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Chapter

The RR Interval Spectrum, the
ECG Signal, and Aliasing
Alexander Gersten, Ori Gersten, Adi Ronen and Yair Cassuto

Abstract

We discuss the relationship between the RR interval spectral analysis and the
spectral analysis of the corresponding ECG signal from which the RR intervals were
evaluated. The ECG signal spectrum is bounded below the frequency fB by using an
electronic filter and sampled at rate larger than 2fB, thus excluding aliasing from
spectral analysis. A similar procedure cannot be applied to the RR interval spectral
analysis, and in this case aliasing is possible. One of our main efforts in this chapter
is devoted to the problem of how to detect aliasing in the heart rate spectral analysis.
In order to get an insight, we performed an experiment with an adult man, in which
the ECG signal was detected in a case where the breathing rate was larger than half
the heart rate. A constant breathing rate for time intervals exceeding 5 minutes was
monitored with good accuracy using a special breathing procedure. The results
show distinctively a very sharp peak in the spectral analysis of the ECG signal, and
corresponding (diffused) aliasing peaks in the RR interval spectral analysis. A new
method of dealing with unevenly sampled data was developed, which has interest-
ing anti-aliasing properties. There are indications that the VLF peaks of the RR
spectrum are originated by aliasing. Some of the LF peaks may have the same
property. The chapter is fully based on the preprint arXiv:physics/9911017, submit-
ted on 11 Nov 1999, by authors A. Gersten, O. Gersten, A. Ronen, and Y. Cassuto.

Keywords: heart rate, ECG signal, spectral analysis, aliasing, HRV

1. Introduction

The RR interval spectral analysis is usually based on heart rate data collected in
two ways. In one method, the data are collected by analog to digital conversion of
the ECG signal and computer evaluation of the RR intervals from the ECG signal. In
the second method, devices are used whose output is the RR interval alone. The
advantage of the first method is the control of accuracy and flexibility of the
evaluations. The second method has the advantage of storing smaller amount of
data, and it can be easily used online.

In the first method, usually the number of collected data (sampled ECG signal)
is of two to three orders of magnitude larger than the RR interval data. Thus if only
RR interval is analyzed, a large amount of data is unused. In this paper we are trying
to take advantage of the ECG sampled signal and to derive new information in
addition to the conventional RR interval analysis [1–5].

The ECG signal spectrum is bounded below the frequency fB by using an
electronic filter and sampled at rate larger than 2fB, thus excluding aliasing from
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spectral analysis [6]. A similar procedure cannot be applied to the RR interval
spectral analysis, and in this case an aliasing is possible. One of our main efforts in
this paper is devoted to the problem of how to detect aliasing in the RR interval
spectral analysis.

In order to get an insight, we performed an experiment, in which the ECG signal
of one of the authors (AG) was detected, while the breathing rate was larger than
half the heart rate. A constant breathing rate for a time exceeding 5 minutes was
monitored with good accuracy using a special breathing procedure with a metro-
nome. The results show distinctively a very sharp peak in the spectral analysis of the
ECG signal and corresponding (diffused) aliasing peaks in the RR interval spectral
analysis.

The spectral analysis of the ECG signal was performed with the standard FFT
procedures. The spectral analysis of the RR intervals was performed with several
techniques in order to take into consideration that the data were unevenly sampled.
This is presented in Section 2. In Section 3, we discuss the possibility of aliasing in
the spectral analysis of the RR intervals. In Section 4, we compare power estima-
tions of ECG’s and RR intervals of three experiments. In Section 5, we analyze the
results. In Section 6, summary and conclusions are presented.

2. Spectral analysis of unevenly sampled data

The methods of spectral analysis are well developed for evenly sampled data
[6, 7]. The RR interval data are unevenly sampled in time. In most cases an analysis
is performed with respect to beat numbers which are evenly spaced. We will below
justify this method using least square principles. But as was recently indicated by
Laguna et al. [8], the resampling of data is causing the appearance of additional
harmonics. They recommend to use a method developed by Lomb [9]. The errors of
resampling the beats can, to large extent, be overcome by using a cubic spline
interpolation. In this work we are suggesting a new method of treating unevenly
sampled data, which, unexpectedly, gave good results beyond the Nyquist
frequency.

2.1 Analysis according to beat numbers

Let us assume that the RR intervals are given at unevenly sampled times tn, with
the values s tnð Þ, where n is the beat number, n ¼ 1⋯N. Let us divide the interval
t1; tN½ � into equal subintervals:

Δτ ¼
tN � t1
N � 1

, (1)

and let us generate in the interval t1; tN½ � evenly sampled times:

τn ¼ n� 1ð ÞΔτ þ t1: (2)

We will use the discrete Fourier transform (DFT) for a basis formed from the
evenly sampled times τn. We will assume that

s tnð Þ ¼
1

N
∑
N

k¼1

Sk exp iωkτnð Þ, ωk ¼ 2π k� 1ð Þ= NΔτð Þ: (3)

The coefficient Sk will be determined by minimizing the expression

2

Fourier Transforms - Century of Digitalization and Increasing Expectations



σ ¼ ∑
N

n¼1
s tnð Þ �

1

N
∑
N

k¼1

Sk exp iωkτnð Þ

� �

s tnð Þ �
1

N
∑
N

k¼1

S ∗
k exp �iωkτnð Þ

� �� �

(4)

with the result

Sk ¼ ∑
N

n¼1
s tnð Þ exp �iωkτnð Þ: (5)

Eqs. (3 and 5) can be handled easily with standard FFT programs. This is the
usual procedure which is adopted in most of the papers dealing with RR interval
analysis [4, 5].

2.2 Other methods

FFT can be applied more efficiently if the unevenly sampled data are interpo-
lated at evenly spaced intervals of Eq. (2). The cubic spline interpolation is one of
the good ways to do it.

The Lomb method [9] was extensively analyzed in Ref. [8]. We give here only
the formulae in the form of the Lomb normalized periodogram:

PX ωkð Þ ¼
1

2σ2

∑N
n¼1 s tnð Þ � s½ � cos ωk tn � τð Þð Þ

h i2

∑N
n¼1 cos

2
ωk tn � τð Þð Þ

þ
∑N

n¼1 s tnð Þ � s½ � sin ωk tn � τð Þð Þ
h i2

∑N
n¼1 sin

2
ωk tn � τð Þð Þ

8

>

<

>

:

9

>

=

>

;

(6)

where s and σ
2 are the mean and variance of the data and the value of τ is

defined as

tan 2ωkτð Þ ¼
∑N

n¼1 sin 2ωktnð Þ

∑N
n¼1 cos 2ωktnð Þ

: (7)

2.3 Nonuniform discrete Fourier transform (NUDFT)

We present here a new method of treating unevenly spaced events which we call
the “nonuniform discrete Fourier transform” (NUDFT).

Let us assume that s τnð Þ are the exact values of the signal at the points given by
Eq. (2). The corresponding DFT is

Sk ¼ ∑
N

n¼1
s τnð Þ exp �iωkτnð Þ: (8)

Our aim is to find a good approximation to this expression in terms of the
unevenly sampled signal s tnð Þ.

We start with the Euler summation formula:

∑
N

n¼1
f τnð Þ ¼

1

Δτ

ð

τN

τ1

f τð Þdτ þ
1

2
f τ1ð Þ þ f τNð Þ½ � þ

Δτ

12
f 0 τNð Þ � f 0 τ1ð Þ

� �

þ O Δτ
2

� 	

(9)

and make the following decomposition of the integral on the right hand side of
Eq. (9)
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ð

τN

τ1

f τð Þdτ ¼

ðt2

t1

f τð Þdτ þ

ðt3

t2

f τð Þdτ þ⋯þ

ðtN

tN�1

f τð Þdτ (10)

and approximate each of the integrals on the right hand side with the trapezoidal
rule

ð

τN

τ1

f τð Þdτ ¼
1

2
f t1ð Þ þ f t2ð Þ½ � t2 � t1ð Þ þ⋯þ

1

2
f tN�1ð Þ þ f tNð Þ½ � tN � tN�1ð Þ þ O Δτð Þ:

(11)

From Eqs. (9) and (11), we obtain:

∑
N

n¼1
f τnð Þ ¼

1

2Δτ
f t1ð Þ þ f t2ð Þ½ � t2 � t1ð Þ þ⋯þ f tN�1ð Þ þ f tNð Þ½ � tN � tN�1ð Þf g

þ
1

2
f t1ð Þ þ f tNð Þ½ � þO Δτð Þ:

(12)

When tn are equally spaced, Eq. (12) becomes an identity with the O Δτð Þ ¼ 0;
therefore it seems to us that Eq. (12) is satisfied with an higher accuracy than just
O Δτð Þ: Eq. (12) can be applied to approximate Eq. (8) with the substitution

f tnð Þ ¼ s tnð Þ exp �iωktnð Þ, (13)

and the final result, the approximation to Eq. (8), after rearranging the terms,
becomes

Sk ¼ ∑
N

n¼1
cns tnð Þ exp �iωktnð Þ þO Δτð Þ, (14)

where

c1 ¼
Δτ þ t2 � t1

2Δτ
,

c2 ¼
t3 � t1
2Δτ

,

⋮

cN�1 ¼
tN � tN�2

2Δτ
,

cN ¼
Δτ þ tN � tN�1

2Δτ
,

(15)

with the inverse formula

s τnð Þ ¼
1

N
∑
N

k¼1

Sk exp iωkτnð Þ þO Δτð Þ, ωk ¼ 2π k� 1ð Þ= NΔτð Þ, (16)

which is an interpolation formula for s tnð Þ at the evenly spaced points τ1⋯τN .

3. Aliasing

Aliasing is a result of undersampling and is a well-known phenomenon. In Ref.
[10], aliasing was looked upon from the point of view of symmetry. It is an example
of wrong symmetry and as such should be given more attention. It is the outcome of
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an incomplete basis. It was found in Ref. [10] that for evenly sampled data with a
sampling rate f S, the spectral amplitude S fð Þ evaluated with FFT has the following
symmetry properties:

S fð Þj j ¼ S f � f S
� 	









 ¼ S �f � f S
� 	









 ¼ S �f � nf S
� 	









, (17)

where f is the frequency and n is an arbitrary integer.
In order to avoid the aliasing symmetry of Eq. (17), the frequencies should be

bounded by the Nyquist frequency (denoted here by f B) according to

f B ¼
f S
2
: (18)

The ECG signal was sampled with sampling rate 250 Hz, and an electronic filter
was applied, which have eliminated practically all frequencies above 32 Hz, thus
aliasing cannot occur at frequencies below 125 Hz or even below 32 Hz. The RR
intervals were calculated directly from the ECG signal. The sampling rate for RR
intervals can be defined only for evenly sampled data and for the methods that
interpolate the unevenly sampled data, or one can consider the average sampling
rate from Eq. (1) in both cases:

f S ¼ 1=Δτ ¼ 2fN, (19)

where fN is the Nyquist frequency for the RR intervals. As the ECG signal con-
tains frequencies much greater than fN and the RR intervals are derived from the
ECG signal, one cannot be sure that the spectral analysis of the RR intervals is free
from aliasing. As a matter of fact, there are indications of aliasing in some rare cases
[11–16]. One way to identify aliasing is to change the sampling rate and follow the
changes in the spectrum. Unfortunately, for the RR intervals, one cannot speak about
a definite sampling rate but rather can consider a distribution of sampling rates. The
changes in sampling rate required to observe aliasing are of the same order as the
fluctuations in the sampling rate. Therefore in practice it is almost impossible to
observe consistent changes in the spectrum slightly changing the heart rate.

Another possibility of detecting aliasing is by comparing the heart rate spectrum
with the ECG signal spectrum. Marked differences below the Nyquist frequency for
the power distribution of the RR intervals compared to the ECG signal power
distribution in the same range may indicate aliasing. But we do not have yet a sound
basis to treat this problem.

We have devised an experiment which definitely demonstrates the aliasing in
the RR interval spectrum. To the best of our knowledge, this is the first experiment
in which one can exactly know the correct frequency above the Nyquist frequency
and can follow the development of the aliasing, which appears to be diffused to
great extent because the symmetry of Eq. (17) is represented not by one sampling
rate but by a distribution of sampling rates, as the RR interval is unevenly sampled.

Below we describe three experiments. One of them was devised to demonstrate
aliasing and the other two for learning about the relations between the RR interval
spectrum and the spectrum of the ECG signal.

4. Three experiments

We present below results of three experiments. In the first experiment, the ECG
signal was collected in a normal resting state. The aim of this experiment was to
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compare the ECG spectrum with the RR interval spectrum. In the second experi-
ment, very slow breathing was monitored at a rate of 0.04 Hz. Again the ECG and
RR interval spectra were compared. In the third experiment, very fast breathing
was accurately monitored at the rate of 74/min and 84/min. These respiratory rates
were above half of the heart rates, thus allowing to observe in detail the develop-
ment of aliasing.

4.1 The first experiment

In this experiment (linked with the names of Zahi and Ori, where the second is
one of the authors: O.G), which was done in normal, resting conditions, we com-
pare the power estimation of the RR interval and the ECG signal, from which the RR
interval was obtained. The ECG signal was sampled at a rate of 250 Hz. Stable
intervals of 7-minute duration were chosen for analysis.

In Figure 1a the power distribution of the ECG signal of Zahi is depicted. The
attenuation of the power with increasing frequency above 12 Hz is due to the action

Figure 1.
The relative power of the ECG signal of Zahi, (a) in the spectral range of 0–36 Hz and (b) in the spectral range
of 0–12 Hz.
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of an electronic filter. Above 32 Hz the contribution is practically zero. The average
heart rate was 0.97 Hz. The above results were zoomed to the interval [0–12] Hz in
Figure 1b. One can see distinctively the peak around the average heart rate and the
higher harmonics of this peak. The second harmonic is missing, but the third, fourth,
fifth, and sixth are distinctively visible; higher harmonics became more and more
smeared and indistinguishable above the sixth harmonic. One should also note the
large difference in power in the heart rate range, below the Nyquist frequency of
0.49 Hz, which is much smaller than the peak around the average heart rate 0.97 Hz.

The power distribution of the RR intervals in the range {0–0.5} Hz was com-
puted according to the methods discussed in Section 2 and is presented in Figure 2a
(DFT, beat number analysis), Figure 2b (Spline interpolation), and Figure 2c
(NUDFT). For comparison also the power distribution of the ECG signal in the
above range is presented in Figure 2d.

The results of Figure 2a–c are quite similar, but the spline interpolation
(Figure 2b) and the NUDFT (Figure 2c) are practically identical. The three graphs
show the structure commonly found in the power estimation analysis of RR inter-
vals, namely, the existence of the “high-frequency” (HF), “low-frequency” (LF),
and the “very low-frequency” (VLF) peaks. The ECG spectrum shows qualitatively
the same structure (but not a quantitative agreement), except that the ECG spec-
trum is highly suppressed below 0.04 Hz, in the VLF region, indicating a possibility
of aliasing in this region in the RR analysis.

In Figures 3 and 4a–d, the results of Ori are presented. The conclusions are
similar to those of Zahi, except that in the ECG spectrum, both VLF and LF peaks
are missing, indicating the possibility of aliasing in these regions for the RR analysis.
Also in the ECG spectrum of Ofek, VLF and LF, present in Figure 5a, are missing.
VLF is missing in J.C.’s ECG spectrum (see Figure 6a–6b).

Figure 2.
The relative power computed (from the ECG signal of Zahi) by four different methods, in the spectral range of 0–
0.5 Hz, (a) by DFT, (b) by spline interpolation of the RR data, (c) by NUDFT, and (d) from the ECG signal.
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4.2 The second experiment

In this experiment (linked again with the name Ori), we have checked the ECG
spectrum near the VLF region, as the VLF was absent in the ECG spectrum for the
resting state in the first experiment. The question was whether such a result persists
in all ECG spectra. Therefore we have probed the VLF region by monitoring very

Figure 3.
The relative power of the ECG signal of Ori.

Figure 4.
The relative power computed (from the ECG signal of Ori) by four different methods, in the spectral range of
0–0.52 Hz. (a) by DFT, (b) by spline interpolation of the RR data, (c) by NUDFT, (d) from the ECG signal.
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prolonged breathing with a rate of 0.04 Hz. For the spectrum of RR intervals, we
found that the DFT, spline interpolation, and NUDFT give similar results, and again
NUDFT was practically identical to the spline interpolation. Therefore we present
only the results of NUDFT, which are presented in Figure 7a. For comparison the
spectrum of the ECG signal is given in Figure 7b. In Figure 7a one can see a very
clean pattern of a peak at 0.04 Hz and its higher harmonics. In Figure 7b one can
see a similar but somewhat diffused pattern. Thus this experiment indicates that
similar respiratory patterns exist in both the RR and in the ECG signals.

4.3 The third experiment

In this experiment (linked to the name Alex, who is one of the authors: AG),
very fast breathing was accurately monitored at the rate of 74/min and 84/min,
respectively. These rates were well above half of the average heart rate, thus
allowing to observe in detail the development of aliasing. In Figure 8 the ECG
spectrum is dominated by the very high and narrow peak at the frequency
f 1 ¼ 1:234Hz; also its higher harmonics can be distinctively seen. The frequency f 1
is just the breathing frequency 74/min. In the same figure, one can also see the
diffused peaks near the average heart rate frequency of 1.636 Hz and its higher

Figure 5.
The relative power computed (from the ECG signal of Ofek) by two different methods, in the spectral range of
0–0.6 Hz, (a) by spline interpolation of the RR data, (b) from the ECG signal.
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harmonics. One should observe aliasing at about 1:636Hz� f 1 ¼ 0:402Hz. Indeed
one can see diffused peaks around that frequency in Figure 9a, which displays the
power estimation of the RR intervals using the NUDFT (which the Nyquist rate
below is similar to the spline interpolation). The width of this region can be esti-
mated by noting that the RR intervals have different instantaneous sampling rates
which are equal to the inverse of the RR interval time. In Figure 10 we have
calculated the distribution of the sampling rates by dividing the frequency region
into 100 beans. We have shifted that distribution by subtracting f 1. As one can see,
the results are confined approximately to the region 0.32–0.47 Hz. Indeed the
aliasing peaks of Figure 9a appear in this region. The pictures below the Nyquist
frequency are very similar for the DFT, NUDFT, the spline interpolation, and the
Lomb method (Figure 9b) with a similar aliasing behavior.

In principle the NUDFT and the Lomb methods should not be used above the
Nyquist frequency. Surprisingly enough we have found that both methods have a
sharp peak at f 1, as can be seen in Figure 9a and b. Both methods do not have the
aliasing symmetry of the DFT as given by Eq. (17); therefore the results are not
symmetric with respect to the Nyquist frequency (half the sampling rate), as it is
satisfied, for example, in the case of the spline interpolation. We have found an

Figure 6.
The relative power computed (from the ECG signal of J.C.) by two different methods, in the spectral range of 0–
0.46 Hz, (a) by spline interpolation of the RR data, (b) from the ECG signal.
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Figure 7.
The relative power computed (from the ECG signal of Ori with breathing rate of 0.04 Hz) by two different
methods, in the spectral range of 0–0.62 Hz, (a) by NUDFT, (b) from the ECG signal.

Figure 8.
The relative power of the ECG signal of Alex with a breathing rate of 1.234 Hz.
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Figure 9.
The relative power computed (from the ECG signal of Alex with a breathing rate of 1.234 Hz) by two different
methods, in the spectral range of 0–1.5 Hz, (a) by NUDFT, (b) from the ECG signal.

Figure 10.
A 100 bin histogram of the heart rates of Alex which are subtracted by the breathing rate of 1.234 Hz.
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Figure 11.
The relative power of the ECG signal of Alex with a breathing rate of 1.404 Hz.

Figure 12.
The relative power computed (from the ECG signal of Alex with a breathing rate of 1.404 Hz) by two different
methods, in the spectral range of 0–1.6 Hz, (upper figure) by NUDFT, (lower figure) from the ECG signal.
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exact result at f 1 and a diffused aliasing around 0.4 Hz. It is interesting to note that
both methods give almost the same result below and above the Nyquist frequency.
One can interpret the appearance of the sharp peak at f 1 as a result of a partial
destruction of aliasing symmetry due to uneven samplings.

Similar results for the breathing frequency 84/min are presented in Figures 11–12.

5. Further developments

Since our experiment, which demonstrated how aliasing is developing in
human beings, nobody had performed experiments on human beings. The reason is
that till now, nobody dared (except one of us, AG) to do extremely fast breathing of
74 breaths/min and 84/min, for more than 5 minutes. After reading our preprint,
Campbell [17] and his colleagues found an aliasing in fish [17]. Other researchers
were more concerned with preventing aliasing, observing the phenomenon in
speeded heart rate, and in constructing aliasing filters [18–21].

6. Summary and conclusions

The ECG signal spectrum is bounded below the Nyquist frequency fB by using
an electronic filter and sampled at rate larger than 2fB, thus excluding aliasing from
spectral analysis. A similar procedure cannot be applied to the RR interval spectral
analysis, and in this case an aliasing is possible. One of our main efforts in this paper
was devoted to the problem of how to detect aliasing in the RR interval spectral
analysis.

In order to get insight into this problem, three experiments have been analyzed.
In the first experiment, the ECG signal was collected in a normal resting state. The
aim of this experiment was to compare the ECG spectrum with the RR interval
spectrum. In the second experiment very slow breathing was monitored at a rate of
0.04 Hz. Again the ECG and RR interval spectra were compared. In the third
experiment, very fast breathing was accurately monitored at the rate of 74/min and
84/min, respectively. These respiratory rates were above half of the heart rates, thus
allowing to observe in detail the development of aliasing.

The experiments which were described above led us to the following conclusions:

1. The spectral analysis of the ECG signal is more sensitive and accurate than
the RR interval spectral analysis and is free from aliasing. Still in the present
stage, it contains too much information to be of practical use. Efforts should be
made to understand what will be the best way to extract information (not
related to the heart condition alone as in the standard analysis of ECG) about
the external influences on the heart signal.

2.We have conducted an experiment which gave a clear insight about the
mechanism of aliasing in the RR interval spectrum. The very sharp peak in the
spectrum of the ECG signal, which came as the result of enforced quick
breathing, reappeared as a diffused signal in the RR spectrum. The extension of
the diffuseness agrees with the extension of the sampling rates of unevenly
sampled data.

3. The VLF peak observed in the RR interval spectrum is usually missing in the
ECG spectrum. This leads us to suspect that the VLF observed in the RR
spectrum has its origin in aliasing.
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4.In some cases the LF peak does not show up in the ECG spectrum. This led us
to suspect that part of the LF peak is of aliasing origin.

5. Unlike in electronic devices, it is very difficult to devise procedures to detect
aliasing in humans. In electronic devices aliasing can be easily detected by
changing the sampling rate. In humans the fluctuations of the heart rate are of
the same order as the required changes in the sampling rates. It will be an
important task to develop a proper procedure for detecting aliasing in humans.

6.We have developed a new technique for spectral analysis for unevenly sampled
data called nonuniform discrete Fourier transform (NUDFT). When employed
to the RR data, below the Nyquist frequency, it gave similar results as those
obtained by interpolating the data with a cubic spline. Above the Nyquist
frequency, the correct peak in the spectrum was detected with great accuracy.
A similar result was obtained with the recently rediscovered Lomb method.
We interpret this unexpected result by a partial destruction of aliasing
symmetry in both methods. More efforts should be made in order to
understand the anti-aliasing properties of the above methods.

7.We consider aliasing to be a wrong symmetry, resulting from the use of an
incomplete basis, which has intrinsic symmetries inconsistent with the
properties of the signal. Aliasing can be partially removed by reducing the
symmetry of the basis.
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