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Chapter

Training Deep Neural Networks
with Reinforcement Learning for
Time Series Forecasting
Takashi Kuremoto,Takaomi Hirata, Masanao Obayashi,

Shingo Mabu and Kunikazu Kobayashi

Abstract

As a kind of efficient nonlinear function approximators, artificial neural net-
works (ANN) have been popularly applied to time series forecasting. The training
method of ANN usually utilizes error back-propagation (BP) which is a supervised
learning algorithm proposed by Rumelhart et al. in 1986; meanwhile, authors pro-
posed to improve the robustness of the ANN for unknown time series prediction
using a reinforcement learning algorithm named stochastic gradient ascent (SGA)
originally proposed by Kimura and Kobayashi for control problems in 1998. We also
successfully use a deep belief net (DBN) stacked by multiple restricted Boltzmann
machines (RBMs) to realized time series forecasting in 2012. In this chapter, a state-
of-the-art time series forecasting system that combines RBMs and multilayer
perceptron (MLP) and uses SGA training algorithm is introduced. Experiment
results showed the high prediction precision of the novel system not only for
benchmark data but also for real phenomenon time series data.

Keywords: artificial neural networks (ANN), deep learning (DL), reinforcement
learning (RL), deep belief net (DBN), restricted Boltzmann machine (RBM),
multilayer perceptron (MLP), stochastic gradient ascent (SGA)

1. Introduction

Artificial neural networks (ANN), which are mathematical models for function
approximation, classification, pattern recognition, nonlinear control, etc., have
been successfully applied in the field of time series analysis and forecasting instead
of linear models such as 1970s ARIMA [1] since 1980s [2–7]. In [2], Casdagli used a
radial basis function network (RBFN) which is a kind of feed-forward neural
network with Gaussian hidden units to predict chaotic time series data, such as the
Mackey-Glass, the Ikeda map, and the Lorenz chaos in 1989. In [3, 4], Lendasse
et al. organized a time series forecasting competition for neural network prediction
methods with a five-block artificial time series data named CATS since 2004. The
goal of CATS competition was to predict 100 missing values of the time series data
in five sets which included 980 known values and 20 successive unknown values in
each set (details are in Section 3.1). There were 24 submissions to the competition,
and five kinds of methods were selected by the IJCNN2004: filtering techniques
including Bayesian methods, Kalman filters, and so on; recurrent neural networks
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(RNNs); vector quantization; fuzzy logic; and ensemble methods. As the
comment of the organizers, the different prediction precisions were reported
though the similar prediction methods were used for the know-how and
experience of the authors. So the development of time series forecasting by ANN
is still on the way.

As a kind of classifiers or a kind of function approximators, the advances of the
ANN are bought out by the nonlinear transforms to the input space. In fact, units
(or neurons) with nonlinear firing functions connected to each other usually pro-
duce higher dimensional output space and various feature spaces in the networks.
Additionally, as a connective system, it is not necessary to design fixed mathemat-
ical models for different nonlinear phenomena, but adjusting the weights of con-
nections between units. So according to the report of NN3—Artificial Neural
Networks and Computational Intelligence Forecasting Competition [5], there have
been more than 5000 publications of time series forecasting using ANN till 2007.

To find the suitable parameters of ANN, such as weights of connections between
neurons, error back-propagation (BP) algorithm [6] is generally utilized in the
training process of ANN. However, due to every sample data (a pair of the input
data and the output data) is used in the BP method, noise data influences the
optimization of the model, and robustness of the model becomes weak for unknown
input. Another problem of ANN models is how to determine the structure of the
network, i.e., the number of layers and the number of neurons in each layer. To
overcome these problems of BP, Kuremoto et al. [7] adopted a reinforcement
learning (RL) method “stochastic gradient ascent (SGA)” [8] to adjust the connec-
tion weights of units and the particle swarm optimization (PSO) to find the optimal
structure of ANN. SGA, which is proposed by Kimura and Kobayshi, improved
Williams’ REINFORCE [9], which uses rewards to modify the stochastic policies
(likelihood). In SGA learning algorithm, the accumulated modification of policies
named “eligibility trace” is used to adjust the parameters of model (see Section 2).
In the case of time series forecasting, the reward of RL system can be defined as a
suitable error zone to instead of the distance (error) between the output of the
model and the teach data which is used in BP learning algorithm. So the sensitivity
to noise data is possible to be reduced, and the robustness to the unknown data may
be raised. As a deep learning method for time series forecasting, Kuremoto et al.
[10] firstly applied Hinton and Salakhutdinov’s deep belief net (DBN) which is a
kind of stacked auto-encoder (SAE) composed by multiple restricted Boltzmann
machines (RBMs) [11]. An improved DBN for time series forecasting is proposed in
[12], which DBN is composed by multiple RBMs and a multilayer perceptron (MLP)
[6]. The improved DBN with RBMs and MLP [6] gives its priority to the conven-
tional DBN [5] for time series forecasting due to the continuous output unit is used;
meanwhile the conventional one had a binary value unit in the output layer.

As same as the RL method, SGA adopted to MLP, RBFN, and self-organized
fuzzy neural network (SOFNN) [7]; the prediction precision of DBN utilized SGA
may also be raised comparing to the BP learning algorithm. Furthermore, it is
available to raise the prediction precision by a hybrid model which forecasts the
future data by the linear model ARIMA at first and modifying the forecasting by the
predicted error given by an ANN which is trained by error time series [13, 14].

In this chapter, we concentrate to introduce the DBN which is composed by
multiple RBMs and MLP and show the higher efficiency of the RL learning
method SGA for the DBN [15, 16] comparing to the conventional learning method
BP using the results of time series forecasting experiments. Kinds of benchmark
data including artificial time series data CATS [3], natural phenomenon time
series data provided by Aalto University [18], and TSDL [18] were used in the
experiments.
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2. The DBN model for time series forecasting

2.1 The structure of the model

The model of time series forecasting is given as the following:

xtþ1 ¼ f xt; xt�1;…; xt�nþ1ð Þ (1)

Denote t = 1, 2, 3, …, where T is the time, n is the dimensionality of the input of
function f(x), xt is the time series data, and xtþ1 is unknown data in the future as
well as the output of model.

A deep belief net (DBN) composed by restricted Boltzmann machines (RBMs)
and multilayer perceptron (MLP) is shown in Figure 1.

2.2 RBM

Restricted Boltzmann machine (RBM) is a kind of probabilistic generative neu-
ral network which composed by two layers of units: visible layer and hidden layer
(see Figure 2).

Units of different layers connect to each other with weights wij ¼ wji, where
i ¼ 1, 2,…, n and j ¼ 1, 2,…, m are the numbers of units of visible layer and hidden
layer, respectively. The outputs of units vi, hj are binary, i.e., 0 or 1, except for the
initial value of visible units which is given by the input data. The probabilities of 1
of a visible unit and a hidden unit are according to the following:

p hj ¼ 1jv
� �

¼ 1

1þ exp �bj �∑n
i¼1wjivi

� � (2)

p vi ¼ 1jhð Þ ¼ 1

1þ exp �bi �∑m
j¼1wijhj

� � (3)

Figure 1.
The structure of DBN for time series forecasting.

Figure 2.
The structure of RBM.
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Here bi, bj are the biases of units. The learning rules of RBM are given as follows:

Δwij ¼ ε < vihj > data � < vihj >model

� �

(4)

Δbi ¼ ε < vi > � <~vi > Þ
�

(5)

Δbj ¼ ε < hj > � <
~hj > Þ

�

(6)

where 0< ε< 1 is a learning rate, pij ¼ < vihj > data, p
0
ij < vihj >model and

< vi > , < hj > indicate the expectations of the first Gibbs sampling (k = 0), and

< ~vi > , < ~hj > the kth Gibbs sampling, and it works when k = 1.

2.3 MLP

Multilayer perceptron (MLP) is the most popular neural network which is gen-
erally composed by three layers of units: input layer, hidden layer, and output layer
(see Figure 3).

The output of the unit y ¼ f zð Þ and unit zk ¼ f xð Þ is given as the following
logistic sigmoid functions:

f yð Þ ¼ 1

1þ exp �∑Kþ1
j¼1 wjzj

� � (7)

f zj
� �

¼ 1

1þ exp �∑nþ1
i¼1 vjixi

� � (8)

Here n is the dimensionality of the input, K is the number of hidden units, and
xnþ1 ¼ 1:0, zKþ1 ¼ 1:0 are the support units of biases vj nþ1ð Þ, wKþ1.

The learning rules of MLP using error back-propagation (BP) method [5] are
given as follows:

Δwj ¼ �ε y� ~yÞy 1� yð Þzj
�

(9)

Δvji ¼ �ε y� ~yÞy 1� yð Þwjzj 1� zj
� �

xi
�

(10)

where 0< ε< 1 is a learning rate and ~y is the teacher signal.
The learning algorithm of MLP using BP is as follows:
Step 1. Observe an input xt ¼ xt; xt�1;…; xt�nþ1ð Þ;
Step 2. Predict a future data yt ¼ xtþ1 according to Eqs. (7) and (8).
Step 3. Calculate the modification of connection weights, Δwj,Δvji according to

Eqs. (9) and (10).

Figure 3.
The structure of MLP.
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Step 4. Modify the connections,

wj  wj þ Δwj; vji  vjj þ Δvji;

Step 5. For the next time step tþ 1, return to step 1.

2.4 The training method of DBN

As same as the training process proposed in [10], the training process of DBN is
performed by two steps. The first one, pretraining, utilizes the learning rules of
RBM, i.e., Eqs. (4–6), for each RBM independently. The second step is a fine-tuning
process using the pretrained parameters of RBMs and BP algorithm. These processes
are shown in Figure 4 and Eqs. (11)–(13).

ΔwL
ji ¼ �ε ∑

i

∂E

∂wLþ1
ji

wLþ1
ji

 !

1� hLj

� �

vLi (11)

ΔbLj ¼ �ε ∑
i

∂E

∂wLþ1
ji

wLþ1
ji

 !

1� hLj

� �

(12)

E ¼ 1

2
∑
T

t¼1
yt � ~ytÞ
�

(13)

In the case of reinforcement learning (RL), the output is decided by a probability
distribution, e.g., the Gaussian distribution y � π μ; σ2ð Þ. So the output units are the
mean μ and the variance σ instead of one unit y.

μ ¼ ∑
j
wμjzj (14)

σ ¼ 1

1þ exp �∑jwσjzj
� � (15)

π μ; σ2
� �

¼ 1
ffiffiffiffiffi

2π
p

σ
exp � y� μð Þ2

2σ2

 !

(16)

The learning algorithm of stochastic gradient ascent (SGA) [7] is as follows.
Step 1. Observe an input xt ¼ xt; xt�1;…; xt�nþ1ð Þ.
Step 2. Predict a future data yt ¼ xtþ1 according to a probability yt � π xt;wð Þ with

ANN models which are constructed by parameters w wμj;wσj;wij; vji
� �

.
Step 3. Receive a scalar reward/punishment rt by calculating the prediction error:

Figure 4.
The training of DBN by BP method.

5

Training Deep Neural Networks with Reinforcement Learning for Time Series Forecasting
DOI: http://dx.doi.org/10.5772/intechopen.85457



rt ¼
1 if yt � ~yt

� �2
≤ ζ

�1 else

(

(17)

where ζ is an evaluation constant greater than or equal to zero.

Step 4. Calculate characteristic eligibility ei tð Þ and eligibility trace Di tð Þ:

ei tð Þ ¼
∂

∂wi
ln π xt;wð Þf g (18)

Di tð Þ ¼ ei tð Þ þ γDi t� 1ð Þ (19)

where 0≤ γ < 1 is a discount factor and wi denotes ith internal variable of
DBN.

Step 5. Calculate the modification Δwi tð Þ:

Δwi tð Þ ¼ rt � bð ÞDi tð Þ (20)

where b≥0 denotes the reinforcement baseline (it can be set as zero).
Step 6. Improve the policy Eq. (16) by renewing its internal variable wi by

Eq. (21):

wi  wi þ εΔwi (21)

where 0≤ ε≤ 1 is a learning rate.
Step 7. For the next time step tþ 1, return to step 1.
Characteristic eligibility ei tð Þ, shown in Eq. (18), means that the change of the

policy function concerns with the change of system internal variable vector. In fact,
the algorithm combines reward/punishment to modify the stochastic policy with its
internal variable renewing by Step 4 and Step 5.

The calculation of ewμj
tð Þ, ewσj

tð Þ, evij tð Þ in MLP part of DBN is induced as follows;

ewμj
tð Þ ¼ yt � μt

σ2t
zj tð Þ (22)

ewσj
tð Þ ¼ yt � μt

� �2 � σ2

σ2t
1� σtð Þzj tð Þ (23)

Figure 5.
The learning errors given by different learning rates.
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evij tð Þ ¼ ewμj tð Þwμj þ ewσj tð Þwσj

� �

1� zj tð Þ
� �

xi tð Þ (24)

The ei tð Þ of the RBM of Lth layer in the case of the DBN is given as follows:

eLwij
tð Þ ¼ ∑

j
eLþ1wij

tð ÞwLþ1
wij

 !

1� hLj

� �

vLi (25)

eLbj tð Þ ¼ ∑
k

eLþ1wij
tð ÞwLþ1

wij

� �

1� hLj

� �

(26)

The learning rate ε in Eq. (21) affects the learning performance of fine-tuning of
DBN. Different values to result different training error (mean squared error (MSE))
as shown in Figure 5. An adaptive learning rate as a linear function of learning error
is proposed as in Eq. (27):

ε ¼ βMSE t� 1ð Þ (27)

where is 0≤ β a constant.

2.5 Optimization of meta-parameters

The number of RBM that constitute the DBN and the number of neurons of
each layer affects prediction performance seriously. In [9], particle swarm
optimization (PSO) method is used to decide the structure of DBN, and in [13] it is
suggested that random search method [16] is more efficient. In the experiment of
time series forecasting by DBN and SGA shown in this chapter, these meta-
parameters were decided by the random search, and the exploration limits are
shown as the following.

• The number of RBMs: [0–3]

• The number of units in each layer of DBN: [2–20]

• Learning rate of each RBM in Eqs. (4)–(6): [10�5–10�1]

• Fixed learning rate of SGA in Eq. (21): [10�5–10�1]

• Discount factor in Eq. (19): [10�5–10�1]

• Coefficient in Eq. (27) [0.5–2.0]

The optimization algorithm of these meta-parameters by the random search
method is as follows:

Step 1. Set random values of meta-parameters beyond the exploration
limitations.

Step 2. Predict a future data yt ≈ xtþ1 by MLP or DBN using the current weighted
connections.

Step 3. If the error between yt, xtþ1 is reduced enough, store the values of meta-
parameters,
or else if the error is not changed,

stop the exploration,
else return to step 1.

7

Training Deep Neural Networks with Reinforcement Learning for Time Series Forecasting
DOI: http://dx.doi.org/10.5772/intechopen.85457



3. The experiments and results

3.1 CATS benchmark time series data

CATS time series data is the artificial benchmark data for forecasting competi-
tion with ANN methods [3, 4].This artificial time series is given with 5000 data,
among which 100 are missed (hidden by competition the organizers). The missed
data exist in five blocks:

• Elements 981 to 1000

• Elements 1981 to 2000

• Elements 2981 to 3000

• Elements 3981 to 4000

• Elements 4981 to 5000

The mean square error E1 is used as the prediction precision in the competition,
and it is computed by the 100missing data and their predicted values as the following:

E1 ¼
(

∑
1000

t¼981
yt � yt
� �2 þ ∑

2000

t¼1981
yt � yt
� �2 þ ∑

3000

t¼2981
yt � yt
� �2þ

∑
4000

t¼3981
yt � yt
� �2 þ ∑

5000

t¼4981
yt � yt
� �2

)

=100

(28)

where yt is the long-term prediction result of the missed data. The CATS time
series data is shown in Figure 6.

The prediction results of different blocks of CATS data are shown in Figure 7.
Comparing to the conventional learning method of DBN, i.e., using Hinton’s RBM
unsupervised learning method [6, 8] and back-propagation (BP), the proposed
method which used the reinforcement learning method SGA instead of BP showed
its superiority in the sense of the average prediction precision E1 (see Figure 7f).

Figure 6.
CATS benchmark data.
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In addition, the proposed method, DBN with SGA, yielded the highest prediction
(E1 measurement) comparing to all previous studies such as MLP with BP, the best
prediction of CATS competition IJCNN’04 [4], the conventional DBNs with BP
[9, 11], and hybrid models [13]. The details are shown in Table 1.

The meta-parameters obtained by random search method are shown in Table 2.
And we found that the MSE of learning, i.e., given by one-ahead prediction results,
showed that the proposed method has worse convergence compared to the conven-
tional BP training. In Figure 8, the case of the first block learningMSE of twomethods
is shown. The convergence of MSE given by BP converged in a long training process
and SGA gave unstable MSE of prediction. However, as the basic consideration of a
sparse model, the better results of long-term prediction of the proposed methodmay
successfully avoid the over-fitting problem which is caused by the model that is built
too strictly by the training sample and loses its robustness for unknown data.

3.2 Real time series data

Three types of natural phenomenon time series data provided by Aalto Univer-
sity [17] were used in the one-ahead forecasting experiments of real time series
data.

Figure 7.
The prediction results of different methods for CATS data: (a) block 1; (b) block 2; (c) block 3; (d) block 4;
(e) block 5; and (f) results of the long-term forecasting.
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• CO2: Atmospheric CO2 from continuous air samples weekly averages
atmospheric CO2 concentration derived from continuous air samples, Hawaii,
2225 data

• Sea level pressures: Monthly values of the Darwin sea level pressure series,
A.D. 1882–1998, 1300 data

DBN with SGA DBN with BP

The number of RBMs 3 1

Learning rate of RBM 0.048-0.055-0.026 0.042

Structure of DBN (the number of units and layers) 14-14-18-19-18-2 5-11-2-1

Learning rate of SGA or BP 0.090 0.090

Discount factor γ 0.082 —

Coefficient β 1.320 —

Table 2.
Meta-parameters of DBN used for the CATS data (block 1).

Figure 8.
Change of the learning error during fine-tuning (CATS data [1–980]).

Method E1

DBN(SGA) [18] 170

DBN(BP) + ARIMA [14] 244

DBN [11] (BP) 257

Kalman Smoother (the best of IJCNN ‘04) [4] 408

DBN [9] (2 RBMs) 1215

MLP [9] 1245

A hierarchical Bayesian learning (the worst of IJCNN ‘04) [4] 1247

ARIMA [1] 1715

ARIMA+MLP(BP) [12] 2153

ARIMA+DBN(BP) [14] 2266

Table 1.
The long-term forecasting error comparison of different methods using CATS data.
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• Sunspot number: Monthly averages of sunspot numbers from A.D. 1749 to the
present 3078 values

The prediction results of these three datasets are shown in Figure 9. Short-term
prediction error is shown in Table 3. DBN with the SGA learning method showed
its priority in all cases.

The efficiency of random search to find the optimal meta-parameters, i.e., the
structure of RBM and MLP, learning rates, discount factor, etc. which are explained
in Section 2.5 is shown in Figure 10 in the case of DBN with SGA learning algo-
rithm. The random search results are shown in Table 4.

We also used seven types of natural phenomenon time series data of TSDL [18].
The data to be predicted was chosen based on [19] which are named as Lynx,
Sunspots, River flow, Vehicles, RGNP, Wine, and Airline. The short-term (one-
ahead) prediction results are shown in Figure 11 and Table 5.

From Table 5, it can be confirmed that SGA showed its priority to BP except the
cases of Vehicles and Wine. From Table 6, an interesting result of random search
for meta-parameter showed that the structures of DBN for different datasets were
different, not only the number of units on each layer but also the number of RBMs.
In the case of SGA learning method, the number of layer for Sunspots, River flow,
and Wine were more than DBN using BP learning.

4. Discussions

The experiment results showed the DBN composed by multiple RBMs and MLP
is the state-of-the-art predictor comparing to all conventional methods in the case
of CATS data. Furthermore, the training method for DBN may be more efficient by
the RL method SGA for real time series data than using the conventional BP algo-
rithm. Here let us glance back at the development of this useful deep learning
method.

• Why the DBN composed by multiple RBMs and MLP [11, 13] is better than the
DBN with multiple RBMs only [9]?

The output of the last RBM of DBN, a hidden unit of the last RBM in DBN, has a
binary value during pretraining process. So the weights of connections between the
unit and units of the visible layer of the last RBM are affected and with lower
complexity than using multiple units with continuous values, i.e., MLP, or so-called
full connections in deep learning architecture.

• How are RL methods active at ANN training?

In 1992, Williams proposed to adopt a RL method named REINFORCE to mod-
ify artificial neural networks [8]. In 2008, Kuremoto et al. showed the RL method
SGA is more efficient than the conventional BP method in the case of time series
forecasting [6]. Recently, researchers in DeepMind Ltd. adopted RL into deep
neural networks and resulted a famous game software AlphaGo [20–23].

• Why SGA is more efficient than BP?

Generally, the training process for ANN by BP uses mean square error as loss
function. So every sample data affects the learning process and results including
noise data. Meanwhile, SGA uses reward which may be an error zone to modify the
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Figure 9.
Prediction results by DBN with BP and SGA. (a) Prediction result of CO2 data. (b) Prediction result of Sea
level pressure data. (c) Prediction result of Sun spot number data.
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parameters of model. So it has higher robustness for the noisy data and unknown
data for real problems.

5. Conclusions

A deep belief net (DBN) composed by multiple restricted Boltzmann machines
(RBMs) and multilayer perceptron (MLP) for time series forecasting were intro-
duced in this chapter. The training method of DBN is also discussed as well as a
reinforcement learning (RL) method; stochastic gradient ascent (SGA) showed its
priority to the conventional error back-propagation (BP) learning method. The
robustness of SGA comes from the utilization of relaxed prediction error during the

Data DBN with BP DBN with SGA

CO2 0.2671 0.2047

Sea level pressure 0.9902 0.9003

Sun spot number 733.51 364.05

Table 3.
Prediction MSE of real time series data [17].

Figure 10.
Changes of learning error by random search for DBN with SGA.

Data series Total

data

Testing

data

DBN with BP (the number

of units)

DBN with SGA (the number

of units)

CO2 2225 225 15-17-17-1 20-18-7-2

Sea level

pressure

1400 400 16-18-18-1 16-20-8-7-2

Sun spot

number

3078 578 20-20-17-18-1 19-19-20-10-2

Table 4.
Meta-parameters of DBN used for real time series forecasting.
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learning process, i.e., different from the BP method which adopts all errors of every
sample to modify the model. Additionally, the optimization of the structure of DBN
was realized by random search method. Time series forecasting experiments used

Figure 11.
Prediction results of natural phenomenon time series data of TSDL. (a) Prediction result of Lynx; (b)
prediction result of sunspots; (c) prediction result of river flow; (d) prediction result of vehicles; (e) prediction
result of RGNP; (f) prediction result of wine; and (g) prediction result of airline.
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benchmark CATS data, and real time series datasets showed the effectiveness of the
DBN. As for the future work, there are still some problems that need to be solved
such as how to design the variable learning rate and reward which influence the
learning performance strongly and how to prevent the explosion of characteristic
eligibility trace in SGA.
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Data DBN with BP DBN with SGA

Lynx 0.6547 0.3593

Sunspots 999.54 904.35

River flow 24262.24 16980.46

Vehicles 6.0670 6.1919

RGNP 771.79 469.72

Wine 138743.80 224432.02

Airline 380.60 375.25

Table 5.
Prediction MSE of time series data of TSDL.

Series Total data Testing data DBN with BP DBN with SGA

Lynx 114 14 19-16-1 7-14-2

Sunspots 288 35 20-18-11-1 10-12-12-17-2

River flow 600 100 20-17-18-1 19-20-5-18-5-2

Vehicles 252 52 20-13-20-1 20-11-5-2

RGNP 85 15 18-20-1 19-15-2

Wine 187 55 16-15-12-1 18-12-13-11-2

Airline 144 12 15-4-1 13-7-2

Table 6.
Size of time series data and structure of prediction network.

15

Training Deep Neural Networks with Reinforcement Learning for Time Series Forecasting
DOI: http://dx.doi.org/10.5772/intechopen.85457



References

[1] Box GEP, Pierce DA. Distribution of
residual autocorrelations in
autoregressive-integrated moving
average time series models. Journal of
the American Statistical Association.
1970;65(332):1509-1526

[2] Casdagli M. Nonlinear prediction of
chaotic time series. Physica D. 1989;35:
335-356

[3] Lendasse A, Oja E, Simula O,
Verleysen M. Time series prediction
competition: The CATS benchmark. In:
Proceedings of International Joint
Conference on Neural Networks
(IJCNN'04); 2004. pp. 1615-1620

[4] Lendasse A, Oja E, Simula O,
Verleysen M. Time series prediction
competition: The CATS benchmark.
Neurocomputing. 2007;70:2325-2329

[5]NN3. http://www.neural-foreca
sting-competition.com/NN3/index.htm

[6] Rumelhart DE, Hinton GE, Williams
RJ. Learning representation by back-
propagating errors. Nature. 1986;
232(9):533-536

[7] Kuremoto T, Obayashi M, Kobayashi
M. Neural forecasting systems, Chapter
1. In: Weber C, Elshaw M, Mayer NM,
editors. Reinforcement Learning,
Theory and Applications. Rijeka,
Croatia: InTech; 2008. pp. 1-20

[8] Kimura H, Kobayashi S.
Reinforcement learning for continuous
action using stochastic gradient ascent.
In: Proceedings of 5th Intelligent
Autonomous Systems (IAS-5); 1998.
pp. 288-295

[9]Williams RJ. Simple statistical
gradient following algorithms for
connectionist reinforcement learning.
Machine Learning. 1992;8:229-256

[10] Kuremoto T, Kimura S, Kobayashi
K, Obayashi M. Time series forecasting
using a deep belief network with
restricted Boltzmann machines.
Neurocomputing. Aug. 2014;137(5):
47-56

[11]Hinton GE, Salakhutdinov RR.
Reducing the dimensionality of data
with neural networks. Science. 2006;
313:504-507

[12] Kuremoto T, Hirata T, Obayashi M,
Mabu S, Kobayashi K. Forecast chaotic
time series data by DBNs. In:
Proceedings of the 7th International
Congress on Image and Signal
Processing (CISP 2014); Oct. 2014.
pp. 1304-1309

[13] Zhang GP. Time series forecasting
using a hybrid ARIMA and neural
network model. Neurocomputing. 2003;
50:159-175

[14]Hirata T, Kuremoto T, Obayashi M,
Mabu S. Time series prediction using
DBN and ARIMA. In: Proceedings of
International Conference on Computer
Application Technologies (CCATS
2015). Matsue, Japan; Sep. 2015.
pp. 24-29

[15]Hirata T, Kuremoto T, Obayashi M,
Mabu S, Kobayashi K. Deep belief
network using reinforcement learning
and its applications to time series
forecasting. In: Proceedings of
International Conference on Neural
Information Processing, (ICONIP’16),
Lecture Notes in Computer Science
(LNCS). Heidelberg, Germany:
Springer. Vol. 9949. Kyoto, Japan; Oct.
18–21, 2016. pp. 30-37

[16]Hirata T, Kuremoto T, Obayashi M,
Mabu S, Kobayashi K. Forecasting real
time series data using deep belief net
and reinforcement learning. Journal of
Robotics, Network and Artificial Life.

16

Time Series Analysis - Data, Methods, and Applications



2018;4(4):260-264. DOI: 10.2991/
jrnal.2018.4.4.1

[17] Bergstra J, Bengio Y. Random search
for hyper-parameter optimization.
Journal of Machine Learning Research.
2012;13:281-305

[18] Aalto University Applications of
Machine Learning Group Datasets.
Available online at url: <http://research.
ics.aalto.fi/eiml/datasets.shtml>
(01-01-17)

[19]Hyndman RJ. Time Series Data
Library (TSDL). 2013. Available online
at url: 〈http://robjhyndman.com/TSDL/〉
(01-01-13)

[20] Adhikari R. A neural network based
linear ensemble framework for time
series forecasting. Neurocomputing.
2015;157:231-242

[21]Mnih V et al. Human-level control
through deep reinforcement learning.
Nature. 2015;518:529-533

[22] Sivler D et al. Mastering the game of
go with deep neural networks and tree
search. Nature. 2017;529:484-489

[23] Sivler D et al. Mastering the game of
go without human knowledge. Nature.
2017;550:354-359

17

Training Deep Neural Networks with Reinforcement Learning for Time Series Forecasting
DOI: http://dx.doi.org/10.5772/intechopen.85457


