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Chapter

Numerical Problem Encryption for
High-Performance Computing
Applications
Riccardo Bernardini

Abstract

Recent years witnessed the diffusion of cloud-based services. Cloud services
have the interesting advantage that they can provide resources (CPU, disk space,
etc.) that would be too expensive to deploy and maintain in-house. A major draw-
back of cloud-based services is the problem of handling private data and—possibly
—intellectual property to a third party. With some service (e.g., data storage),
cryptography can provide a solution; however, there are some services that are
more difficult to protect. An example of such services is the renting of CPU to carry
out numerical computation such as differential equation solving. In this chapter, we
discuss the problem of encrypting numerical problems so that their solution can be
safely outsourced. The idea is to transform (encrypt) a given numerical problem into
a different one whose solution can be mapped back to the solution of the original
problem if the key used at the encryption stage is known.

Keywords: HPC, numerical analysis, security, cloud

1. Introduction

The rise of cloud computing has made it possible for SMEs to procure, on a pay-
per-use basis, resources that until few years ago they had to acquire themselves.
Although cloud computing offers interesting opportunities, it has some drawbacks
too. One important drawback is the lack of data privacy: as soon as the SME hands
its data to the cloud provider, there is the risk that the data could be exposed to
third parties. Privacy protection in cloud services is indeed one of the key challenges
highlighted by the Public Consultation on Cloud Computing and Software [1].

In some cases, the SME can take some simple countermeasures to mitigate privacy
risks. For example, the SME can send to the provider an encrypted version of the data
in the case of storage service (see Figure 1a). This is possible since the cloud provider
can store the data just as a “binary blob” without the need to understand them.

However, there are some services where simple solutions are not feasible, for
example, the procurement of high-performance computing (HPC) resources on the
cloud. It is a fact that many potential users are not eager to employ cloud HPC
services because of the risk of data disclosure. In fact, simple data encryption
mechanisms are not sufficient to deal with security and privacy protection in data
centric environments, and even “the right to be forgotten” does not cover indirect
security and privacy aspects [2].
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Ideally, we would like a solution reminiscent of what is done for storage: encrypt
the computation before sending it to the cloud and decrypt what we receive from
the cloud. Figure 1b shows a graphical representation of this idea: on the left hand
side, we see a user that needs to compute the airflow around a new wing in an
aerodynamic application. In order to outsource that aerodynamic problem, the user
processes it with a secret key in the block ENC with the aim of transforming it into a
different numerical problem that is uploaded to the cloud. A number of HPC pro-
viders collaborating on the cloud may be needed to solve this computation-intensive
problem. The encrypted solution is then synthesized and sent back to the user (wing
designer) that processes it with DEC in order to get the final answer. Standard
cryptography techniques (e.g., RSA, AES, etc.) in this context provide only limited
result. The question is if the user uploads their data in encrypted form to the cloud,
how can the cloud process it?

At a first glance, this seems an unsolvable problem, but recent developments in
the field of theoretical cryptography can address this apparent paradox using a set
of secure techniques belonging to the family of secure multiparty computation
(SMPC). Some efficient SMPC solutions, such as additive homomorphic encryption
or garbled circuit, allow evaluating particular functions on encrypted data, but
unfortunately they require interaction with the user, often making the cooperation

Figure 1.
(a) Using safely storage on networks and (b) renting safely CPU on network.
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more expensive than the direct solution. On the other hand, fully homomorphic
encryption (FHE) allows evaluating functions on encrypted binary data, without
decrypting it nor interacting with the client. This implies that the cloud can com-
pute any function of the data uploaded by the user (without learning anything
about the plain-text data) and return the encrypted answer.

Even more recent developments in the field of cryptography show that even
cryptographic obfuscation can be achieved (under strong but plausible assump-
tions): using obfuscation, one can upload a piece of software to the cloud, which
now can be run on any input data without learning anything about the proprietary
code—think of a researcher who find a new algorithm to diagnose some diseases.
Now the researcher can sell diagnosis as an external service on a cloud provider,
without fearing that the cloud can steal or leak his proprietary methods.

While SMPC and FHE provide wonderful theoretical results, they will have little
or no practical impact in the way users work with the cloud. The computational
overhead introduced by FHE is huge, and an obfuscated version of even a simple
function (a point function with few bit inputs) requires gigabytes of memory.

2. The setup

2.1 The basic setup

Figure 2 shows a more detailed setup with two possible scenarios. We have,
with reference to Figure 2a, an original problem that we will call the engineering
problem; for example, determine drag and lift of a new innovative wing profile or
the electronic configuration of a new molecule. The first step in the solution of the
engineering problem is its transformation into a numerical problem (typically a
linear system or an eigenvalue problem) that is solved by means of a well-known
numerical algorithm in order to obtain a numerical solution. The final step is to use
the numerical solution to obtain the engineering solution, that is, the values that are
of interest for us (e.g., drag and lift in the wing problem). It is worth to discuss in
some details the three steps.

2.1.1 From the engineering problem to the numerical problem

Many engineering problems require the solution of differential equations that
when discretized give rise, usually, to a linear system or an eigenvalue problem. The
matrices obtained with the discretization can be quite large but (usually) sparse.
Note that instead the engineering problem has usually a relatively compact descrip-
tion; in the example at hand, it would be a description of the geometry of the wing
(by means of 3D model format) together with a description of the air flow [3–5]; in
the case of the molecule, it could be a description of the configuration of the
molecule (e.g., by means of its structural formula).

Although intuitively one can imagine that the solution of the numerical problem
is the heaviest part, even the discretization step can be nontrivial. For example,
some discretization technique—e.g., the popular finite element method (FEM)—
requires to partition the space using a grid whose generation can be fairly complex
[6]. Finally, it is worth observing that with large problems, not only the required
CPU time can be a problem but also the amount of memory required that can
become readily prohibitive because of the “dimension curse.” Indeed many engi-
neering problems involve at least four dimensions: one for time and three for space.
This suggests that working with very sparse matrices (and preserving their sparse
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structure) is of utmost importance. This will be important in the following when
talking about some proposals found in the literature.

Finally, it is worth observing that there is a good degree of arbitrary in the
discretization step: if a grid is used, it is not uniquely determined; in finite differ-
ence method (FDM), the ordering used to map the grid points to matrix coordinates
is arbitrary; in methods based on function space discretization (e.g., Galerkin-like

Figure 2.
(a) Typical scenario: an engineering problem is converted to a numeric problem that is solved to derive the
desired engineering solution, (b) outsourcing by encrypting the engineering problem and (c) outsourcing by
encrypting the numerical problem.
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methods), there is a wide freedom in the choice of basis functions. This implies that
while it is known how to go from an engineering problem to its numerical counter-
part, it is not clear how (or “if”) it is possible to go in the other direction. This is
important in our context since we can expect that the opponent will be interested in
the engineering problem rather than in the numerical one.

2.1.2 Numerical solution

In this step the numerical problem (typically, a linear system or an eigenvalue
problem) is solved to give the numerical solution (typically, a vector). If the prob-
lem is very large, this step can be very CPU-consuming. Algorithms used for the
solution typically exploit the very sparse structure of the matrices involved. For
example, in the solution of a linear system, usually an iterative procedure is pre-
ferred, since the iterative procedure exploits more easily any sparsity (the cost of a
product matrix-vector is proportional to the number of non-zero elements), while
the inverse of a sparse matrix is not necessarily sparse, requiring much more
memory and CPU time to be handled.

This suggests that if the encryption is applied at the numerical problem level
(see Section 3 in the following), care must be exercised in order not to spoil the
sparsity, although this goes against with the requirement—sometimes stated—of
hiding the number of zeros (see Section 4.1.1).

2.1.3 From the numerical solution to the engineering solution

This step usually is not as computationally demanding as the previous ones. It
amounts to extract from the numerical solution the values of interest (e.g., drag and
lift in the wing example) or producing suitable visualizations of the data (e.g., in the
electronic distribution of a molecule example).

3. Encrypting the problem

There are two possibilities, shown in Figure 2, of encrypting the problem: in a
case (see Figure 2b) the original problem is directly encrypted and outsourced,
leaving both discretization and numerical solution to the cloud; we will call this
solution the engineering problem encryption (EPE). In the other case (see in
Figure 2c), the discretization step is done on the client computer, and only the
numerical problem (e.g., solution of linear system) is encrypted and outsourced; we
will call this solution the numerical problem encryption (NPE). Pros and cons of the
two solutions are as follows.

EPE: From the point of view of the work to be done on the client, this solution is
preferable since the possibly large cost of the discretization step is outsourced to the
cloud. This solution, however, requires a different encryption technique for every
problem (e.g., an encryption technique suitable for aerodynamic problems cannot
be used for computational chemistry problems). To the best of our knowledge,
there is currently no proposal working at the EPE level.

NPE: On the one hand, this solution requires that the client does the
discretization step and the computational cost of this step cannot be negligible; on
the other hand, many engineering problems reduce to a just few numerical prob-
lems when discretized. This means that a procedure to encrypt, say, a linear system
can be applied in many engineering problems that require the solution of differen-
tial equations.
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Note that in both cases the key remains in the client, similarly to what happens
in the case of remote storage. This implies that the client can employ very long
keys, maybe as long as the data to be encrypted, since there is not a problem of
distributing the key.

3.1 Numerical issues

Since we are interested in numerical problems, the issue of the impact of the
encryption/decryption on the precision of the result needs to be taken into account.
For example, consider the following protocol, similar to many techniques proposed
for protecting a linear system [7–9]:

Ax ¼ b (1)

with A∈ IRn�n and x,b∈ IRn. System (1) is protected by randomly generating
two permutation matrices P,Q ∈ IRn�n and a diagonal matrix D∈ IRn�n and
replacing A and b with, respectively,

Â ¼ PAQD (2)

b̂ ¼ Pb (3)

and sending the problem

Âx̂ ¼ b̂ (4)

to the cloud. It is immediate to check that the solutions of (1) and (4) are related by

x ¼ QDx̂ (5)

Eq. (5) can be considered as the decryption algorithm. This looks fine, but the
value returned for x̂ usually has some error ε. It is immediate to verify that this
induces an error QDε on the decrypted value. If D has some large entries, this will
amplify the noise that affects the decrypted value. Moreover, right multiplication
by D can affect the condition number of A, worsening the conditioning of the
system. Figure 3 shows the result of a numerical experiment demonstrating this
problem: we generated 5000 symmetric matrices A and 5000 diagonal matrices D
of sizes ranging from 10� 10 to 200� 200, and for every iteration, we computed
the condition number amplification

ρ ¼ cond ADð Þ=cond Að Þ (6)

where cond Að Þ ¼ j Ajk k2jkA
�1jk2 is the 2-norm condition number of A. Entries of

A were Gaussian with zero mean and unit variance, while entries of D have been
generated using a variety of distributions: Gaussian as the entries of A, uniform in
0; 1½ �, uniform in 1=2; 3=2½ �, and uniform in [1,2].

The right hand column of Figure 3 shows the histogram of ρ in logarithmic scale
for 100 � 100 matrices; Figure 3b shows the minimum, maximum, and average
values of ρ as function of the matrix size. Different rows of Figure 3 are relative to
different ways of generating D. Although from Figure 3 one can see that sometimes
the conditioning can improve (ρ < 1), it is clear that there is a non-negligible
probability of worsening the condition number of several orders of magnitude,
especially if the entries of D can go near to zero (first two rows of Figure 3 relative
to the cases Gaussian and uniform in [0,1]).

6

Modern Cryptography – Current Challenges and Solutions



Figure 3.
(a) Histogram of the condition number amplification ρ ¼ cond ADð Þ=cond Að Þ in logarithmic scale for
100� 100 matrices; matrix entries of both A and D are Gaussian with mean zero and unitary variance; (b)
minimum, maximum, and average values of ρ as a function of the matrix size; (c) and (d) like (a) and (b),
but the entries of D are uniformly distributed in [0,1]; (e) and (f) like (c) and (d), but the entries of D are
uniformly distributed in 1=2; 3=2½ �; (g) and (h) like (c) and (d), but the entries of D are uniformly distributed
in [1,2].
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4. The adversary model

In the literature, two kinds of “bad behavior” can be present together or not in a
specific opponent:

Honest but curious: In this case all the parties follow correctly the protocol, and
the computed result is correct, but the cloud tries to learn the protected secret. Note
that it is reasonable to expect that the opponent is interested in the engineering
problem or the corresponding solution rather than in the numerical counterparts.
The numerical problem/solution can be seen as a mean to find out the engineering
problem/solution. Note that the freedom that one has in the discretization step can
potentially be used to make it more difficult to invert it.

Malicious: The cloud does not follow correctly the protocol and, in particular, could
try to “cut some corners” returning results that are not correct. In many cases, this
attack can be easily counteracted by checking the result returned by the cloud; this is
possible since many problems can be computationally heavy to solve, but it is fairly
easy to check if a solution is correct; think, for example, the case of a linear system.

In some cases, even a full check can be quite demanding; in those cases, a
random selection of checks to be done can give a fairly good assurance that the
result is correct. For example, in the case of a linear system, a random subset of the
equations can be checked. The probability of a false positive (an uncorrected result
is accepted) decreases exponentially with the number of checks, while the compu-
tational cost grows only linearly. Indeed, many check techniques proposed in the
literature can be reduced to this idea.

Remark 4.1
It is worth observing that since we are talking about floating point computation,

we need to take into account numerical noise that results from computation. For
example, if a numerical system is solved with an iterative approach, the returned
solution will differ from the “true” solution by a, hopefully, small error. This needs
to be taken into account when checking if the solution is correct.

In a typical context the adversary is interested in getting the original problem or
the solution. It is worth observing that while in the classical cryptography setup, the
opponent recovers completely the message or nothing at all; in this case, there is the
possibility that the adversary recovers an approximate version of the problem/
solution. Observe also that the setup of Figure 2c makes the problem for the
adversary more difficult since after recovering the numerical problem there is the
problem of doing the inverse of discretization.

Finally, it is worth observing that the encryption/decryption steps could amplify
the numerical noise introduced by the solution algorithm.

4.1 Security criterion

A major difference between traditional cryptography and cryptography of
numerical problems is the information that an opponent can gain about the secret.
In the most typical case, in a practical application of classical cryptography, two
cases are possible: (i) the opponent succeeds in the attack and learns the whole
secret and (ii) the attack is unsuccessful and very little, or nothing is learned about
the secret; the case where a partial success can be achieved is quite uncommon.
Suitable security criterion in this kind of application is information-theoretical
criterion (where the adversary has unlimited computational power) or based on
computational indistinguishably (where we admit that the computational power of
the adversary can grow only polynomially).

In the context of encryption of numerical problems instead, it is possible that the
opponent gains some partial or low-resolution information. For example, in the case
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of a new wing, the adversary is interested in learning the profile of the wing; the
adversary has a strong a priori information about the profile, and only some detail
information to integrate such a priori are needed. Depending on the specific
encryption technique, it could be possible for the adversary to find said details but
only up to a resolution. The ambiguity could be “unsolvable” even with infinite
computational power (more or less the equivalent of information-theoretical secu-
rity), or maybe it could be that the amount of computation required to improve the
resolution increases more than the polynomial with the required resolution (this
would be the equivalent of classical computational indistinguishably).

There is also the possibility that the encryption technique leaks some invariant of
the problem. For example, if linear system Ax ¼ b is encrypted by applying two
orthogonal matrices U,V as in

UAV
|fflffl{zfflffl}

Â

Vtx
|{z}

x̂

¼ Ub
|{z}

b̂

, (7)

matrix Â preserves the singular values of A. Is this a problem? Most probably, it
depends on the specific underlining engineering problem. As in another example,

consider the encryption protocol described in (2). In this case, Â preserves not the
singular values of A but its sparsity (i.e., the number of non-zero entries). Again,
if this is a problem or not probably depends on the corresponding engineering
problem.

To the best of our knowledge, most of the literature consider the classical
cryptography criterion of computational indistinguishably, and more research
about criterion specific for numerical problem could prove useful.

4.1.1 About sparsity preservation

As said before, many discretization techniques produce matrices that are very
sparse. This is very important from the viewpoint of computational efficiency since
there are algorithms that are able to exploit the sparseness, working only with the
non-zero entries of the matrix. This suggests that the encryption should preserve
the sparseness or, at least, not reduce it in a significant way. However, some
researchers raise the concern that even the fraction of non-zero entries can be
private information. This would suggest that the encryption step should not pre-
serve matrix sparsity.

It is also worth observing that in some application, the number of non-zero
entries is known a priori with good precision. For example, in FDM/FEM
discretization methods for differential equations, the fraction of non-zero entries
depend on the structure of the grid employed which can be considered known with
good precision. A quantitative and objective approach to the importance of pre-
serving or hiding the sparsity can be an interesting field for future research activity.

5. Existing techniques

The field of encrypting numerical problems is relatively new, and there is not a
huge variety of encryption algorithms proposed; many of them are just variations of
some basic scheme. To the best of our knowledge, no algorithm found in the
literature tries to encrypt the engineering problem; it rather tackles the numerical
problem. Also, it is very difficult to find some discussion about the numerical
stability of the proposed scheme.
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5.1 Basic techniques

There are few basic techniques used in the literature to encryptmatrices and vectors.

Addition: To matrix A a matrix K is added to obtain Â ¼ Aþ K. This approach is
not widely used, probably because sum does not “propagate” nicely in usual linear
algebra operations (e.g., linear systems, eigenvalue problems, determinants, singu-
lar value decomposition). Moreover, in the case of linear systems, it is not obvious

how to choose K in order to have Â invertible.
Product by a diagonal matrix: Matrix A is multiplied (on the left, on the right, or

both) by a diagonal matrix D. The effect on problems like linear systems is quite
easy to describe, and it suffices that all the diagonal entries are not zero in order to

guarantee the invertibility of Â, but, as shown in Section 3.1, if D is randomly
chosen, the condition number of A can increase by several orders of magnitude.

Product by a permutation: Matrix A is multiplied (on the left, on the right, or

both) by a permutation matrix P. This grants that cond Â
� �

¼ cond Að Þ (therefore

also invertibility is preserved). A product by a permutation requires no floating
point multiplications, although the cost of data movement (especially if A is very
large) is not necessarily small. Sparsity is preserved, and this can be seen either as an
advantage or as a drawback (see Section 4.1.1). Some characteristic values such as
determinant and singular values are preserved.

Product by a unitary matrix: Matrix A is multiplied (on the left, on the right, or

both) by a matrix R such that RtR ¼ I. This grants that cond Â
� �

¼ cond Að Þ.

Product by R does not necessarily preserve sparsity. If R is generated as a sequence
of planar rotations, product by R (stored as sequence of rotation, not as a full
matrix) can be more efficient than usual matrix product. Singular values and deter-
minant are preserved.

5.2 Brief literature review

Maybe the numerical problem most frequently addressed is the problem of
solving linear systems. Lei et al. [7] proposed a scheme similar to (2) where A is
both left and right multiplied by a diagonal matrix and a permutation. The proposal
of Wang et al. [10] is one of the few that proposes to use classical homomorphic
encryption together with an iterative algorithm; the approach of Wang et al.
requires to use matrices with integer entries (eventually by rescaling the system)
and a continuous exchange between the cloud and the user. Chen et al. in [11]
pointed out a weakness of [10] and proposed a variation to solve the problem.
Another solution based on matrix pre- and post-multiplication is suggested in [8].

A problem similar to linear system is linear regression. Chen et al. in [9] used
pre- and post-multiplication approaches with two diagonal matrices. Zhou et al. in
[12] pointed out a possible weakness (in the hypothesis of an integer problem).
Similar approaches, still based on matrix pre- and post-multiplication, can be found
also for matrix product [13, 14], determinant computation [15], and singular value
decomposition [16].

6. Conclusions

We analyzed the problem of outsourcing safely numerical and engineering
problems to the cloud. It turns out that the field is still in an evolving phase. Many
approaches are different instances of pre- and post-multiplication masking
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techniques; security criterion is a reformulation of criterion from classical cryptog-
raphy and does not address the peculiarities of numerical problem protections;
finally, the problem of how the encryption/decryption impacts on issue such as
numerical conditioning of the problem is usually not addressed. Future research
directions will aim to cover such still open areas.
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