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Chapter

TNFR2 and Regulatory T Cells: 
Potential Immune Checkpoint 
Target in Cancer Immunotherapy
Xuehui He and Xinhui Wang

Abstract

TNF has both proinflammatory and antiinflammatory effects. It binds to 
two structurally related but functionally distinct receptors TNFR1 and TNFR2. 
Unlike TNFR1 that is ubiquitously expressed, TNFR2 expression is more limited to 
myeloid and lymphoid cell lineages including a fraction of regulatory T cells (Treg). 
In general, TNFR1 is responsible for TNF-mediated cell apoptosis and death, and 
mostly induces proinflammatory reactions. However, TNFR2 mainly leads to func-
tions related to cell survival and immune suppression. Treg play an indispensable 
role in maintaining immunological self-tolerance and restraining excessive immune 
reactions deleterious to the host. Impaired Treg-mediated immune regulation has 
been observed in various autoimmune diseases as well as in cancers. Therefore, Treg 
might provide an ideal therapeutic target for diseases where the immune balance is 
impaired and could benefit from the regulation of Treg properties. TNFR2 is highly 
expressed on Treg in mice and in humans, and TNFR2+ Treg reveal the most potent 
suppressive capacity. TNF-TNFR2 ligation benefits Treg proliferation, although the 
effect on Treg suppressive function remains controversial. Here, we will describe in 
detail the TNF-mediated regulation of Treg and the potential clinical applications in 
cancer immunotherapy as well as in autoimmune diseases, with the focus on human 
Treg subsets.

Keywords: TNF, TNF receptor 2, regulatory T cells, immunotherapy,  
autoimmune disease, cancer immunotherapy

1. Introduction

CD4+FOXP3+ regulatory T cells (Treg) have an indispensable role in maintain-
ing immune homeostasis and immune tolerance. They control unwanted immune 
responses that are involved in the regulation of immune tolerance to self as well as 
to foreign antigens. Loss-of-function mutation in FOXP3 locus, a gene encoding 
Treg lineage transcription factor FOXP3, leads to multiorgan associated autoimmu-
nity. Abnormal numbers of Treg and/or impaired suppressive function of Treg are 
often found in various autoimmune diseases like type 1 diabetes (T1D) [1], multiple 
sclerosis (MS) [2], rheumatoid arthritis (RA) [3], psoriasis [4–6], and systemic 
lupus erythematosus (SLE) [7–9]. On the other hand, tumor-infiltrating Treg 
generally show potent suppressive functions, indicating that they regulate tumor-
specific immune responses and might help tumor immune escape [10]. It seems 
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logical to use Treg as a therapeutic target for diseases where the immune balance is 
impaired and could benefit from the regulation of Treg properties. Nevertheless, 
due to the intrinsic properties of Treg, i.e. heterogeneity and plasticity, several key 
questions need to be clarified before making Treg an ideal candidate for clinical 
applications.

Tumor necrosis factor (TNF) is initially expressed on cell surface as a membrane 
bound cytokine (mTNF), which can be cleaved by a metalloprotease TNF convert-
ing enzyme (TACE) to generate soluble form of TNF (sTNF) [11]. TNF binds to 
receptors, TNF receptor 1 (TNFR1) and 2 (TNFR2). In contrast to TNFR1, TNFR2 
expression is restricted in certain cell types including lymphocytes [12]. TNF-
TNFR1 interaction mostly induces proinflammatory reactions, whereas TNFR2 
generally leads to the suppressive function of TNF [13]. It is known that TNFR2 is 
constitutively expressed on both murine and human Treg, and TNFR2+ Treg are the 
most suppressive Treg subpopulation [14–17]. The effect of TNF on Treg suppressor 
function remains controversial. In this chapter, we will describe in detail the TNF-
mediated signal transduction pathways, its effect on Treg cells, and the potential 
clinical applications in various immunopathologies.

2. Regulatory T cells and its plasticity

Treg exert their function in primary and secondary lymphoid organs and non-
lymphoid tissues. FOXP3, as the lineage transcription factor of Treg, facilitates Treg 
thymic development by stabilizing its own expression and inhibiting transcrip-
tion factors needed for the development of other helper T-cell (Th) lineages like 
T-bet for Th1, GATA3 for Th2, and RORγt for Th17 cells [18]. Next to FOXP3, Treg 
constitutively express a high level of the IL-2 receptor α chain (CD25) and a low 
level of the IL-7 receptor α chain (CD127) compared to human activated non-Treg. 
The combination of CD4+, CD25high, and CD127low has been used to isolate Treg 
for functional studies and for adoptive immunotherapy [19]. However, no unique 
Treg marker has been identified so far, although many molecules are proposed. 
These Treg-related cell markers include CD27 [20], CD62L [21], CTLA4 (cytotoxic 
T-lymphocyte-associated protein) [22], CD39 and CD73 ectoenzymes [23], Helios 
[24], Neuropilin-1 [25], HLA-DR [26], and the most recently identified combina-
tion of TIGIT and FcRL3, which results in the identification of human Helios+ 
memory Treg [27].

Compelling evidence indicates that both mouse and human Treg consist of 
various subpopulations and have a more or less plastic phenotype depending on the 
microenvironment they are in [28]. Based on the site of Treg generation, two major 
Treg subsets are classified, namely, thymus-derived Treg (tTreg) that develop 
in the thymus from CD4 single positive thymocytes which in general display 
high-affinity self-reactive T-cell receptors (TCRs), and peripherally induced Treg 
(pTreg) which emerge in the periphery from conventional CD4+ T lymphocytes 
(Tconv) in response to environmental antigens and tolerogenic stimuli. Studies in 
mice have shown that pTreg and tTreg are both required for full protection against 
colitis and lymphoproliferative disease [29, 30], indicating that these two Treg 
subsets play distinct roles in protecting against immunopathology. However, the 
relative contribution of tTreg and pTreg in human immune tolerance remains a 
major unresolved issue, partially due to the lack of specific markers to definitively 
distinguish them. In fact, the transcription factor Helios was the first marker 
proposed to distinguish both mice and human tTreg from pTreg [31]. However, this 
has been disputed by studies showing that Helios can also be expressed by activated 
Tconv [32] and by pTreg upon in vitro and in vivo stimulation [33], precluding its 
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use as tTreg-specific marker. Another cell surface marker that has been proposed 
to harbor the specificity necessary to distinguish between murine tTreg and pTreg 
is the coreceptor Neuropilin-1 [25]. Unfortunately, human Treg do not uniquely 
express Neuropilin-1 [34].

3. TNF/TNFR signaling pathways

TNF is firstly discovered as an inflammatory cytokine that is induced by the 
endotoxin [35]. Various immune cells produce TNF including macrophages, 
monocytes, dendritic cells, B cells, activated natural killer cells, and activated T 
cells. TNF is initially expressed on the cell surface as a trimeric type II transmem-
brane protein mTNF, which is then cleaved by the metalloproteinase TACE (also 
known as ADAM17) and released as soluble extracellular sTNF [36]. Both forms of 
TNF are present as bioactive homotrimers. There exist two structurally related but 
functionally distinct receptors, TNFR1 (p55) and TNFR2 (p75). TNFR1 is ubiq-
uitously expressed on most mammalian cell types, and it binds to mTNF as well 
as sTNF, whereas TNFR2 expression is restricted to immune cells, neurons, and 
endothelial cells. TNFR2 binds with higher affinity to mTNF than sTNF compared 
to TNFR1.

TNFR1 and TNFR2 share the similar extracellular TNF-binding motifs but differ 
in their intracellular domains. Both receptors lack intrinsic enzyme activity; thus, 
upon the ligand binding, they need to recruit the cytosolic proteins to initiate the 
intracellular signal transduction. Specifically, TNFR1 contains a homologous intracel-
lular region called “death domain”, which preferentially interacts with the adaptor 
protein named TNFR1-associated death-domain (TRADD) protein [37]. TRADD 
further recruits another two adaptor proteins, receptor interacting protein kinase 1 
(RIPK1) and TNFR-associated factor (TRAF) 2, thus forming an enzymatic complex 
signalosome, which is also known as signaling complex 1. One of the main targets of 
the complex 1 is the enzyme complex called IkB kinase (IKK). Phosphorylation of 
IKK in turn leads to the canonical activation of the transcription factor NFkB as well 
as members of the family of MAPKs such as c-jun kinase (JNK) and p38 MAPK. The 
TRADD containing signaling complex 1 may further be converted to a death-inducing 
signaling complex, so-called complex 2, by adaptor protein Fas-associated protein 
with death domain (FADD). The complex 2 is able to further initiate downstream 
caspase cascades, thus inducing cell apoptosis and cell death [37].

The pathways induced by TNFR2 are slightly different from TNFR1. Due to 
the lack of death domain, TNFR2 is unable to recruit TRADD protein, but it can 
directly interact with TRAF2 [38]. In contrast to TNFR1 that drives apoptosis and 
cell death, TNFR2 induces the noncanonical activation of NFκB via the activation 
of the NFκB-inducing kinase (NIK), which further leads to the phosphorylation 
of IKKα and the processing of p100, a crucial step in the nuclear translocation of 
p52/RelB [38, 39]. Interestingly, TRAF2 binding to TNFR2 is considerably weaker 
than its binding to TRADD protein. Upon binding to TRAF2, TNFR2 could also 
recruit cIAP1/2 proteins [39] that are involved in the TNFR1-mediated NFκB 
activation, indicating that there exists a crosstalk between TNFR1 and TNFR2 
pathways. Another interesting adaptor protein called endothelial/epithelial protein 
tyrosine kinase (Etk) interacts with the C-terminal domain of TNFR2 in a ligand-
independent manner [40]. TNFR2-mediated Etk phosphorylation is able to partially 
activate the growth factor receptor VEGFR2, which in turn results in the activation 
of PI3K/Akt pathway and cell survival.

A number of proteins are essential for the negative regulation of the TNF-TNFR 
pathways. A20, also named as TNF alpha-induced protein 3, is one of the most 
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studied negative regulatory proteins. A20 is an ubiquitin editing enzyme. It limits 
NFκB signaling after activation by TNF [41]. Consistent with this, A20-deficient 
mice are hypersensitive to TNF exposure and die perinatally because of severe 
inflammation and multiorgan failure [42]. Intriguingly, A20 is recently shown to 
regulate the de novo generation of tTreg in a cell-intrinsic manner, while the sup-
pressor function of A20-deficient Treg is unchanged in vitro [43].

4. Effect of TNFR2 on Treg

Although TNFR1 expression is not different between Treg and non-Treg cells, 
human Treg constitutively express high levels of TNFR2 compared to CD25- Tconv. 
Moreover, TNFR2+ Treg reveal the most potent suppressive capacity [14, 44]. The 
effect of TNF on Treg suppressor function remains controversial. Several groups 
including ours demonstrated that sTNF preserved or even increased FOXP3 expres-
sion as well as Treg suppressive capacity in both mice and humans [15, 45–47]. The 
TNF-TNFR2 is crucial for sustaining FOXP3 expression and maintaining the stabil-
ity of murine Treg in an inflammatory environment [44]. A similar phenomenon is 
also observed for human Treg in vitro [48]. There is also evidence for the negative 
effects of TNF on Treg function. Studies show that TNF impairs Treg function by 
reducing FOXP3 expression or enhancing its dephosphorylation [47, 49]. In clinical 
practices, RA patients responding to anti-TNF antibody adalimumab showed an 
increased percentage of FOXP3 + cells as well as the restored regulatory function 
[50]. It should be noted that the nature of the TNFR2 antibodies used in these 
studies was likely different (agonistic versus antagonistic) [46]. Recent studies 
highlight that TNFR2 agonisms and antagonisms might regulate the phenotype and 
the suppressor function of Treg in a complete different way [46].

TNF priming induces the proliferation and activation of Treg in vitro [15, 51] 
as well as in vivo via TNFR2 in an acute mouse GvHD model [52]. Our group have 
found that stimulation of human Treg with a TNFR2-agonist antibody preserved 
a stable Treg phenotype and function after ex vivo expansion [48]. Using TNFR2 
agonist only was enough to prevent the loss of FOXP3 expression, whereas the 
sustained hypomethylation of TSDR (Treg-specific demethylated region) of FOXP3 
gene locus required both rapamycin and TNFR2 agonist, suggesting that stabiliza-
tion of FOXP3 expression requires both mTOR and NFκB signal pathways. In vitro 
restimulation of TNFR2 agonist plus rapamycin-expanded Treg led neither to the 
loss of FOXP3 protein nor the enhancement of IL-17A production, especially under 
proinflammatory conditions, indicating a well-preserved Treg stability. TNFR2 
knockout CD4+ T cells have increased expression of RORγt and IL-17 production, 
which is dependent on the impairment of TNFR2-mediated activation of NFκB [53]. 
We speculate that a similar process of regulation may exist in human Treg where 
TNFR2/NFκB signaling might act as a double-edged sword to enhance FOXP3 
but also to inhibit RORγt expression, thus contributing to Treg stability. Another 
possible explanation is that TNFR2 engagement results in an autocrine TNF-TNFR2 
loop, which further regulates the expression of histone methyltransferase EZH2 
[51], a subunit of the polycomb repressor complex 2 (PRC2). EZH2 is known to bind 
to FOXP3 thus helping FOXP3 to regulate the gene transcriptional repression [54].

5. TNFR2 agonists and autoimmune diseases

Defect in the function of Treg as well as the low numbers are the main properties 
of various autoimmune diseases. Therefore, restoring the proper functional Treg 
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thus favoring the immune tolerance induction has become a final goal of treatment 
for patients with autoimmune diseases. As discussed above, ample studies show that 
either TNF and/or TNFR2 agonism has capacity to enhance Treg proliferation and 
activation. Furthermore, TNF-TNFR2 is essential to maintain the Treg function and 
stability in the inflammatory environment [44, 48]. Impaired TNF-TNFR signaling 
pathways occur in several human diseases including T1D, SLE, IBD, and MS. For 
instance, a single-nucleotide polymorphism (SNP) in the first intron is linked to a 
decreased level of TNFR2 in carriers of the SNP and a high risk of disease suscep-
tibility [55]. T1D patients have higher TNFR2+ Treg compared to healthy controls. 
The rationale for using TNFR2 agonists as a therapeutic option for autoimmune dis-
eases was first shown in T1D. Using blood from patients with T1D, a dose-response 
relationship between TNFR2 agonism and the destroying of pathogenic autoreac-
tive CD8 T cells was observed [56], suggesting inducing of TNF-TNFR2 pathway is 
an effective approach of selectively killing autoreactive T cells.

Currently used biologics targeting TNF include the anti-TNF antibodies inflix-
imab, adalimumab, certolizumab, and the decoy receptor etanercept that binds to 
sTNF. Although they have a good safety profile, with increasing use of these drugs, 
paradoxical adverse events involving the skin, joints, and lungs have been described 
[57]. Skin manifestations are the most common adverse event and occur in about 25% 
of patients receiving anti-TNFs. The underlying mechanism is recently attributed to 
the TNFR2/A20 signal axis which is specifically responsible for TNF-mediated IL-17A 
inhibition [58]. Termination of NFκB activation is critical to prevent aberrant inflam-
matory responses. In memory CD4 T cells, A20 is identified as one of the strongest 
TNF-responsive genes with a strong inverse correlation to IL-17A expression.

6. TNFR2 antagonists and cancer immunotherapy

Tumor microenvironment preferably recruits TNFR2+ Treg cells which possess 
a highly immunosuppressive capacity, thus facilitating tumor immune escape. That 
TNFR2 knockout mice show improved immune responses to tumors might be caused 
by the lack of TNFR2 expressing Treg or have failed to develop systemic autoimmunity 
[59] or the decreased numbers and the impaired function of MDSCs [60]. In humans, 
the high level of TNFR2+ Treg is found in the peripheral blood of lung cancer patients 
[10] and in the tumor-associated ascites in ovarian cancer patients [61]. Moreover, the 
increased TNFR2 gene expression on Treg cells has been shown to be associated with 
exhaustion of CD8 cytotoxic T lymphocytes in metastatic melanoma patients.

In addition to being an inducer of Treg expansion, TNFR2 also acts as an onco-
gene which has been identified on at least 25 tumor types. Enhanced expression of 
TNFR2 on tumor itself has been also reported but not limited in human renal cell 
carcinoma, multiple myeloma, colon cancer, ovarian cancer, and cutaneous T-cell 
lymphomas (CTCL) [62]. In general, the overexpression of TNFR2 exploits this 
cytokine receptor for increased tumor cell proliferation and tumor growth. Genetic 
mutation/genomic gains of TNFRSF1B, a gene encoding TNFR2 protein, occur 
in patients with Sézary syndrome (SS), a rare form of CTCL often refractory to 
treatment. SS is characterized with high expression of TNFR2 on the tumor cells and 
Treg. Such gain-of-function mutation in TNFR2 leads to the enhanced noncanonical 
NKκB activation [63], a pathway primarily involved in cell expansion and growth. 
It seems being desirable to apply one approach that could successfully inhibit potent 
suppressive Treg and also directly prevent tumor growth by using the antagonistic 
molecules against TNFR2. Such TNFR2-specific blocking molecules would ideally 
inhibit Treg and permit Tconv proliferation and function, thus enabling to restore 
the antitumor immune responses and to induce tumor regression.



Cytokines

6

7. Strategies for blocking of TNF/TNFR2 signaling

A number of agonistic or antagonistic biological agents targeting to TNF and/or 
TNFR2 have been developed. Two potent dominant TNFR2 antagonist antibodies 
are developed by Faustman et al. group [64]. They report that these TNFR2 antago-
nists lock the TNFR2 receptor in the form of antiparallel dimmers, which further 
prevents the TNF binding as well as the intracellular scaffolding. Consequently, 
these dominant TNFR2 antagonists, even in the presence of TNF, could kill Treg 
isolated from ovarian cancer ascites more potently than it kills Treg from healthy 
donors. Interestingly, TNFR2 antagonistic mAbs are also able to directly kill 
TNFR2-expression ovarian cancer cell lines in vitro [64]. Similar effect is observed 
in another in vitro study where the cancer cells and lymphocytes were isolated 
from the end-stage SS patients [65]. In mouse model of colon and breast cancers, 
combining a blocking TNFR2 antibody with a kind of immune stimulant markedly 
enhances the antitumor efficacy of immunotherapy through reducing the number 
of tumor-infiltrating TNFR2+ Treg and increasing the number of IFNγ-producing 
CD8 cells [66].

Some pharmacological agents are found to regulate TNF and/or its receptors 
expression. Thalidomide and its analogues prevent the surface expression of 
TNFR2 on activated T cells, which is associated with the inhibition of TNFR2 
protein trafficking to the cell membrane [67]. Treating acute myeloid leuke-
mia patients with azacitidine and lenalidomide, a thalidomide derivative can 
reduce TNFR2 expression on T cells as well as TNFR2+ Treg in vivo, leading to 
enhanced effector immune function [68]. Cyclophosphamide is a DNA alkylat-
ing agent. It is commonly used as a cytotoxic chemotherapy in cancer treat-
ment. In a mouse model, it is shown that cyclophosphamide treatment depletes 
TNFR2+ Treg via inducing the death of replicating Treg that co-express TNFR2 
and KI-67 [69]. A re-expansion of Treg from lymphodepletion suppresses the 
effective antitumor immunity developed after cyclophosphamide treatment. 
Intriguingly, blockade of TNF signaling using etanercept inhibits TNFR2+ Treg 
cell expansion during recovery from cyclophosphamide-induced lymphodeple-
tion and markedly inhibits the growth of established CT26 tumors in mice [70]. 
Altogether, it suggests that a TNFR2-targeted approach to inactive host Treg, 
especially in only tumor microenvironment, may offer optimal options for 
antitumor immune reactions.

8. Conclusions

Many surface receptors of Treg are also expressed on other immune cells, with 
TNFR2 being a prominent exception with highest density in the tumor micro-
environment. TNFR2 is a functional receptor on Treg. Cell surface expression 
of TNFR2 not only identifies the potent Treg subsets but also is the property of 
tumor-infiltrating Treg. TNFR2 expression on some cancer-infiltrating Treg is 
about 100 times higher than on circulating Treg in control subjects. In other types 
of cancer, the abundance of TNFR2+ Treg in peripheral blood is higher than healthy 
ones. Targeting TNFR2 using small molecule agonists or antagonists is a promising 
but also a challenging task. Considering the suppressive property of Treg and its 
impaired functions in various immunopathologies, there is no doubt that novel 
(tumor-specific) antagonists against TNFR2 are promising for cancer immuno-
therapy. From the clinical utilities point of view, combination of TNFR2 inhibition 
with immune checkpoint inhibitors seems to be an attractive approach in reshaping 
modern cancer immunotherapy.



7

TNFR2 and Regulatory T Cells: Potential Immune Checkpoint Target in Cancer Immunotherapy
DOI: http://dx.doi.org/10.5772/intechopen.85632

Acknowledgements

The authors would like to thank the A FACTT network (Cost Action BM1305: 
http: //www.afactt.eu) for supporting this work by positive discussion. XH is also 
supported by NSFC 61263039 and NSFC 11101321. XW is supported by NSFC 
61263039, NSFC 11101321, and 2018-ZJ-776.

The funders had no role in study design, data collection and analysis, decision to 
publish, or preparation of the manuscript.

Conflict of interest

The authors declare that the research was conducted in the absence of any com-
mercial or financial relationships that could be construed as a potential conflict of 
interest.

Nomenclature

IBD Inflammatory bowel disease
CTCL Cutaneous T-cell lymphomas
MS Multiple sclerosis
MAPK Mitogen-activated protein kinase
mTNF Membrane-bound TNF
NFκB Nuclear factor κB
RA Rheumatoid arthritis
SNP Single-nucleotide polymorphism
SS Sézary syndrome
T1D Type 1 diabetes
TACE TNF-converting enzyme
TCR T-cell receptor
TNFR TNF receptor
TRAF TNFR-associated factor
Treg Regulatory T cells
TSDR Treg-specific demethylated region
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