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Chapter

Quantum Harmonic Oscillator
Coşkun Deniz

Abstract

Quantum harmonic oscillator (QHO) involves square law potential (x2) in the
Schrodinger equation and is a fundamental problem in quantum mechanics. It can
be solved by various conventional methods such as (i) analytical methods where
Hermite polynomials are involved, (ii) algebraic methods where ladder operators
are involved, and (iii) approximation methods where perturbation, variational,
semiclassical, etc. techniques are involved. Here we present the general outcomes of
the two conventional semiclassical approximation methods: the JWKB method
(named after Jeffreys, Wentzel, Kramers, and Brillouin) and the MAF method
(abbreviated for “modified Airy functions”) to solve the QHO in a very good
precision. Although JWKB is an approximation method, it interestingly gives the
exact solution for the QHO except for the classical turning points (CTPs) where it
diverges as typical to the JWKB. As the MAF method, it enables very approximate
wave functions to be written in terms of Airy functions without any discontinuity in
the entire domain, though, it needs careful treatment since Airy functions exhibit
too much oscillatory behavior. Here, we make use of the parity conditions of the
QHO to find the exact JWKB and approximate MAF solutions of the QHO within
the capability of these methods.

Keywords: Schrodinger equation, quantum mechanics, JWKB, MAF

1. Introduction

Time-independent Schrodinger equation (TISE) is an eigenvalue problem in the
form:

Ĥ φj i ¼ E φj i ) �ℏ2

2m
∇2 þ U rð Þ

� �

φn ¼ Enφ (1)

where the terms are in the usual meanings, namely, ∇2, the Laplacian operator;

Ĥ, Hamiltonian operator (kinetic energy plus potential energy operators); m, mass;
ℏ, Planck’s constant divided by 2π; φ, wave function (eigenfunction); E, total
energy (eigenvalue); and U(r), function of potential energy [1–7]. Quantum har-
monic oscillator (QHO) is described by the TISE in (1) for the square law potential:

U rð Þ ¼ 1

2
mw2r2 ¼ kr2

2m
≥0 (2)
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where w ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

is the natural angular momentum (associated with the angu-
lar frequency f ¼ w= 2πð Þ). Since U rð Þ≥0, our eigenvalue problem (or bound-state
problem) requires En ≥0 to give the following:

∇2φn En ≥0; rð Þ þ f En ≥0; rð Þφn En ≥0; rð Þ ¼ 0;

f En ≥0; rð Þ ¼ k2 En ≥0; rð Þ ¼ 2m

ℏ
2 En �U rð Þ½ � ¼ 2m

ℏ
2 En �

1

2
mw2r2

� �

≕
0 or þð Þ
�ð Þ

(

(3)

The QHO is a very good approximation in solving systems of diatomic molecules
vibrating under the spring constant [1, 2, 5] and finds various modern physics
applications such as in [8–10] as stated in a famous quotation: “the career of a young
theoretical physicist consists of treating the harmonic oscillator in ever-increasing
levels of abstraction by Sidney Coleman” [10, 11]. Here, U(r) is central potential
which can be given in Cartesian coordinates (x, y, z) where solutions involve
Hermite polynomials as in [1–7, 12] or in spherical coordinates (r, θ,ϕ) where
solutions involve spherical harmonics as in [1, 2, 13]. For simplicity, it is widely
studied in one dimension (say, in x only), and higher dimensional systems are called
isotropic harmonic oscillators in 2D or in 3D. The QHO can be solved by various
conventional methods such as the following: (i) by analytical methods where some
analytic functions involving Hermite polynomials are involved [1–5]; (ii) algebraic
methods where ladder operators are involved, that is, [1, 2]; and (iii) by approxi-
mation methods such as perturbation methods, JWKB method, variational
methods, etc., that is, [1–6, 14]. Brownian study of QHO as an open dynamic
quantum system in terms of quantum Langevin equation was studied in [15–17].
We study here one dimensional and non-frictional, that is, undamped case, and
present its solution by the two following conventional semiclassical approximation
methods: (i) the JWKB method (named after the authors, Jeffreys, Wentzel,
Kramers, and Brillouin, who contributed to the theory) [1–7, 14] and (ii) the MAF
method (abbreviated from modified Airy function) [3, 18–23].

JWKB method is known to give exact eigenenergies for the QHO, but
eigenfunctions fail at and around the classical turning points (CTPs) where f ¼ 0
(or, equivalently, En ¼ U rð Þ) in (3) as typical to the JWKB method [1–7, 14]. These
discontinuities prevent us from using continuity at the boundaries by equating the
JWKB solutions of two neighboring regions directly at the CTPs to find the
eigenenergy-dependent coefficients in the general JWKB eigenfunctions (wave
functions). It also prohibits the use of normalizability of the eigenfunctions between
�∞ and ∞. To surmount the problem, parity conditions of the problem regarding
the symmetry of the QHO in the dimensionless form are used, and advanced
computational software such as Mathematica can be used to achieve these calcula-
tions [3, 4, 14, 24]. Moreover, asymptotic matching is required in the JWKB
solutions to maintain the normalizability except for the CTPs as discussed
above [4, 7, 14]. As to the MAF method, it does not exhibit discontinuities at the
CTPs, though highly oscillating behavior of the Airy functions requires careful
handling in finding their zeros and the parity treatment used in the JWKB
solution seems straightforward to be also applicable to the MAF solution of the
QHO [3, 19–22]. Although it was originally suggested in 1931 by Langer in [25],
finding zeros of highly oscillatory Airy functions became practical as the advances
in computational software and the MAF method became widespread by the 1990s
[3, 18–23]. In this work, we present the general outcomes of the conventional JWKB
and MAFmethods as two semiclassical conventional methods and solve the QHO by
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using the parity condition of the problem in the dimensionless form pedagogically.
We will discuss the treatment of parity matching and asymptotic matching in
solving the QHO by these semiclassical methods.

2. Exact solution of the QHO in 1D by the analytic method

The QHO in (3) is a bound-state problem which can be written in 1D for the

potential function in 1D (U xð Þ ¼ 1
2mw2x2 ¼ kx2

2m ≥0) as follows:

φ″

n xð Þ þ f En ≥0; xð Þφn xð Þ ¼ 0

f En ≥0; xð Þ ¼ k2 En ≥0; xð Þ ¼ 2m

ℏ
2 En �U xð Þ½ � ¼ 2m

ℏ
2 En �

1

2
mw2x2Þ

� �

≕
0 or þð Þ
�ð Þ

(

(4)

or, simply,

φ″

n xð Þ þ 2m

ℏ
2 En �

1

2
mw2x2

� �

φn xð Þ ¼ 0 (5)

whose solution by various conventional approaches (such as analytical, alge-
braic, approximation, etc.) is given in any fundamental textbooks, that is, [1–3, 5]
and whose results can be summarized as follows [14]:

i. Change of variable in (4) and (5):

y xð Þ ¼ βx ¼
ffiffiffiffiffiffiffiffi

mw

ℏ

r

x (6)

ii. TISE for the QHO in 1D in dimensionless form:

φ″

n yð Þ þ k2 λn En ≥0ð Þ; y½ �φn yð Þ ¼ 0

⇔ f ½λn Enð Þ≥0; y�≕ k2½λn Enð Þ≥0; y� ¼ λ2n � y2; λ2n ¼
2En

ℏw
≕

0 or þð Þ
�ð Þ

( )(

(7)

Note that here f ≕ k2 is a function of λn Enð Þ&y and λn ≥0 since En ≥0. More-
over, f λn; yð Þ is an even function as shown in Figure 1 (λ is chosen as continuous
including the discrete energy values assuming that the eigenenergies have not been
found yet).

iii. Exact eigenenergies:

ΛEX ≕Λ ¼ λ2n ¼ 2nþ 1) En ¼ nþ 1

2

� �

ℏw, n ¼ 0; 1; 2,… (8)

iv. Exact eigenfunctions (wave functions) in y:

φn yð Þ≕ψ λn; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ffiffiffi

π
p

2nn!

s

Hn yð Þ�
y2

2 , n ¼ 0; 1; 2,… (9)

v. By using (6), we have the wave functions in x:
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φn xð Þ≕φ β; λn; xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β
ffiffiffi

π
p

2nn!

s

Hn βxð Þ�
βxð Þ2
2 , n ¼ 0; 1; 2,… (10)

We used two different symbols (φ and ψ) to label the functions in two different
independent variables (in x and in y, respectively). Exact wave functions in (9) (via
exact eigen energies in (8)) are given for even and odd n values in Figures 3 and 4
along with the JWKB solutions for comparison. Hn in (9) and (10) is Hermite
polynomials with indice n (named after the French mathematician Charles

Figure 1.
Graphs of f λ≥0; yð Þ and g λ≥0; yð Þ ¼ 0.

Rodriguez formula:

Hn xð Þ ¼ �1ð Þne x2ð Þ dn

dxn e
�x2ð Þ

Generating function:

exp 2xt � t2ð Þ ¼ ∑∞
n¼0

Hn xð Þtn
n!

Some of the Hermite polynomials:

H0 xð Þ ¼ 1, H1 xð Þ ¼ 2x,H2 xð Þ ¼ 4x2 � 1

H3 xð Þ ¼ 8x3 � 12x,H4 xð Þ ¼ 16x4 � 48x2 þ 12

Recurrence relations:

Hnþ1 ¼ 2xHn xð Þ � 2nHn�1 xð Þ
H0n xð Þ ¼ 2nHn�1 xð Þ

Evenness and oddity

Hn �xð Þ ¼ �1ð ÞnHn xð Þ

∴Hn xð Þ ¼
odd, if n isodd

even, if n is even

�

Orthogonality:
R∞
�∞ e�x

2
Hm xð ÞHn xð Þdx ¼ 0ifm 6¼ n

2nn!
ffiffiffi

π
p

ifm ¼ n

�

Table 1.
Some properties of Hermite polynomials.
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Hermite). Some of the properties of Hermite polynomials are tabulated in Table 1,
and calculation of conversion factor β which exhibits a quantization, namely,

β ¼
ffiffiffiffiffiffiffiffi

mw

ℏ

r �

�

�

�

w¼
ffiffi

k
m

p ¼ mk

ℏ
2

� �1=4

¼ k

ℏw
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1=2ð Þk
En

s

≕ βn, (11)

is given along with the related Mathematica codes in [14].

3. A review of the JWKB solution of the QHO

2D plot of Figure 1 is schematically given in Figure 2 for the QHO under study
(in the dimensionless form) from which we have the following outcomes [14]:

3.1 JWKB eigenenergies of the QHO

JWKB eigenenergies can be found by applying the Bohr-Sommerfeld quantiza-
tion formula given by [1–7, 14]:

Z y2

y1

k ~λJ Enð Þ; y
	 


dy ¼ nþ 1

2

� �

π (12)

as follows:

Z y2¼λn

y1¼�λn
k ~λJ Enð Þ; y
	 


dy ¼ 2

Z y2¼λn

0
k ~λJ Enð Þ; y
	 


dy ¼ nþ 1

2

� �

π

)
Z λn

�λn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~λ
2

J Enð Þ � y2
q

dy ¼ 2

Z λn

0
k ~λJ Enð Þ; y
	 


dy ¼ nþ 1

2

� �

π

y≕ sin θ ) 2
R π=2
�π=2

~λ
2

J Enð Þ cos 2θdθ ¼ nþ 1

2

� �

π⇔~λ
2

J Enð Þ
π

2
¼ nþ 1

2

� �

π

) ~λJ Enð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1
p

orð Þ ~EJn ≕EJWKB,n ¼ nþ 1

2

� �

ℏω

(13)

Figure 2.

Schematic 2D sketch of f λn Enð Þ≥0; y½ �≕ k2 λn En ≥0ð Þ; y½ � for a given λn.
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which is already the exact solution given in (8) [1–4, 6, 7, 14]. Results are given
along with the MAF solutions in Table 2 for comparison. Note that we use the
following notation for the symmetrical (or even parity (EP)) and antisymmetrical
(or odd parity (OP)) solutions:

~EJn ¼
~EJ,ns ¼ ns þ 1=2ð Þπ, ns ¼ 0; 2;4,…
~EJ,na ¼ na þ 1=2ð Þπ, na ¼ 1; 3; 5,…

(

(14)

where the subscripts “J, ns” represent J, JWKB, and ns, symmetrical indices
(ns = even), and similarly, “J, na” represents J, JWKB, and na, antisymmetrical
indices (ns ¼odd).

3.2 JWKB solution of eigenfunctions (wave functions) of the QHO

Conventional first-order JWKB solution of the QHO given in the normal form in
(4) or (7) is as follows:

~φJ λn; yð Þ ¼ cJ1 exp �i
R yt,yk λn; yð Þdy

	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k λn; yð Þ
p þ cJ2 exp i

R yt,yk λn; yð Þdy
	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k λn; yð Þ
p (15)

where yt is either of the classical turning points (CTPs: either “y1, on the left” or
“y2, on the right” depending on the region under question) and cJ1&cJ2 are arbitrary
JWKB constants. Once solution in any region is found (say, φJII), solution in the

adjacent region (say, φJIII) can directly be found by the conventional JWKB con-

nection formulas given in [3, 4, 14] without calculating it via (15). The integrals
here are the definite integrals whose upper and lower values should be chosen as the
related turning point (either y1 or y2) and the variable y should be in the correct
ascending integration order. Normally, constant coefficients in the general solutions
are determined from normalization by applying the boundary conditions of the

Index

(=MAF

index)

EP OP

MAF JWKB* MAF JWKB*

n ¼ nM Zns
ζns

~EM,ns
na ~EJ,ns

Zna
ζna

~EM,na
na ~EJ,na

0 1.20348 0.0603317 0:5603317ℏω 0 0:5ℏω 2.33811 1.01735 1:51735ℏω 1 1:5ℏω

1 3.27162 2.0115 2:5115ℏω 2 2:5ℏω 4.08795 3.0079 3:5079ℏω 3 3:5ℏω

2 4.83082 4.0063 4:5063ℏω 4 4:5ℏω 5.52056 5.00508 5:50508ℏω 5 5:5ℏω

3 6.16988 6.00435 6:50435ℏω 6 6:5ℏω 6.78671 7.00374 7:50374ℏω 7 7:5ℏω

4 7.37677 8.00332 8.50332 ℏω 8 8:5ℏω 7.94413 9.00295 9:50295ℏω 9 9:5ℏω

5 8.49195 10.0027 10:5027ℏω 10 10:5ℏω 9.02265 11.0024 11:5024ℏω 11 11.5 ℏω

6 9.5382 12.0023 12:5023ℏω 12 12:5ℏω 10.0402 13.0021 13:5021ℏω 13 13:5ℏω

7 10.5299 14.0019 14:5019ℏω 14 14:5ℏω 11.0085 15.0018 15:5018ℏω 15 15:5ℏω

*JWKB solution is exact.

Table 2.
JWKB and MAF eigenenergies.
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eigenvalue problem. However, it is useless since the boundary conditions corre-
spond to the CTPs at which (and also in a narrow region around) the conventional
first-order JWKB solutions typically diverge [3, 4, 7, 14]. This might be thought as a
violation of continuity requirement of the acceptable wave function properties
concerning continuity, but higher order JWKB approximation can fix it. Now, due
to the discontinuities at the boundaries between the adjacent regions (such as
between I and II or between II and III), the unidirectional JWKB connection for-
mulas (surely, for the first-order JWKB) given in the literature [3, 4, 7, 14] cannot
be used to find the constant coefficients in the general solution in (18) and (19).
Note that these connection formulas can be used to determine the structure of the
JWKB solutions in all regions (I, II, and III), but they cannot be used to find the
constant coefficients (which will be a function of eigenenergy) as explained.

However, we are fortunately not helpless: since f λn Enð Þ≥0; y½ �≕ k2 λn En ≥0ð Þ; y½ �
in (7) is an even function (see Figure 2), we should have even and odd-parity
solutions. If we start by considering the exact solutions in (9) and (10) and
considering them to be approximate to the JWKB solution (shown with tilde and
subscript J), we have the following outcomes [14]:

ψ λn; yð Þ ¼ φ β; λn; x! y=βð Þ½ �β¼1OR : φ β; λn; xð Þ ¼
ffiffiffi

β
p

ψ λn; y! βxð Þ (16)

E:P: : φn β; λ;�xð Þ ¼ φn β; λ; xð Þ, n ¼ 0, 2, 4,…)
iÞφn β; λ;0ð Þ ¼ � p, p.0

iiÞ ∂φn β;λ;xð Þ
∂x

�

�

�

x¼0
¼ 0

8

<

:

O:P: : φn β; λ;�xð Þ ¼ �φn β; λ; xð Þ, n ¼ 1, 3, 5,…)
iÞλn β; λ;0ð Þ ¼ 0

iiÞ ∂φn β;λ;xð Þ
∂x

�

�

�

x¼0
¼ � q, q.0

8

<

:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

) β≃ ~βJ ¼

~β ≃ βJ:E:P: ¼
�p

φn 1; λ; yð Þ

� �2

y¼0
, n ¼ 0, 2, 4,…

~βO:P: ≃ βJ:O:P: ¼
�q

∂φn 1; λ; yð Þ
∂y

2

6

6

4

3

7

7

5

2

y¼0

, n ¼ 1, 3, 5,…

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

(17)

where p&q are positive real constants regarding the even-parity (EP) and odd-
parity (OP) initial values of the physical system. Remember that we use φ for the x-
system and ψ for the y-system as shown in (16). In finding the constant coefficients,
we can take�p ¼ �q ¼ 1, and alternating sign can be modified as a parity matching
as follows [14]:

~ψ
par:m:ð Þ
J;E:P:ð Þ λn; yð Þ ¼ �1ð Þ n

2ð Þ �

~ψ
asy:m:ð Þ

J, I λn; yð Þ ¼ ~ψ
asy:m:ð Þ

J, III λn;�yð Þ for �∞, y≤ � λn

~ψ J, II λn; yð Þ ¼
~ψ J, II λn;�yð Þ for� λn, y≤0

~ψ J, II λn; yð Þ for 0, y≤ λn

(

~ψ
asy:m:ð Þ

J, III λn; yð Þ for λn ≤ y,∞

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

p¼1

(18)
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~ψ
par:m:ð Þ
J;O:P:ð Þ λn; yð Þ ¼ �1ð Þ n�1

2ð Þ �

~ψ
asy:m:ð Þ

J, I λn; yð Þ ¼ �~ψ asy:m:ð Þ
J, III λn;�yð Þ for�∞, y≤ � λn

~ψ J, II λn; yð Þ ¼
�~ψ J, II λn;�yð Þ for� λn, y≤0

~ψ J, II λn; yð Þ for 0, y≤ λn

(

~ψ
asy:m:ð Þ

J, III λn; yð Þ for λn ≤ y,∞

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

q¼1

(19)

where the superscripts (par.m.) and (asy.m.) represent parity matched and
asymptotically matched JWKB solutions, respectively. Eqs. (18) and (19) tells that we

will take �p ¼ �q! 1 to find the solutions in 0≤ y≤ y2 ¼ λn
� �

∪ y2 ¼ λn ≤ y,∞
� �

firstly by using (21) for the asymptotic matching and then extending it to the
second quadrant according to the parity under question. Note that asymptotically
matched general JWKBð Þ1 solution can be obtained as follows (see [3, 4, 7, 14] for
details):

~φ
asy:m:ð Þ
J λn; yð Þ ¼

~φ
asy:m:ð Þ
JI λn; yð Þ ¼ either ~k1~φ1 λn; y, yt1


 �

or ~k2~φ2 λn; y, yt1

 �

~φJII λn; yð Þ ¼ ~φJ λn; yt1, y, yt2

 �

~φ
asy:m:ð Þ
JIII λn; yð Þ ¼ either ~k1~φJ1 λn; yt2, y


 �

or ~k2~φJ2 λn; yt2, y

 �

8

>

>

<

>

>

:

(20)

so that they exhibit the following asymptotic behaviors:

~φ
asy:mð Þ:
J λn; yð Þ ¼

lim
y!�∞

~φJ λn; y, yt1

� �

¼ ~φJIðλn; yÞ
h i

¼ 0

lim
y!∞

~φJ λn; yt2, y

 �

¼ ~φJIIIðλn; yÞ
	 


¼ 0

8

>

<

>

:

(21)

3.2.1 Even-parity (EP) wave functions

When initial values at x ¼ y ¼ 0 for the EP case in (17), namely (by using (16)),

~ψ J, II λn; yð Þ y¼0 ¼ 1=
ffiffiffi

β
p

; ∂y~ψ J, II λn; yð Þj
y¼0 ¼ 0

�

�

�

o

,
n

(22)

is applied to the JWKB solution in (15), we find the following:

iÞ ∂y~ψ J, II λn; yð Þj
y¼0 ¼ 0) ~ψ II

~λn ¼ λn; y

 �

¼ A λnð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k λn; yð Þ
p cos

Z

y

0

k λn; yð Þdy

2

4

3

5, for0, y, λn

(23)

where the second complementary solution (in the sine form) has been canceled
and calculation of the integral in the cosine term can be calculated by the similar
change of variable as in (13) whose result will give η y;0ð Þ (see Eq. (18) below and
apply η y;0ð Þ ¼ η λn ! y; y! 0ð Þ).

iiÞ ~ψ J, II λn; yð Þj
y¼0 ¼ 1=

ffiffiffi

β
p

) A λnð Þ ¼
ffiffiffiffiffi

λn

β

s

(24)

8
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and by using (16), we have.

~ψ J, II β; λn; xð Þ ¼
ffiffiffi

β
p

~ψ J, II λn; y! βxð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λn

k λn; βxð Þ

s

cos

Z

βx

0

k λn; yð Þdy

2

4

3

5, for0, x, λn=β

(25)

Now, by applying the JWKB connection formula with a small phase term α,
we get.

~ψ III
~λn ¼ λn; y

 �

¼ A λnð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ λn; yð Þ
p

cos α λnð Þ½ � exp ζ λn; yð Þ½ �

þ 1

2
sin α λnð Þ½ � exp �ζ λn; yð Þ½ �

8

<

:

9

=

;

, forλn, y,∞,

(26)

and the asymptotically matched (modified) wave function in region III via (20)
and (21) of [3, 4, 7, 14] gives:

~ψ
asy:m:ð Þ
III

~λn ¼ λn; y

 �

¼ A λnð Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ λn; yð Þ
p sin α λnð Þ½ � exp �ζ λn; yð Þ½ �, for λn, y,∞ (27)

Abbreviations we use for the EP JWKB solutions here (and also for the OP
solutions in the next subsection) are as follows [14]:

α λnð Þ ¼
Z

λn

0

k λn; yð Þdyþ π

4
¼ η λn;0ð Þ þ π

4

η λn; yð Þ ¼
Z

λn

y

k λn; yð Þdy!¼ λ2nπ

4
� λ2n

2
sin �1

y

λn

� �

� y

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2n � y2
q

ζ λn; yð Þ ¼
Z

y

λn

κ λn; yð Þdy!¼ y

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � λ2n

q

� 1

2
λ2nln

yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � λ2n

q

λn

�

�

�

�

�

�

�

�

�

�

�

�

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(28)

Since we have already calculated ~ψ J, II β; λn; xð Þ and ~ψ
asy:m:ð Þ
III

~λn ¼ λn; yÞ



in the first

quadrant (0≤ y≤ λn), JWKB solutions in the other regions can be easily written as in
(18). JWKB wave functions regarding the EP case are given in Figure 3 along with
the exact solutions for comparison.

3.2.2 Odd-parity (OP) wave functions

Similarly, by using the boundary conditions for the OP case in (17), namely (by
using (16)),

~ψ J, II λn; yð Þ y¼0 ¼ 0; ∂y~ψ J, II λn; yð Þj
y¼0 ¼ 1=

ffiffiffiffiffi

β3
q

�

�

�

�

�

,

�

(29)

and starting with region II.
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Figure 3.
Exact and JWKB solutions of EP wave functions (for p ¼ 1).
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ið Þ ~ψ J, II λn; yð Þj
y¼0 ¼ 0) ~ψ II

~λn ¼ λn; y

 �

¼ B λnð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k λn; yð Þ
p sin

Z

y

0

k λn; yð Þdy

2

4

3

5, for0, y, λn

(30)

iið Þ ∂y~ψ J, II λn; yð Þj
y¼0 ¼ 1=

ffiffiffiffiffi

β3
q

) B λnð Þ ¼ 1=
ffiffiffiffiffiffiffiffiffi

λnβ
3

q

(31)

connecting to region III in the first quadrant (0≤ y≤ λn) via the JWKB connec-
tion formula.

~ψ J, III
~λn ¼ λn; y

 �

¼ B λnð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ λn; yð Þ
p

sin α λnð Þ½ � exp ζ λn; yð Þ½ �

� 1

2
cos α λnð Þ½ � exp �ζ λn; yð Þ½ �

8

<

:

9

=

;

, for λn, y,∞ (32)

whose asymptotic matching gives.

~ψ
m:ð Þ
J, III λn; yð Þ ¼ � B λnð Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ λn; yð Þ
p cos α λnð Þ½ � exp �ζ λn; yð Þ½ �, forλn, y,∞ (33)

Again, since we have already obtained ~ψ J, II λn; yð Þ and ~ψ
m:ð Þ
J, III λn; yð Þ in 0≤ y≤ λn,

JWKB solutions in the second quadrant can be written in terms of them as shown in
(19). JWKB wave functions regarding the OP case are given in Figure 3 along with
the exact solutions for comparison.

4. The MAF method

If we follow the QHO in dimensionless form given in (7), we have the following
properties in MAF theories [3, 18–23]:

4.1 General structure of the MAF approximation to the bound-state wave
functions

Formal MAF method suggests a solution to the TISE in (7) in terms of Airy
functions as follows:

ψMAF λn; yð Þ≕ ~ψM λn; yð Þ ¼
F λn; yð ÞAi ξ λn; yð Þ½ �

or

G λn; yð ÞBi ξ λn; yð Þ½ �

8

>

>

<

>

>

:

9

>

>

=

>

>

;

) ~ψM λn; yð Þ ¼ a1F λn; yð ÞAi ξ λn; yð Þ½ � þ a2G λn; yð ÞBi ξ λn; yð Þ½ �

(34)

where Ai and Bi represent the Airy functions (namely, Ai xð Þ and Bi xð Þ are the
linearly independent solutions of the Airy differential equation y″ xð Þ � xy xð Þ ¼ 0 in
x), a1&a2 are the arbitrary constants which will be found from boundary values,
and F&G are the functions to be determined. Note that the first variable λn is the
eigenenergies (constant values quantized by index n) which will also be determined
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soon. So, for now, we can consider all these functions as one dimensional in only y
for simplification (say, ~ψ J λn; yð Þ≕ ~ψ J yð Þ, ξ λn; yð Þ≕ ξ yð Þ, F λn; yð Þ≕F yð Þ, etc.). If we

choose one of the linearly independent solutions, say F yð Þ:Ai ξ yð Þ½ �, to substitute in
the TISE in (4), then it gives:

F″ yð Þ
F yð Þ þ

2F0 yð ÞAi0 ξ yð Þ½ �ξ0 yð Þ þ F yð ÞAi0 ξ yð Þ½ �ξ″ yð Þ
F yð ÞAi ξ yð Þ½ � þ ξ yð Þ ξ0 yð Þ½ �2 þ f yð Þ

n o

¼ 0 (35)

Now, with the choice of the last term in (35) as zero, we find the following:

ξ yð Þ ξ0 yð Þ½ �2 þ f yð Þ ¼ 0) ξ yð Þ ¼
Z y

yt

3

2

ffiffiffiffiffiffiffiffiffiffiffiffi

�f yð Þ
q

dy

" #2=3

(36)

Here, the property of the Airy functions, Ai″ ξð Þ ¼ ξAi ξð Þ, was used [3, 18]. The
integral interval in (36) is also chosen tactically in a fashion that it invokes a
relationship with the turning point yt (representing the correct order yt1 or yt2 to
give a non-imaginary result), and it can be written in a more explicit and conven-
tional form (by also using in our two-variable form here) as follows:

ξ λn; yð Þ ¼

ξI :
3
2

R yt1
y κ λn; yð Þdy

h i2=3
, for y≤ yt1

ξII : � 3
2

R y
yt1
k λn; yð Þdy

h i2=3
¼ � 3

2

R yt2
y k λn; yð Þdy

h i2=3
,  for  yt1 ≤ y≤ yt2

ξIII :
3
2

R y
yt2
κ λn; yð Þdy

h i2=3
, for yt2 ≤ y

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(37)

where f λn; y≥0ð Þ ¼ k2 λn; yð Þ ¼ �κ2 λn; yð Þ and yt1&yt2 are the CTPs at the inter-
face of the regions I � II&II � III, respectively. The remaining terms in (44) and
(45) are also made zero as follows:

Starting from the second term, we have.

2F0Ai0 ξð Þξ0
F

þ Ai0 ξð Þξ″ ¼ 0) F yð Þ ¼ b1
ffiffiffiffiffiffiffiffiffiffi

ξ0 yð Þ
p (38)

where b1 is some constant, and finally, making the first term in (35) zero (which
is the only assumption in the MAF method), we have the following:

P yð Þ ¼ F″ yð Þ
F yð Þ ≈0 (39)

Or more correctly in two-variable form in our eigenvalue system.

P λn; yð Þ ¼
∂
2
yF λn; yð Þ
F λn; yð Þ (40)

can be thought as a measure of the accuracy of the MAF solution, namely,
P λn; yð Þ ! 0, as MAF solution gets more accurate [18].

The same results would also be obtained if we had chosen the other linearly
independent solution, G yð Þ:Bi yð Þ, in (34). Consequently, using the results found in
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(37) and (38), the general solution suggested in (34) can be written explicitly in the
standard form of the MAF formula as follows:

ψMAF yð Þ ¼ ~c1
ffiffiffiffiffiffiffiffiffiffi

ξ0 yð Þ
p Ai ξ yð Þ½ � þ ~c2

ffiffiffiffiffiffiffiffiffiffi

ξ0 yð Þ
p Bi ξ yð Þ½ � (41)

or more correctly in two variables here in our study.

ψMAF λn; yð Þ ¼ ~c1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂yξ λn; yð Þ
p Ai ξ λn; yð Þ½ � þ ~c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂yξ λn; yð Þ
p Bi ξ λn; yð Þ½ � (42)

where c1 ¼ a1:b1 and c2 ¼ a2:b2 are the arbitrary constants to be determined
from the boundary values as mentioned and ∂yξ λ; yð Þ represents the first derivative
of ξ with respect to y. Using the result in (38), the approximation term P λn; yð Þ in
(40) can be rewritten explicitly as follows:

P λn; yð Þ ¼ 3

4

∂
2
yξ λn; yð Þ
∂yξ λn; yð Þ

" #2

�
∂
3
yξ λn; yð Þ

2∂yξ λn; yð Þ (43)

4.2 MAF solution of eigenenergies

For a symmetrical f as in Figure 2, we have even-parity (EP) and odd-parity
(OP) MAF wave functions just as in JWKB method, but now it leads to two differ-
ent MAF quantization formulas with two different MAF universal constants
regarding EP and OP solutions as given in [3] and as we study in this section. We
again use the symbolism in (9) (φ⇔ψ) and start with the first quadrant, by applying
that limy!∞ ¼ 0 requires c2 ¼ 0 in (42), namely,

ψMAF,n λn; yð Þ≕ ~ψMn λn; yð Þ ¼ ~c1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂yξ λn; yð Þ
p Ai ξ λn; yð Þ½ �, (44)

where the denominator can be written in the following form [3]:

1

∣
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂yξ λn; yð Þ
p

∣
¼ ξ λn; yð Þj j1=4

k2 λn; yð Þ
�

�

�

�

1=4
(45)

i. Even-parity (EP) eigenenergies: if we apply the EP formulas of the exact
solution in (17), by using (16), to the MAF wave functions, we have the
following:

~ψMn λn;0ð Þ ¼ �pffiffiffi
β
p ; ∂

~ψMn λn; yð Þ
∂y

j
y¼0
¼ 0

)(

(46)

ið Þ ~ψM λn;0ð Þ ¼ 1
ffiffiffi

β
p ) find ~c1 ≕~c1s

result :) ~c1s ¼
ξ00

ffiffiffi

β
p

Ai ξ λn; yð Þ½ � ) ~ψM λn; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ00
β∂yAi ξ λn; yð Þ½ �

s

Ai ξ λn; yð Þ½ �
Ai ξ0ð Þ

(47)
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iið Þ ∂
~ψM λn; yð Þ

∂ y
j
y¼0
¼ 0) Ai0 ξ0ð Þ �

Ai ξ0ð Þξ″0
2ξ020

¼ 0 (48)

where we used ξ0, ξ
0
0, and ξ″0 for simplification, namely, ξ0 ¼ ξ λn;0ð Þ,

ξ00 ¼ ∂y λn; yð Þ
�

�

y¼0, and ξ″0 ¼ ∂yy λn; yð Þ
�

�

y¼0, respectively. We assumed here

φ λn;0ð Þ ¼ 1, and we will use then parity correction for φ λn;0ð Þ ¼ �1 case just as in
the JWKB calculations. If we take the derivative of (36), we get.

ξ0
3
λn; yð Þ þ 2ξ λn; yð Þ ∂yξ λn; yð Þ

	 


∂yyξ λn; yð Þ
	 


þ ∂yk
2
λn; yð Þ ¼ 0 (49)

where the last term vanishes as y! 0 to give.

ξ0
2
0 þ 2ξ0ξ

″

0 ¼ 0) ξ″0

2ξ020
¼ � 1

4ξ0
(50)

whose substitution in (48) gives.

ξ0Ai
0 ξ0ð Þ þ

1

4
Ai ξ0ð Þ ¼ 0 (51)

Now, by the substitution of ξ0 ! �Zsn, we have.

�ZsnAi
0 �Zsnð Þ þ Ai �Zsnð Þ

4
¼ 0 (52)

where the subscripts sn stand for s, symmetrical solution (EP), and n, quantiza-
tion order (nth quantization), and Zsn is the nth solution of the differential equation
in (52) regarding the symmetrical solution. Now, by using the results in (13), we
find the MAF quantization formula regarding the symmetrical solution:

Z y2

0
k ~λM, sn; y
	 


dy≕ ζsn þ
1

2

� �

π ) ζsn ¼
4Z3=2

sn

3π
� 1

2

 !

, n ¼ 1; 2; 3,… (53)

where ζsn is the universal MAF constants regarding the symmetrical solution
whose values are given in Table 2 along with the JWKB solutions (which are
already exact) for some n values in comparison. Note that we used ns to represent
the symmetrical (EP) MAF indices in Table 2.

ii. Odd-parity (OP) eigenenergies: similarly, if we apply the OP formulas of the
exact solution in (17), by using (16), to the MAF wave functions, we have the
following:

~ψM λ;0ð Þ ¼ 0; ∂y~ψM λ; yð Þj
y¼0 ¼

�q
ffiffiffiffiffi

β3
p

)(

(54)

ið Þ ~ψM λ;0ð Þ ¼ 0) Ai ξ0 ! �Zanð Þ ¼ Ai �Zanð Þ ¼ 0, n ¼ 1; 2; 3,… (55)
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iið Þ ∂y~ψM λna ; yð Þj
y¼0 ¼

1
ffiffiffiffiffi

β3
p ) Ai0 ξ0ð Þ �

Ai ξ0ð Þξ″0
2ξ020

¼ 1
ffiffiffiffiffi

β3
p ) find~c1 ≕~c1a (56)

where, similarly, the subscripts an stand for a, antisymmetrical (OP), and n,
quantization order (nth quantization), and Zan is the nth solution of the equation in
(55) regarding the asymmetrical solutions. Similarly, by using the results in (13), we
find the MAF quantization formula regarding the antisymmetrical solution:

Z y2

0
k ~λM,an; y
	 


dy≕ ζan þ
1

2

� �

π ) ζan ¼
4Z3=2

an

3π
� 1

2

 !

, n ¼ 1; 2; 3,… (57)

where ζan is the universal MAF constants regarding the antisymmetrical solution
whose values are given in Table 2 along with the JWKB solutions (which are
already exact) for some n values in comparison. Note that we used na to represent
the antisymmetrical (OP) MAF indices in Table 2.

4.3 MAF solution of eigenfunctions

By using a tentative boundary condition with q = 1 for the EP solutions, we have
found the result in (47), and we said that we would extend it by considering the
parity matching for q ¼ �q. Consequently,

~ψ
par:m:ð Þ
M;E:P:ð Þ λns ; y≥0ð Þ ¼ �1ð Þ

ns
2ð Þ � ~c1s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂yξ λn; yð Þ
p Ai ξ λn; yð Þ½ �, ns ¼ 0; 2;4,… evenð Þ (58)

or

~ψ
par:m:ð Þ
M;E:P:ð Þ λns ; y≥0ð Þ ¼ �1ð Þ

ns
2ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ00
β∂yAi ξ λns ; yð Þ½ �

s

Ai ξ λns ; yð Þ½ �
Ai ξ0ð Þ

, ns ¼ 0; 2;4,… evenð Þ

(59)

Similarly, for the antisymmetric parity wave functions, we have.

~ψ
par:m:ð Þ
M;O:P:ð Þ λna ; y≥0ð Þ ¼ �1ð Þ

na�1
2ð Þ � ~c1a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂yξ λn; yð Þ
p Ai ξ λn; yð Þ½ �, ns ¼ 1; 3; 5,… oddð Þ

(60)

where constant coefficients ~c1s and ~c1a represent the related symmetric and
antisymmetric coefficients, respectively.

5. MAF solution of the QHO

Again, we use the schematic sketch given in Figure 2 for the QHO under study.

5.1 MAF eigenenergies of the QHO

Since we have tactically used (53)–(57) to resemble the MAF quantization for-
mula to the JWKB quantization formula given in (12), by using the result of
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calculation of the same integral in (13), we have the following results regarding the
MAF eigenenergies of the QHO:

E:P: : ~λM, sn Esnð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ζsn þ 1
p

orð Þ~EM, sn ≕EMAF, sn ¼ ζsn þ
1

2

� �

π; n ¼ 1; 2; 3,…

(61)

O:P: : ~λM,an Eanð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ζan þ 1
p

orð Þ~EM,an ≕EMAF,an ¼ ζsn þ
1

2

� �

π; n ¼ 1; 2; 3, :: (62)

MAF eigenenergies are given in Table 2 along with the JWKB solutions (which
are already exact) for some n values in comparison. (Note again that we used ns and
na to represent the symmetrical (EP) and antisymmetrical MAF indices in Table 2,
respectively).

5.2 MAF eigenfunctions of the QHO

For the regions IIb and III, we have the following definitions:

f λn; yð Þ ¼ k2 λn; yð Þ ¼
k2 ~λM  ~λn; y

 �

¼ ~λ
2

n � y2;0≤ y≤~λn

κ2 ~λM  ~λn; y

 �

¼ y2 � ~λ
2

n;
~λn ≤ y,∞

8

<

:

(63)

Calculation of ξ in (37) for the first quadrant gives.

ξ λn; yð Þ ¼
ξIIb : � 3

2

R y
0 k

~λM; y

 �

dy
	 
2=3 ¼ � 3

2

R yt2
y k ~λM; y


 �

dy
h i2=3

, for 0≤ y≤ yt2

ξIII :
3
2

R y
yt2
κ ~λM; y

 �

dy
h i2=3

, for yt2 ≤ y

8

>

>

<

>

>

:

¼

ξIIb : �
32=3

4
�2yk ~λM; y


 �

þ ~λ
2

M π � 2arctan
y

k ~λM; y

 �

 !" #( )2=3

, for 0≤ y≤~λM

ξIII :

32=3 yκ ~λM; y

 �

þ ~λ
2

Mln
~λM

yκ ~λM;y

 �

" #( )2=3

24=3
, for ~λM ≤ y,∞

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(64)

where ~λM (and also ~EM below) are MAF eigenenergies which become (61) for
the symmetric (EP) and (62) for the antisymmetric (OP) case accordingly. Calcu-
lation of the constant coefficient in (58) or (59) for the symmetric boundary values
given in (46) with q = 1 gives.

E:P: : ~c1s ¼
ffiffiffi

2
p

~E
1=6

sn
ffiffiffi

β
p

3πð Þ1=6Ai � 1
4
~E
4=3

sn
3πð Þ2=3

h i (65)
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Figure 4.
Exact and JWKB solutions of OP wave functions (for q ¼ 1).
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Figure 5.
Relative and absolute error of EP MAF solutions.
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Figure 6.
Relative and absolute error of OP MAF solutions.

19

Quantum Harmonic Oscillator
DOI: http://dx.doi.org/10.5772/intechopen.85147



Similarly, calculation of the constant coefficient in (60) for the antisymmetric
boundary values given in (54) with q = 1 gives.

O:P: : ~c1a ¼
~E
7=6

an
3πð Þ1=6

ffiffiffiffiffiffiffi

2β3
p

~E
4=3

an
3πð Þ2=3Ai0 � 1

4
~E
4=3

an
3πð Þ2=3

h i

� Ai � 1
4
~E
4=3

an
3πð Þ2=3

h in o (66)

Since the MAF solutions of both EP and OP solutions are very close to the exact
solutions given in Figures 3 and 4, their absolute and relative error graphs with
respect to the exact solution are given in Figures 5 and 6. We can also see that there
are no discontinuities at the CTPs in the MAF solutions when compared with the
JWKB solutions given in Figures 3 and 4.

6. Conclusion

Here we studied the fundamental outcomes of the two conventional semiclassi-
cal approximation methods, namely, JWKB and MAF methods pedagogically, and
obtained the solutions of the QHO by these semiclassical methods by using the
parity conditions of the expected solutions by using the dimensionless form of the
QHO system. We applied the asymptotic matching and parity matching procedure
to obtain the correct form of semiclassical solutions. As expected, JWKB solutions
diverge at and around the CTPs, whereas MAF solutions do not. As also expected
(since being typical), JWKB eigenenergies are exact, whereas MAF eigenenergies
are unfortunately not but very accurate as expected from an approximation
method. In the MAF method, function p in (40) or in (43) is assumed zero. Indeed,
it is very close to zero to give approximate results, and function P in (40) or in (43)
can be used as an approximation criterion for the MAF method [3, 18]. However,
improved MAF methods (IMAF) or perturbation corrections concerning the non-
zero P function seem straightforward to improve the accuracy of the MAF solutions
as in [3, 20, 22]. Normally, for an even potential function in the TISE, EP and OP
initial values are as given in (17), but due to the conversion factor β in (11) or (16),
for the QHO in the dimensionless form (in ψ), we have (22) and (29). In our
notation, we have used the notation, φ⇔ψ , where real physical system is in φ and
the dimensionless form is in ψ . Since the standard formulation is given according
to the real physical systems, JWKB and MAF formulas in the literature such as
in [1–7, 19–23] surely correspond to the initial values β! 1 in our dimensionless
form formulation in ψ . Consequently, we hereby present a full JWKB and MAF
solution concerning the quantized conversion factor β in (11).
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