into two broad
groups, namely, the recursive multistep neural network (RMSNN) and the direct
multistep neural network (DMSNN) (Figure 2). In RMSNN, the model forecast
one time-step ahead, and the network is applied recursively, using previous pre-
dictions as inputs for subsequent forecasts—that is, a forecast horizon of 3 months
will have, as inputs, the outputs of forecasts with lead times of 1 and 2 months.

Similar to the RMSNN model, the DMSNN approach has a single or multiple
neurons in both the input and hidden layers. However, it can have several neurons
in the output layer representing multiple-month lead time forecasts. Similar to the
RMSNN model, the DMSNN model is designed to forecast drought conditions using
the present index value and several months of past index values as inputs.

2.3 Deep belief networks (DBN)

ANN s are suitable for complex time series forecasting but have several weaknesses:
(1) selection of the initial values of the weights (normally at random) can affect the
learning process, leading to slower convergence or to different forecast results for each
training process and (2) the training process may get stuck at local optima, especially
in networks with several hidden layers. Hinton et al. [32] proposed a probabilistic
generative model with multiple hidden layers that uses layer-wise unsupervised
learning to pre-train the initial weights of the network and then fine-tune the whole
network using standard supervised methods such as the back-propagation algorithm.

Classically, a DBN is constructed by stacking multiple restricted Boltzmann
machines (RBMs) on top of each other (Figure 3). The layers are trained by using
the feature activations of one layer as the training data for the next layer. Better
initial values of weights in all layers are obtained by greedy layer-wise unsupervised
training, and the entire network is fine-tuned using an SL algorithm. Pre-training
can be done with principal component analysis or nonlinear generalization [33].

An RBM [34] is a neural network model used for unsupervised learning. Typi-
cally, it consists of a single layer of hidden units (the outputs) with undirected and
symmetrical connections to a layer of visible units (the data) (Figure 3). The
configuration (bipartite graph) defines the state of each unit. Only connections
between a hidden unit and a visible unit are permitted—that is, no connections
between two visible units or between two hidden units are allowed. An RBM is a
special type of generative energy-based model that is defined in terms of the
energies of the configurations between visible and hidden units.

The standard type of RBM has binary-valued (Boolean/Bernoulli) hidden and
visible units.

2.4 Bagging

Bootstrap aggregating, or bagging, is an ML ensemble meta-algorithm designed
to increase the stability and accuracy of unstable procedures, for example, artificial
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Figure 3.
Basic deep belief network (DBN) structuve with three hidden layers.

neural networks or decision trees [35]. Given a standard training set T of size n, the
algorithm sample is taken from T uniformly and with replacement m new training
sets, T, each of size n’ (some observations may be repeated in each D). This process
is known as a bootstrap sampling [36]. The basic idea is that the samples are
de-correlated, and this reduces the expected error as m increases.

The m models are fitted using the above m bootstrap samples, and results of an
unknown instance are obtained by averaging the output (for regression) or by
voting (for classification) (Figure 4).

This method may slightly degrade the performance of stable algorithms (e.g.,
k-nearest neighbor) because smaller training sets are used to train each algorithm.

Bagging does not necessarily improve forecast accuracy in all cases. Neverthe-
less, this method and its derivatives tend to outperform traditional forecasting
procedures [37].

2.5 Random forest regression (RFR)

A random forest (RF) [38] is a collection of K binary recursive partitioning trees,
where each tree is grown on a subset of n instances extracted with replacement
from the original training data. It is an instance of bagging where the individual
learners are de-correlated trees. Each tree is grown in a top-down recursive manner,
from the root node to terminal nodes or leaves (Figure 5). In each node, a random
sample of m (m = p/3) predictors is chosen as candidates from the full set of p
predictors. The data are partitioned into the two descendant branches by choosing
the variable that minimized:

RSS=%(yi=3") = X (0i—w") (8)
left right

The advantage of selecting a random subset of predictors is that two trees
generated on same training data will be de-correlated (independent of each other)
because randomly different variables were selected at each split. Each internal
(non-leaf) node is signed with a predictor determined by the RSS test, and each one
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of the two possible subsets of this variable labels the arcs connecting to the subor-
dinate decision node. Each tree extends as much as possible until all the terminal
nodes are maximally homogeneous (a minimum of five examples in each leaf is
recommended).

Once the random forest is generated, the output of new data is obtained by
averaging the predictions of the K trees.

The number of trees influences the error of prediction; it decreases as the
number of trees (ntree) grows, but there is a threshold beyond which there is no
significant gain [38, 39]. In general, ntree~500 gives good results [40].RF can

Train Data

hoostrap boostrap

Learner 1 Learner 2

Average
Figure 4.

Structure of bootstrap aggregating, or bagging.

lTrainingséf" Y =[xy X1, X10,X1,%X1,%1) [?

Figure 5.
Avchitecture of the random forest model.
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successfully handle high dimensionality and multicollinearity, because it is both fast
and insensitive to overfitting. It is, however, sensitive to the sampling design.

2.6 Adaptive neuro-fuzzy inference system or adaptive network-based fuzzy
inference system (ANFIS)

ANFIS is a hybrid learning procedure which employs the linguistic concept of
fuzzy systems (human knowledge) and the training power of the ANN to solve a
regression problem [41]. All ANFIS works reported here are based on the Takagi-
Sugeno fuzzy inference system [42], where the fuzzy rule applied has the form:
if x is A and y is B then 2z = f (x, y). Other fuzzy methods are Mamdani-type or
Tsukamoto-type [42].

Figure 6 depicts a typical ANFIS architecture. Square nodes (adaptive nodes)
have parameters, while circle nodes (fixed nodes) do not. The first and the fourth
layers contain the parameters that can be modified over time. A particular learning
method was required to update these parameters.

In layer 1, every node is adaptive and associated with an appropriate continuous
and piecewise differentiable function such as Gaussian, generalized bell-shaped,
trapezoidal-shaped, and triangular-shaped functions.

In layer 2, every node is fixed and represents the firing strength of each rule.
This is calculated by the fuzzy and connective method of the “product” of the
incoming signals, that is, O = w; = puu;(x) * pp(x),i_1, 2.

In layer 3, every node is also fixed, showing the normalized firing strength of
each rule. The ith node calculates the ratio of the ith rule’s firing strength to the
summation of two rules’ firing strengths.

In every adaptive node of layer 4 (consequent nodes) is a function indicating the
contribution of the ith rule to the overall output: O, ; = w;f = w,-( p;+4q;+ 1",‘),
where w; is the output of layer 3 and p,, q,, 7; is the parameter set. Finally, layer 5
(output node) is a single node that computes the overall output of the ANFIS as:

01 = Z0f; = i
One of the most important steps in developing a satisfactory forecasting model is

the selection of the input variables. These variables determine the structure of the
forecasting model and affect the weighted coefficients and the results of the model

“T7

I FE

—_—

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 6.
Architecture of an adaptive network-based fuzzy inference system (ANFIS).
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function in layer 2. As the number of parameters increases with the fuzzy rule
increment, the model structure becomes more complicated. A very good
description of ANFIS is presented in [43, 44].

2.7 Boosting

Boosting attempts to increase the performance of a given learning algorithm by
iteratively adjusting the weight of an observation based on the last training/testing
process. In other words, the meta-algorithm produces a sequence of models by
adaptive reweighting of the training set [45].

AdaBoost, the first boosting algorithm, is definitely beaten by noisy data; its
performance is highly affected by outliers, as the algorithm tries to fit every point
perfectly. Friedman [46] extended the concept to present gradient boosting,
which constructs additive regression models by sequentially fitting a simple
parameterized function (base learner) to current “pseudo”-residuals by least
squares at each iteration. The pseudo-residuals are the gradient of the loss function
being minimized with respect to the model values at each training data point
evaluated in the current step. This reduces the loss of the loss function. We itera-
tively added each model and computed the loss. The loss represents the difference
between the actual value and the predicted value (the error residual), and using this
loss value, the predictions are updated to minimize these residuals.

A regularization method that penalizes various parts of the boosting algorithm is
necessary to avoid overfitting. This generally improves the performance of the
algorithm by reducing overfitting.

2.8 Hybrid models

The time series that characterize the evolution of meteorological events
(drought, precipitation) in the temporal domain have localized high- and low-
frequency components with dynamic nonlinearity and non-stationary features. MM
models have not always proven to be good at capturing the behavior of the time
series. Hybrid models can perform superbly when forecasting hydrological and
climatological time series. Different combination techniques have been proposed in
order to overcome the deficiencies of single models and improve forecasting per-
formance [47]. Many combined models have been introduced in the literature, for
example, ANN-ARIMA [48], SVR-ARIMA [49], etc.

Here we will only focus on WT-ML hybrids, where ML is a machine learning
method (e.g., ANN or SVR) and WT is a discrete wavelet transform [50].

2.8.1 Wavelet transform (WT)

WT is a time-dependent spectral analysis that decomposes time series in the
time-frequency space and provides a timescale illustration of processes and their
relationships. In this method, the data series are broken down by transforming them
into “wavelets,” which are scaled and shifted versions of a mother wavelet [50].
This allows the use of long time intervals for low-frequency information and shorter
intervals for high-frequency information and can reveal aspects of data such as
tendencies, breakdown points, and discontinuities that other signal analysis tech-
niques might miss, for example, Fourier transform.

There are two main alternatives for WT: discrete wavelet transform (DWT)
and continuous wavelet transform (CWT). For DWT, the WT is applied using a
discrete set of the wavelet scaling and shifting, whereas in the case of CWT, this
scaling and shifting is continuous—that is, CWT is computationally expensive
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Time series wavelet-ANN conjunction model. (A) Three-level wavelet decomposition tree (DWT).
(B) Example of the decomposition of a precipitation signal.
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and most researchers use DWT. For more information about CWT, the reader
should refer to [51].

DWT operates two sets of functions (scaling and wavelets) viewed as high-pass
(HPF) and low-pass (LPF) filters. The signal is convolved with the pair of HPF and
LPF followed by subband downsampling producing two components. The first
component, which is obtained by passing the signal through the low-pass filter, is
called an approximation component (or series), and the other component (fast
events) is called a detailed component (Figure 7). This process is iterated z times
with successive approximation series being decomposed in turn, so that the original
time series is broken down into the minimum number of components needed to
reflect the time series according to the mother wavelet.

The filterbank implementation of wavelets can be interpreted as computing the
wavelet coefficients of a discrete set of child wavelets for a given mother. This
mother wavelet function was defined at scale a and location b as

Wap(t) = %w(t;b) (9)

Wo,0(t) is a mother wavelet prototype and a, b are scaling and shifting parame-
ters, respectively.
Several wavelet families have proven useful for forecasting various hydrological

time series. As an example, we can mention Haar, which is also known as
daubechiesl or db1 [50]. It is defined as

1if 0<t<0.5
—1if 0.5<t<1 (10)
0 otherwise

A full description of DWT can be found in [50, 52].
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3. Meteorological indices

Drought can be defined as a period of unusually arid conditions (usually due
to rainfall deficiency) that have lasted long enough to cause non-balance in a
region’s hydrological situation. Based on its intensity and persistence, drought can
be classified into four categories [53]: (1) meteorological drought, which occurs
when precipitation is less than usual, is characterized by changes in weather
patterns; (2) agricultural (vegetation) drought refers to water deficits in plants; it
occurs after meteorological drought and before hydrological drought; (3) hydro-
logical drought ensues when the level of surface water and the groundwater
table are less than the long-term average; and finally, (4) socioeconomic drought
materializes when water resources required for industrial, agricultural, and
household consumption are less than required and thus cause socioeconomic
anomalies.

A drought index is an indicator or measure derived from a series of observa-
tions that reveals some of the cumulative effects of a prolonged and abnormal
water deficit. It integrates pertinent meteorological and/or hydrological parame-
ters (accumulated precipitation, temperature, and evapotranspiration) into a sin-
gle numerical value or formula and gives a comprehensive picture of the situation
[53]. Such an index is more readily usable and comprehensible than the raw data
and, if presented as a numerical value, makes it easier for planners and
policymakers to make decisions. Authorities and public and private committees
evaluate the impact of drought using these indices and take measures to prevent its
effects [54].

More than 100 drought indices have so far been proposed, and each one has
been formulated for a specific condition [55]. The reclamation drought index (RDI),
for example, was developed in the USA to activate drought emergency relief funds
associated with public lands affected by drought; the crop moisture index (CMI)
was designed to show the effects of water conditions on growing crops in the short
term and is not a good instrument for displaying long-term conditions. Here we
will only describe the standardized precipitation index, which those indices used
in case studies.

3.1 Standardized precipitation index (SPI)

Most of the forecasting works reviewed here are based on SPI [56]. It is perhaps
the most popular index for forecasting meteorological drought and has been
recommended by the World Meteorological Organization [57]. It can be defined as
the number of standard deviations that the observed cumulative rainfall at a given
time scale (1,3,6 month) would deviate from the long-term mean for that same time
scale over the entire length of the record (z-score).

More specifically, SPI is calculated by building a frequency distribution from
historical precipitation data (at least 30 years) at a specific location for the precip-
itation accumulated during a specified period, for example, 1 month (SPI1),

3 months, (SPI3), 24 months (SPI24), and so on. A theoretical probability density
function (usually the gamma distribution) is fitted to the empirical distribution for
the selected time scale.

SPI1 to SPI6 are considered indices for short-term or seasonal variation (soil
moisture), whereas SPI12 is considered a long-term drought index (groundwater
and reservoir storage).

The “drought” part of the SPI range is arbitrarily split into “near normal”

(0.99 > SPI > —0.99), “moderately dry” (—1.0 > SPI > —1.49), “severely dry”

11
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(—=1.5> SPI > —1.99), and “extremely dry” (SPI < —2.0) conditions [56]. A drought
event starts when SPI becomes negative and ends when it becomes positive again.

SPI is easy to calculate (using precipitation only) and can characterize drought
or abnormal wetness on different time scales. Its standardization ensures indepen-
dence from geographical position, and it is thus more comparable across regions
with different climates. The index can be computed using several packages of the R
project [58], for example, the SPEI package [59] or the SPI package [60]. Limita-
tions of SPI include the following: (1) it does not account for evapotranspiration;
(2) it is sensitive to the quantity and reliability of the data used to fit the distribu-
tion; and (3) it does not consider the intensity of precipitation and its potential
impacts on runoff, streamflow, and water availability within the system. A more
detailed explanation of how SPI is calculated can be found at [43].

3.2 Other indices

Other indices including only precipitation data are EDI [61], SIAP [62], deciles
index (DI), percent of normal (PN), standard precipitation index (SPI), China-Z
index (CZI), modified CZI (MCZI), and z-score [55].

4. Forecasting meteorological drought

Forecasting meteorological drought using historical data is not a trivial task. The
time series that characterize the evolution of meteorological events (drought, pre-
cipitation) in the temporal domain have localized high- and low-frequency compo-
nents with dynamic nonlinearity and non-stationary features. Several statistical
indicators have been proposed to evaluate the success of prediction. Most of these
metrics are not independent; for example, MSE can be decomposed in many ways
to link it with the bias and the correlation coefficient [63]. A standard practice of
model corroboration is to compute a common set of performance metrics, typically
more than three. Most important is that at least three critical components, that is,
one dimensionless statistic, one absolute error index statistic, and one graphical
technique, should be represented in the corroboration [64].

Regarding the dimensionless statistic, we must mention:

e Pearson’s correlation coefficient (R) is used to evaluate how well the estimates
correspond to the observed values. Due to the standardization of many indices,
the robustness of R can be limited [64].

R— i (Pi _].5> (0; —0)
VI (p - )\ X0 — 0)?

(11)

* Coefficient of determination (R2) measures the degree of association among
the observed (o;) and predicted values (p,).

Yict ("i - Pi)z

R2 = - —>
2.i1(0; —0)

(12)
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* Nash-Sutcliffe efficiency (NSE) or MSE skill [65].

n 2
NSE =1 — 2,21(10—,—01) (13)
Z?:1(0i - 5)2

* Willmott’s index (WI) represents the ratio of the mean square error and the
potential error [66].

Yia(pi - 01’)2

WI=1- 5 (14)
(Ip: =il + [p; — 0]
Among one absolute error index statistic most used are
* Mean Error(MSE) estimates the average estimate error.
1z 2
MSE = . Y (p; —0i) (15)
i=1
e Mean absolute error (MAE).
1 7
MAE ==Y |p, — 0j| (16)
N=

In all the formulas presented above, o;, p; represent the observed and estimated
values, 7 is the number of records, and o, p indicate the means of the observed and
predicted values, respectively.

Here we included R and R2, two standard regression criteria, in the group of
dimensionless statistics.

Finally, we present just one example of the graphical technique, mainly to show
how a training and evaluation process is executed with a ML algorithm (Figure 8).

4.1 Case studies

Some inconsistencies in the observations and the duration of satellite records
introduce difficulties and uncertainties when applying forecast methods. At least 30
years of data record are required to SPI forecast; therefore, some of the examples we
present here are based exclusively on ground gauge data. This situation is very close
to reverting since satellite observations are reaching the minimum number of years
required and the data are calibrated with ground observations (Table 1).

Shirmohammadi et al. [67] evaluated the performance of two ANN architectures
(feedforward neural network and Elman or recurrent neural network), different
kinds of ANFIS (four different membership functions: Gaussian, bell-shaped, tri-
angular, and Piduetoits shape), WT-ANFIS, and WT-ANN. The wavelets families
used here were db4, biorl.1, biorl.5, rboil.1, rboil.5, coif2, and coif4.

13
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Figure 8.

Generic example of time sevies forecasting using two different ML methods. The green dotted line indicates a
“bad” forecast method. The ved dashed line indicates an appropriate method for the data, that is, the curve is
closer to the observed time series. Both methods weve trained using 80% of the data and tested on the vemaining
20%.

Training data came from 1952 to 1992 rain records from East Azerbaijan prov-
ince (Iran). More than 1000 model structures were tested to predict SPI6 for 1, 2,
and 3 months’ lead-time over the test period covering from 1992 to 2011. R2, NSE,
and RMSE evaluated the performance of the models.

ANFIS models provided more accurate predictions than ANN models, and the
inclusion of WT could improve meteorological drought modeling: WT-ANFIS (best
RMSE = 0.097), WT-ANN (best RMSE = 0.227), ANFIS (best RMSE = 0.089), and
ANN (best RMSE = 1.81).

Belayneh et al. [68] used precipitation records (1970 to 2005) to generate SPI3
and SPI6 time series from 12 stations in the Awash River Basin of Ethiopia (that is,
12 x 2 independent time series). The forecast was performed with ANN (RMSNN
trained with the Levenberg-Marquardt back propagation), SVR, and the coupled
models: WA-ANN and WA-SVR. About 80% of the data was used for training, 10%
for validation, and 10% for testing, and ARIMA forecasting was used as a bench-
mark [69]. Regarding wavelet decomposition, each time series was decomposed
between one and nine levels, and the appropriate level was selected by comparing
results among all decomposition levels. The results of all the methods were com-
pared by RMSE, MAE, and R2. Overall, the WA-ANN and WA-SVR models were
effective in forecasting SPI3 although most WA-ANN models had more accurate
estimates (1- or 3-month lead). The WA-ANN model seemed to be more effective
in anticipating extreme SPI values (severe drought or heavy precipitation), whereas
WA-SVR closely reflected the observed SPI trends but underestimated the extreme
events.
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Model SPI3 SPI12 SPI24
SVR 0.54 0.84 0.89
BSVR 0.47 0.86 0.91
BS-SVR 0.62 0.93 0.92
ANN 0.64 0.89 0.93
BANN 0.55 0.87 0.92
BS-ANN 0.67 0.95 0.98
WBANN 0.64 0.87 0.93
WBS-ANN 0.69 0.90 0.95
WBSVR 0.57 0.85 0.90
WBS-SVR 0.67 0.95 0.94

Abbreviations: SVR, support vector regression; BSVR, bootstrap SVR ensemble; BS-SVR, boosting-SVR; ANN,
artificial neural networks; BANN, bootstrap ANN ensemble; BS-ANN, boosting-ANN; WBANN, wavelet coupled
bootstrap ANN ensemble; WBS-ANN, wavelet boosting-ANN; WBSVR, wavelet coupled bootstrap SVR ensemble;
WBS-SVR, wavelet boosting-SVR.

Table 1.
Coefficient of determination (R2) of 10 ML methods to predict 3, 12, and 24 months SPL. Extracted from [71].

For SPI3 (1 month lead time) forecast, the best results in terms of RMSE (0.407)
and MAE (0.391) were obtained by the WA-ANN model at the Ziquala station,
whereas in terms of R2 (0.881), the Ginchi station had the best WA-ANN model.

When the lead-time was raised to 3 months, WA-ANN remained the best model.
One station (Bantu Liben) had the model with the lowest RMSE and MAE values
(0.510 and 0.4941), whereas a second station (Sebeta) had the best results in terms
of R2 (0.7304).

Regarding SPI6 forecasts, the WA-ANN and WA-SVR models provided the best
SPI6 forecasts. Neither method was meaningfully better than the other. The pre-
dictions for SPI6 were significantly better than SPI3 predictions according to three
performance measures. As the forecast lead time increased, the forecast accuracy of
all the models declined. This drop was most evident in the ARIMA, ANN, and SVR
models.

These results were similar to [70]. Authors used precipitation records (1970-
2005) from 20 stations in the same basin of Ethiopia (three different sub-basins)
to generate SPI3 and SPI12 series. ANN, SVR, and WA-ANN were evaluated for 1
and 6 months lead time prediction. The comparison was made using RMSE, MAE,
and R2. Forecasting of SPI 12, for all the models, had better performance results
than predicting SPI 3, regardless of the lead time (best R2 = 0.953, WA-ANN). The
performance of all the models declined when the lead time increased.

Belayneh et al. [71] modeled ANN and SVR as in [68] to forecast SPI 3, SPI12,
and SPI24, but they included bootstrap (BANN and BSVR), boosting (BS-ANN, BS-
SVR), wavelet coupled bootstrap ensemble (WBANN and WBSVR), and wavelet
coupled boosting (WBS-ANN and WBS-SVR) in the analysis.

In general, the performances of SVR and ANN were comparable, although ANN
performance was slightly higher. The inclusion of wavelets improved both tech-
niques (wavelet decomposition denoises the time series). All models were more
effective at forecasting SPI12 and SPI24 than SPI3 (Table 1). All boosting ensemble
models were developed in MATLAB (“fitensemble” function).

The WBS-ANN and WBS-SVR models provided better prediction results than all
the other types of models evaluated.
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Alj, Deo, et al. [43] evaluated the performance of three models (ANFIS, M5Tree,
and MPMR) to forecast SPI3, SP16, and SPI12 calculated from a 35-year rainfall data
set (1981-2015) from three (3) stations in Pakistan. SPI data were partitioned into
70% (training) and 30% (testing) periods. M5Tree is a kind of decision tree with
linear regression functions on the leaves [72], whereas MPMR stands for minimax
probability machine regression [73] and was also applied to benchmark the
ensemble-ANFIS model. Regarding SPI3 forecast, ANFIS (R = 0.889 to 0.946)
outperformed MPMR (R = 0.843 to 0.935) and M5Tree (R = 0.831 to 0.916).
Similarly, SPI6 ANFIS (R = 0.968 to 0.974) outperformed M5Tree (R = 0.950 to
0.967) and MPMR (R = 0.952 to 0.970). For SPI12, ANFIS (R = 0.987 to 0.993)
overcome M5Tree (R = 0.950 to 0.967) and MPMR (R = 0.984 to 0.986). The other
statistics (e.g., RMSE, WI) corroborated the superior performance of ANFIS. Just as
important, the ensemble-ANFIS model achieved the highest accuracy at the three
stations when predicting moderate, severe, and extreme droughts.

Khosravi et al. [74] used rainfall data from the Tropical Rainfall Measuring
Mission (TRMM) during 2000-2014 in the eastern district of Isfahan to generate
12-month SPI. The first 85% of the data was used to train a single-hidden layer
feedforward ANN, an SVR with RBF kernel, an LS-SVR with RBF kernel, and an
ANFIS method. Optimum values of SVR and LS-SVR were obtained by a grid search
within the range of [1073,10*%] and [23, 2*3] for C and y (SVR) or (10, 100 and
1000) for g and (1, 0.5 and 1) for y (LS-SVR).

For SPI12, SVR achieved the highest accuracy (RMSE = 0.21), followed by
LS-SVR (RMSE = 0.38), ANN (RMSE = 1.24), and ANFIS (RMSE = 1.36). The best
ANN model consisted of three layers (input, hidden, and output) with 30, 8, and
1 neuron, respectively.

Chen et al. [75] evaluated RF and ARIMA to forecast SPI3 (short-term drought)
with a 1-month lead time and SPI12 (long-term drought). Both models were devel-
oped based on data from 1966 to 1995 (four stations in China), and predictions
(1 month or 6 months ahead) were made from 1996 to 2004. Overall, RF performed
consistently better than ARIMA. Results also suggested that RF is more robust in
predicting dry events. Finally, ARIMA lost the capacity to predict SPI12, whereas
the accuracy of RF was less affected by the longer lead time.

Agana and Homaifar [76] developed a hybrid model using a denoised empirical
mode decomposition [77] and DBN. The proposed method was applied to predict a
standardized streamflow index (SSI) across the Colorado River basin (ten stations).
The new model was compared with MLP and SVR in predicting SSI12 (1, 6, and
12 months lead time). DBN, SVR, and their hybrid versions displayed rather similar
prediction errors. However, DBN and EMD-DBN outperformed all other models for
two-step predictions at almost all stations. As in wavelets, the empirical mode
decomposition significantly improves the quality of prediction.

Finally, we want to mention two examples where ML was directly applied to
rainfall prediction.

El Shafie et al. [77] evaluated a radial basis function neural network (RBFNN) to
forecast rainfall in Alexandria City, Egypt. The model was trained using rainfall
data from 1960 to 2001 (four stations) and tested with data from 2002 to 2009 to
predict yearly and monthly (January and December) precipitation. Regarding
yearly model efficiency, R2 = 0.94 for RBFNN, whereas the control (a multiple
linear regression MR model) only reached R2 = 0.21. Regarding monthly precipita-
tion, RBFNN was very successful (R2 = 0.899 for January and R2 = 0.997 for
December) as compared to the control (R2 = 0.997 and 0.34, respectively).

Sumi et al. [78] compared ANNs, multivariate adaptive regression splines or
MARS [79], k-nearest neighbor [80], and SVR with RBF kernel to predict daily and
monthly rainfall in Fukuoka, Japan. A preprocessed training set (1975-2004) was
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used to train the algorithms with extensive parameter optimization, whereas the
test set covered from 2005 to 2009. For monthly rainfall, SVR produced the most
accurate forecast (lowest RMSE) and the best rainfall mapping (R2 = 0.93), whereas
for the daily rainfall series, the MARS method produced the best R2 value (0.99).
All the metrics were calculated based on single-step ahead forecasting.

5. Satellite precipitation products (SPPs)

There is no satellite that can reliably quantify rainfall under all circumstances.
However, ground observations, although reliable and with long-term records, do
not provide a consistent spatial representation of precipitation, particularly on
certain world regions. Therefore, satellite data become necessary, as they provide
more homogeneous data quality compared to ground observations [81, 82]. To our
knowledge, merged satellite-gauge products are becoming indispensable.

Precipitation data sets may be classified into one of four categories: gauge data
sets (e.g., CRU TS [83], APHRODITE [84]), satellite-exclusive (e.g., CHOMPS
[85]), merged satellite-gauge products (e.g., GPCP [86], TRMM3B42), and
reanalysis (e.g., NCEP1/NCEP2 [87], ERA-Interim [88]). Reanalysis implies inte-
grating irregular observations with models encompassing physical and dynamic
processes in order to generate an estimate of the state of the system across a
uniform grid and with temporal continuity [89].

Many studies show that satellite precipitation algorithms show different biases,
detection probabilities, and missing rainfall ratios in summer and winter. Sources of
error include the satellite sensor itself, the retrieval error [90], and spatial and
temporal sampling [91, 92].

Algorithms that estimate rainfall from satellite observations are based on either
thermal infrared (TIR) bands (inferring cloud-top temperature), passive micro-
wave sensors (PMW), or active microwave sensors (AMW). The TIR-based
approach takes into account cold cloud duration or CCD, that is, the time that a
cloud has a temperature below the threshold at a given pixel [93]. The PMW-based
approach takes advantage of the fact that microwaves can penetrate clouds to
explore their internal properties through the interaction of raindrops [94]. AMW is
what usually known as precipitation radar [95].

There is a plethora of validation studies of satellite-based rainfall estimates
(SREs). Normally, these SREs are compared against ground rainfall estimates
[91, 96].

Sun et al. [97] reviewed 30 currently available global precipitation (gauge-based,
satellite-related, or reanalysis) data sets. The degree of variability of the precipita-
tion estimates varies by region. Large differences in annual and seasonal estimates
were found in tropical oceans, complex mountain areas, Northern Africa, and some
high-latitude regions. Systematic errors are the main sources of errors over large
parts of Africa, northern South America, and Greenland. Random errors are the
dominant kinds of error in large regions of global land, especially at high latitudes.
Regarding satellite assessments, PERSIANN-CCS has larger systematic errors than
CMORPH, TRMM 3B42, and PERSIANN-CDR. The spatial distribution of system-
atic errors is similar for all reanalysis products [97].

Table 2 presents a comparison of several representative satellite rainfall prod-
ucts. More information regarding these and other products can be found in [97, 98].

Abbreviations: (IR) infrared satellite imagery, (MW) microwave estimates,
(GG) ground gauges, (AMSU) Advanced Microwave Sounding Unit, (AMSU-B)
Advanced Microwave Sounding Unit-B, (SSM/I) Special Sensor Microwave/Imager;
(AMSR-E) Advanced Microwave Scanning Radiometer for the Earth Observing
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Product Spatial Temporal Inputs Access
coverage coverage
CHIRPSv2.0 0.05° x 0.05°  Daily, IR + GG http://chg.geog.ucsb.
Funk et al. 50°S-50°N  pentadal edu/data/
[99] and
monthly
1981 to
near
present
PERSIANN  0.25° x 0.25° 1,3,6 hours IR https://chrsdata.eng.
Nguyen 60°S-60°N March (GOES-8, GOES-10, GMS-5, uci.edu/
et al. [100] 2000 to Metsat-6, and Metsat-7)
present corrected with MW (DMSP 7, 8,
and 9 and NOAA-15, 16, and 17)
PERSIANN-  0.25° x 0.25° Daily, IR (GRIDSAT-B1) http://chrsdata.eng.uci.
CDR 60°S-60°N monthly +GPCP correction edu/
Ashouri 1983 to
et al. [101] 2017
CMORPH 0.25° x 0.25° 30 min SSM/I (DMSP 13, 14, and 15) http://www.cpc.ncep.
Joyce et al. 60°S-60°N 2002 to AMSU-B (NOAA-15, 16, 17, and noaa.gov/products/
[102] present 18) AMSU-E (Aqua), TMI janowiak/
(TRMM) cmorph_description.
Geostationary satellite IR html
RFE2.0 0.1° x 0.1° daily MW (SSM/I, AMSU-B) https://iridl.1deo.
Xie and 40°N-40°S 2001 to IR (GTS) columbia.edu/
Arkin [103] 20°W-55°E present SOURCES/.NOAA/.
NCEP/.CPC/.FEWS/
TRMM3B42  0.25° x 0.25° 3 hourly/ MW (TRMM, SSM/I, AMSR, https://pmm.nasa.
Huffman 50°N-50°S daily AMSU), IR gov/data-access/
et al. [104] 1998 to downloads/trmm
2015.
Table 2.

Representative satellite rainfall products.

System, (MHS) Microwave Humidity Sounder, (GPCP) Global Precipitation

Climatology Centre, (GOES) Geostationary Operational Environmental Satellite,
(Metsat) meteorological satellite, (NOAA) NASA-provided TIROS series of weather
forecasting satellite run by the National Oceanic and Atmospheric Administration,
(DMSP) Defense Meteorological Satellite Program, (GRIDSAT-B1) geostationary IR
channel brightness temperature.

6. Accessing and processing the data

The capacity to acquire information from remote sensing data has been
improved to an unprecedented level, accumulating overwhelming amounts of
information. For example, the Google Earth Engine (GEE) [105] is updated at a rate
of nearly 6000 scenes per day from active missions (a typical image 10 km by
10 km requires 50-200 million bytes of memory). Such a large amount of data
requires not only vast amounts of memory data but also higher-level services with
high-performance computing systems [106]. Successful experiences have already
been recorded [97], but the GEE is worth mentioning [105]. GGE stores a multi-
petabyte catalog of satellite imagery and geospatial data sets collected from differ-
ent resources and provides high-performance computing systems that can be
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accessed and controlled through an Internet-accessible application programming
interface (API) and an associated web-based interactive development environment
(IDE). It also possess a library with more than 800 functions, ranging from simple
mathematical functions to powerful geostatistical, machine learning, and image
processing operations [105].

In many situations, intense computing resources are required for image
processing operations [105], but more friendly solutions can be suggested to those
who do have not the necessary skills.

As mentioned before, many satellite precipitation products are freely available
(Table 1). Most of them are in network Common Data Form (netCDF) format [95].
R users can access this format using the “ncdf4” [96] or “raster” [97] packages.
These data were already processed and can be used to forecast and perform com-
plementary analyses [98]. We have already mentioned the SPEI [59] or the SPI [60]
packages used to generate, for example, the SPI index.

Regarding the ML methods discussed here, almost all of them are available in
packages deposited at the CRAN or CRAN-like repositories, for example, “Random
Forest” package [43], “rminer” [99] that implements ANN, SVR and boosting [99],
etc. A full list of packages implementing ML algorithms is available at https://cran.r-
project.org/web/views/MachineLearning.html.

Finally, also available at the repositories are plenty of packages that are really
helpful for visualizing and interpreting the results [107, 108].

7. Conclusion

Climate change is shifting global rainfall patterns and will increase the intensity
and duration of drought around the world; this produces the need to take contin-
gency actions to prevent the impact of famine. ML models, an evolving research
area, are a valuable complement to methods previously proposed for forecasting
drought. Results obtained so far for predicting meteorological indices are very
satisfactory, especially with hybrid models such as WT-ANN or WT-SVR.

Most of the work that we reported here is based on the standardized precipita-
tion index or SPI, which is a reliable measure of drought used in more than 60
countries. The leading month or the number of months over which SPI is calculated
significantly influences the prediction values.

Unfortunately, many of the examples were based on ground gauge data. The
brevity (and noise) of the records obstructs the use of many satellite products.
However, as time progresses and data retrieval improves, satellite products will be
long and accurate enough to generate reliable results.

The exponential growth of public and free satellite imagery sources and of open-
source software, as well as cheaper access to cloud-based technology, will provide
powerful forecasting tools to a greater number of researchers, allowing them to
forecast drought before it occurs.
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