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Abstract

Nitric oxide (NO) is synthesized from L-arginine by the constitutive NO 
synthase in vascular endothelial cells and plays an important role in the regulation 
of blood pressure and coronary vasomotion. Normal pregnancy is associated with 
major adaptations in maternal cardiovascular function, which help the woman 
to accommodate the growing fetus. The vascular endothelium is stimulated dur-
ing pregnancy to release increased amounts of NO, and the abnormality in the 
L-arginine NO pathway may play a role in the etiology of preeclampsia. The 
objective of this study is to discuss the importance of nitric oxide during gestation 
and the maternal and fetal complications associated with decreased NO synthesis 
during this period. Maternal arterial hypertension due to inhibition of nitric oxide 
synthesis during pregnancy impairs fetal development, mainly the reduction of the 
wall/lumen ratio of the cardiac and renal microvasculature as well as the reduction 
in the number of nephrons. These changes may contribute to the development of 
hypertension. Despite these findings, more studies are needed to understand the 
programming of fetal development, and the intrauterine environmental factors. 
influence this process.

Keywords: nitric oxide, pregnancy, preeclampsia, growth fetal,  
intrauterine environment

1. Introduction

Normal pregnancy is associated with intensive changes in the maternal cardio-
vascular system that enables adequate oxygen delivery and nutritive ingredients 
to the fetus. Physiological vascular adaptation (increased blood volume, increased 
cardiac minute volume, and reduced vascular resistance) is followed by increased 
endogenous production of nitric oxide (NO) and improved response of smooth 
muscles on the reaction of NO [1].

Nitric oxide is synthesized from L-arginine by the constitutive NO synthase in 
vascular endothelial cells and plays an important role in the regulation of blood 
pressure and coronary vasomotion. Abnormalities in its production and/or bioavail-
ability are related to diseases such as hypertension, atherosclerosis, and disorders 
associated with angiogenesis [2].
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In normal pregnancy, there is an increase in blood volume and maternal cardiac 
output, although a decrease in systemic blood pressure occurs. In addition, the 
responsiveness to various vasoconstrictors is attenuated. This is due to the contribu-
tion of nitric oxide (NO) to the vasodilatory phenomena of pregnancy [3].

Nitric oxide is a potent vasodilator and plays an important role in mild relaxation 
muscles and helps in the vasodilation of maternal blood flow. NO is derived from 
the amino acid L-arginine, which is in the proteins of all life forms. It is classified 
as a semi-essential or conditionally essential amino acid [4]. In addition to nitric 
oxide, other chemical mediators have been implicated in this phenomenon, includ-
ing estradiol and prostacyclin [5].

Serum NO concentration of the healthy pregnant women was significantly 
higher during the second and the third trimester of pregnancy in relation to control 
nonpregnant subjects [1]. Thus, increased production of nitric oxide by the endo-
thelium contributes to the hemodynamic changes associated with normal preg-
nancy; conversely, a reduction in NO signaling has been observed in preeclampsia 
and in several forms of chronic hypertension [6, 7].

Preeclampsia is considered to be one of the most significant health problems in 
pregnancy, complicating 6–10% of all gestation over 20 weeks, 14–20% of multiple 
gestations, and 25% of patients with chronic hypertension and/or chronic renal 
disease [8, 9]. It is characterized of the symptomatic triad: hypertension (systolic 
pressure ≥ 140 mmHg and/or diastolic pressure ≥ 90 mmHg), proteinuria, and 
edema [10, 11]. This disease is one of the leading causes of fetal growth disorders, 
fetal morbidity and mortality, premature labor, and mother’s death [4, 10].

Preeclampsia is a specific condition of gestation that involves the failure of 
several organs. The increase in blood pressure causes deleterious effects on several 
systems, especially the vascular, hepatic, renal, and cerebral. The complications 
observed in these systems may explain the high incidence of fetal and maternal 
mortality and morbidity, which makes preeclampsia one of the leading causes of 
maternal death in the world [1, 12].

It is interesting to note that there are some risk factors that increase the probabil-
ity of a pregnant woman presenting with preeclampsia, such as hypertension and 
preexisting diabetes mellitus, obesity, and ethnicity [12].

Endothelial cell dysfunction can cause hypertension with its increased produc-
tion of vasoconstrictor agents such as plasma endothelin or reduced release of 
vasodilator agents such as prostacyclin and NO [13].

Nitric oxide has been proposed as the physiological agent involved in this 
mechanism as it regulates feto-placental vascular permeability and resistance and 
platelet aggregation in the placenta. Maturation and development of the placenta is 
affected significantly by an epigenetic molecule such as nitric oxide which has been 
postulated to affect fetal programming and survival [14, 15].

The specific cause of NO increase during normal pregnancy is unknown, but it is 
suggested that increased shear stress during pregnancy stimulates the activity of the 
endothelial nitric oxide synthase (eNOS). Specifically in the placenta, the activity 
of this enzyme is important in the sense that NO synthesized locally maintains low 
vascular resistance, in addition to attenuating the action of vasoconstrictors [16].

The role of nitric oxide in the pathogenesis of preeclampsia was studied by 
Rachel et al. [4] who concluded that the circulating levels of nitrite are decreased 
in women with preeclampsia. One study showed that supplementation with 
L-arginine in women with preeclampsia lowered blood pressure through increased 
synthesis or bioavailability of nitric oxide [17].

Some studies point to the importance of nitric oxide to the outcome of preg-
nancy. Nitric oxide levels are altered in the blood serum of women who have had 
an abortion or ectopic pregnancy. The levels in recurrent abortions are decreased, 
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leading to an increase in myometrial contraction, whereas in ectopic pregnancy 
levels are higher, leading to decreased uterine tube motility and ectopic implanta-
tion [18, 19].

2. Nitric oxide and uteroplacental circulation

The endothelial cells in the uteroplacental circulation play an important physi-
ological role in the maintenance of vasodilation of placental vessels, since these 
are not innervated. These endothelial cells produce prostacyclin and nitric oxide, 
causing vasodilation and also preventing platelet aggregation and platelet adhesion 
to endothelial cells [19].

Nitric oxide (NO) regulates implantation and trophoblastic invasion as well as 
embryonic development [20]. In addition, vascular tone in the placenta is controlled 
by several vasoactive mediators, with NO being the most important [21].

Nitric oxide participates at the onset of placental vasculogenesis. The onset 
of vasculogenesis requires the expression of vascular endothelial growth factor 
(VEGF), the mitogenic effects of which are mediated by nitric oxide. There is no 
well-established level of NO required for adequate placental angiogenesis. Elevated 
levels of NO may prevent angiogenesis, and its effect on cell survival and prolifera-
tion depends on its concentration [22].

NO has an important role in facilitating pregnancy-induced expansive remodel-
ing in the uterine circulation, especially in the larger arteries [7].

The NO signaling has an important role in the expansive circumferential 
gestational remodeling of the uterine circulation. It provides an interesting link to 
the theory that preeclampsia results from elevated levels of sFlt-1, a soluble receptor 
for vascular endothelial growth factor and placenta growth factor, in preeclamptic 
women [23].

An excess of soluble receptor would reduce the availability of these ligands to 
the maternal vascular wall and fetal growth retardation. The sFlt-1, when infused 
in pregnant rats, promotes glomerular proteinuria and endotheliosis, characteristics 
of the preeclampsia picture [24].

Since both placenta growth factor and vascular endothelial growth factor stimulate 
endothelial NO release, a reduction in their signaling would create a vasoconstrictor 
imbalance and increase peripheral resistance and blood pressure. Thus, a reduction 
in NO signaling also impacts vessel remodeling in a way that would further increase 
uterine vascular resistance. This effect on structure, combined with loss of function 
(vasodilation), would further mitigate the increases in uterine [7].

In addition to the decrease in the synthesis of nitric oxide in the uteroplacental 
circulation in preeclampsia, the endothelium-dependent relaxation in response 
to acetylcholine is impaired in preeclamptic arteries. Additionally, the increased 
plasma fibronectin levels in preeclampsia may reflect fibronectin which has been 
shed by injured endothelial cells. Furthermore, soluble circulating endothelial cell 
adhesion molecules such as soluble intercellular adhesion molecule-1 (sICAM-1), 
soluble vascular adhesion molecule-1 (sVCAM-1), and sE-selectin are significantly 
increased in preeclampsia compared to normal pregnancies. This suggests that there 
is an altered and pathological endothelial phenotype in preeclampsia [25].

3. Animal models for the study of nitric oxide during pregnancy

Animal models using rats or mice are very useful for the study of the patho-
genesis, diagnosis, and treatment of preeclampsia. N-Nitro-L-arginine methyl 
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ester (L-NAME) is an inhibitor of NO synthase, and it has been shown to promote 
arterial hypertension in pregnant rats [26, 27].

The administration of L-NAME in adult rats, in addition to causing hypertension [28],  
promotes cardiac and aortic tissue damage [29], proteinuria, and glomerular 
endotheliosis [30].

Several animals have already been used as models of experimental hyperten-
sion, such as rhesus monkeys, dogs, and sheep. Most of the experimental studies 
use rats and mice. In these animals, four categories of preeclampsia are produced: 
(i) animals with surgically induced reduced uteroplacental blood flow, (ii) animals 
with preclinical symptoms induced by drugs, (iii) genetic animal models, and (iv) 
animals with preexisting hypertension developing preeclampsia [31].

Few studies address the effects of inhibition of nitric oxide on fetal develop-
ment. Most of the work on this subject is from the 1990s. In pregnant rats, this 
nitric oxide synthesis inhibitor causes fetal growth restriction by a reduction in 
cellular proliferation due to induction of apoptosis [32], reducing the body weight 
and causing hemorrhagic necrosis of neonate’s hind limbs [33, 34].

This suggests that L-NAME crosses the placental barrier and affects the fetal 
NO synthesis, leading to cell death in the limbs because the NO has a role in limb 
and digit developments [35]. Reactive oxygen species (ROS) formation by L-NAME 
induces hemorrhages, oxidative stress, and limb reduction defects [30].

The administration of L-arginine, the precursor of nitric oxide, in mice during 
gestation promoted an increase in fetal weight presumably due to the contribution 
of NO in improving fetal-maternal circulation by vasodilation and subsequently 
increased blood volume and viscosity in the fetal-maternal circulation [36].

4.  Effects of inhibition of nitric oxide on fetal heart development in 
animal models

The first studies on the importance of nitric oxide in cardiac development go 
back to the beginning of the year 2000. The role of nitric oxide on fetal cardio-
vascular development is only partially known. In addition, in women who had 
preeclampsia, their children are at greater risk of developing cardiovascular disease 
later in life [37].

The nitric oxide probably contributes to the transformation of the epithelium-
mesenchyme in the areas of the endocardial cushion, myocardial survival and 
angiogenesis, and myocardial remodeling. Impaired production of NO in the heart 
leads to structural congenital abnormalities, resulting in heart failure and increased 
mortality [38].

Inhibition of nitric oxide during cardiac development is known to promote 
bicuspid aortic valve defects [39], congenital septal defects, and increase in cardio-
myocyte apoptosis [40].

Apoptosis occurs in situations of cardiac remodeling during or after pathological 
processes and was observed in the myocardium of newborns from rats with hyper-
tension induced by L-NAME. Thus, apoptosis can also occur in postnatal matura-
tion of the heart and other tissues of the cardiovascular system, which need to adapt 
to the new hemodynamic role [41].

In newborns from L-NAME mothers, the most significant change in the myocar-
dium involved the microvasculature. The wall/lumen ratio of arterioles was signifi-
cantly higher in neonates of L-NAME and spontaneously hypertensive rats (SHR) 
than of normotensive mothers at 2 and 15 days postnatal [42].

It is possible that the myocardial vascular changes induced by the blockade 
of nitric oxide synthesis in rats are due to the activation of the local angiotensin 
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I-converting enzyme (ACE). Takemoto et al. [43] found an increase in ACE in the 
coronary arteries and increase of the wall/lumen ratio in the myocardial vasculature 
of adult rats treated with L-NAME.

A decreased NO generation induces the synthesis of growth-promoting factors 
from the endothelium. The ACE activation would increase the formation of angio-
tensin II, which in turn directly induces vascular smooth muscle proliferation [44].

Possibly, the factors involved in hyperplasia/hypertrophy of the smooth muscle 
cells of the microvasculature of newborns born to hypertensive mothers who 
received L-NAME during pregnancy are activation of the renin-angiotensin system 
and activation of the sympathetic nervous system that contributes to the remodel-
ing of intramyocardial vessels [42].

In rats treated with L-NAME, the blood pressure increases via the renin-
angiotensin system, and, therefore, angiotensin II can promote the narrowing of the 
lumen of the microvasculature [45].

In neonates of hypertensive rats induced by L-NAME, in addition to cardiac 
microvasculature being affected, the pyloric musculature is also compromised, 
observing hypertrophy and hyperplasia of smooth muscle cells [46].

The rat offspring from L-NAME parents, with sustained NO-induced hyperten-
sion, had a remarkably higher blood pressure [47]. In addition to impairment in 
cardiovascular development, there are other damages in the offspring of rats treated 
with L-NAME as in the hippocampus, affecting cognitive and learning abilities [48].

5.  Effects of inhibition of nitric oxide on fetal renal developmental in 
animal models

The fetal kidney appears to be extremely vulnerable to the effects of growth 
retardation. Studies on human infants with growth retardation indicate that the 
kidneys are disproportionately affected relative to other organs [49].

One study noted that maternal hypertension during pregnancy results in 
reduced birth weight and a decreased area and number of glomeruli [50]. Certainly, 
there is a link between maternal environmental factors, particularly nitric oxide 
inhibition, and the development of hypertension in adulthood.

Some models of arterial hypertension have been studied in animals in order to 
detect imbalances in fetal development, including protein restriction, excessive 
sodium intake, impaired uterine or placental circulation, blockade of the renin-
angiotensin system (RAS), and increased exposure to maternal glucocorticoids, all 
of them leading to hypertension in offspring [51–54].

Experimental studies indicate that fetal exposure to an adverse maternal 
environment may reduce glomerular filtration rate by decreasing the surface area 
of the glomerular capillaries. In addition, fetal responses to environmental insults, 
such as maternal hypertension, may contribute to the development of hyperten-
sion early in life, including increased expression of apical or basolateral tubular 
Na+ carriers and increased production of renal superoxide leading to reabsorption 
which increased Na+ [55].

Reductions in NO synthesis decrease renal sodium excretory function, not only 
through direct action on the renal vasculature but also through modulation of other 
vasoconstrictor processes and through direct and indirect alterations in tubular 
sodium transport [56].

Moreover, environmental factors of intrauterine life may worsen the prognosis 
of offspring hypertension, at least in part, by determining the number of nephrons. 
The reduced number and size of nephrons may also predispose the individual to the 
development of progressive renal disease [54, 57].
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Kidneys with lower numbers of nephrons maintain their hemodynamic and 
excretory functions by increasing local vascular resistance and glomerular pressure. 
The increase in glomerular pressure within the nephrons can trigger a cascade lead-
ing to progressive deterioration and loss of nephrons [56].

Nitric oxide is produced within the kidney and plays an important role in the 
control of many intrarenal processes. NO contributes to the regulation of sodium 
excretion and thus maintenance of vascular volume and arterial pressure in the adult 
[50]. Studies have shown that certain animal models of genetic hypertension and 
forms of human hypertension are associated with a decrease in NO synthesis [58].

The deficient production of NO in the intrauterine period is associated with a 
reduction in the mass and number of nephrons in the initial period of life. NO is 
involved in maturation and renal function in the postnatal period [50].

Inhibition of NO synthesis during gestation in rats treated with L-NAME 
promoted structural changes of the renal microvessels (thickening of the media) in 
newborns. The remodeling of the microvasculature of the kidneys of the newborns 
can be involved with adaptive responses to maternal arterial hypertension, activa-
tion of local/systemic of RAS in newborns, and enhanced synthesis of peptide 
growth factors, such as platelet-derived growth factor, which promote smooth 
muscle cell hyperplasia of the microvasculature [59–61].

Spontaneously hypertensive rats (SHR) at 2 days of age also showed an increase 
in the area and in the media/lumen ratio of the renal microvasculature due to 
hypertrophy or hyperplasia of the media layer. Hypertrophy and polyploidy are 
preferentially found in conduit arterioles, whereas hyperplasia and remodeling are 
found mainly in small arteries and arterioles [62].

Pups of spontaneously hypertensive rats (SHR) had significantly higher 
concentrations of renin than Wistar-Kyoto pups from birth until the beginning of 
the third postnatal week [63] as well as increased expression of angiotensinogen 
mRNA [64].

The elevated renin concentration of the SHR is linked to increased renal vascular 
resistance and thus to a reduced renal blood flow and glomerular filtration rate 
[65]. Also, it appears that sustained activity of the renin-angiotensin system may be 
required for exaggerated vascular growth responses in SHR [66].

Intrauterine growth restriction by nitric oxide inhibition during pregnancy is associ-
ated with a decrease in the number and size glomeruli and microvascular remodeling. 
Therefore, the nitric oxide inhibition during pregnancy may be linked to structural 
changes in the kidney which potentially lead to hypertension in later life [54].

Therefore, individuals born after intrauterine growth restriction, such as the 
L-NAME-induced hypertension model in rats, are at increased risk for kidney 
and heart morbidities. Endothelial dysfunction, with inhibition of NO synthesis, 
increases oxidative stress, dysfunction of endothelial progenitor cells, and acceler-
ated vascular aging. L-arginine supplementation and treatment with NO modula-
tors represent promising strategies to improve endothelial function and mitigate 
long-term outcomes and possibly vascular problems in newborns that have under-
gone growth restriction during maternal hypertension [67].

6. Conclusions

The inhibition of nitric oxide synthesis during pregnancy promotes changes in 
the renal and cardiac microvasculature and, in addition, reduction in the number of 
fetal nephrons, leading to hypertension in the adult life of rat pups and, potentially, 
in humans. In this sense, the effects of preeclampsia for the mother and the fetus 
should be considered.
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