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Chapter

Personalized Medicine of 
Urate-Lowering Therapy for Gout
Dewen Yan and Youming Zhang

Abstract

Gout is a common and complex form of arthritis that is characterized with 
hyperuricaemia. It is required urate-lowering therapy (ULT) for lifelong manage-
ment. ULT includes decreasing uric acid product in serum, increasing renal urate 
excretion and promoting uric acid to allantoin for excretion. Whole genome 
association studies in gout identified more than 40 genetic loci that influenced 
the serum uric acid levels. Most associated genes were found to affect renal urate 
excretion. Pharmacogenetics and pharmacogenomics approaches on ULT had 
revealed several genes that underlined the effectiveness and the adverse events of 
medications for gout. Together with the researches on epigenetic factors such as 
DNA methylations, miRNAs; and the discovery of environmental factors such as 
microbiota and metabolites, the current progress provides the opportunities for 
personalized management of ULT for treating hyperuricaemia and gout.

Keywords: gout, hyperuricaemia, pharmacogenetics, pharmacogenomics,  
urate-lowering therapy

1. Introduction

The term “gout” was firstly used around 1200 AD. It means “a drop” of liquid 
from the Latin word gutta [1]. The first description of gout as a disease was from 
Egypt in 2600 BC as arthritis of the big toe. Gout is now referred as a form of 
inflammatory arthritis characterized by recurrent attacks of a red, tender, hot, and 
swollen joint [2]. It is one of the most common forms of arthritis and the prevalence 
is increasing worldwide. The prevalence is various in different regions across the 
world and is about 1–4%. In westernized countries, the prevalence is about 3–6% in 
men and about 1–2% in women. Prevalence can increase up to 10% in some coun-
tries. For people aged more than 80 years old, it could rise up to 10% in men and 
6% in women [3, 4]. In the USA, the prevalence of gout in adults was estimated to 
be approximately 3.9% [5]. From 1990 to 2015, the number of prevalent gout cases 
rose by 30% in Nordic region [6]. In China, the pooled prevalence of gout was 1.1% 
between 2000 and 2016 [7].

Hyperuricaemia is the key biochemical abnormality in gout. Uric acid is a 
C5H4N4O3 (7,9-dihydro-1H-purine-2,6,8(3H)-trione) heterocyclic organic com-
pound with a molecular weight of 168 Da. Uric acid is the product from the conver-
sion of the two purine nucleic acids, adenine and guanine [8]. Hyperuricaemia 
is defined as serum urate level more than 0.42 mmol/l. It results in the formation 
of monosodium urate (MSU) crystals. MSU crystals precipitate within joints and 
soft tissues to cause an inflammatory response. The prominent clinical features 
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of gout are attacks of tendonitis, formatting collections of MSU crystals as tophi, 
joint destruction and chronic gouty arthritis. MSU crystals can also deposit in the 
interstitium of the kidneys to form renal stones. Hyperuricaemia was associated 
with hypertension and ischemic heart diseases [9, 10]. The causes of hyperuricae-
mia are either under excretion of uric acid in the kidneys or increase of produc-
tion of uric acid in serum [11]. Two key enzymes regulate the production of uric 
acid. One is xanthine oxidase that makes xanthine to uric acid; the other is urate 
oxidase that transfers uric acid to allantoin. Allantoin is the end product of purine 
catabolism in all mammals except humans, great apes, and one breed of dog, the 
Dalmatian. An animal model of hyperuricaemia from Dalmatian dog revealed the 
importance of SLC2A9 gene for uric acid transport in mammals [12]. Together with 
renal excretion of uric acid, these are three clinical management paths of uric acid 
to maintain the lower level of uric acid in serum. These include to decrease uric acid 
production (xanthine oxidase inhibitors—allopurinol, febuxostat), increase renal 
urate excretion (uricosurics—benzbromarone, probenecid, lesinurad), or promote 
uric acid to allantoin which is more water soluble and readily excreted (recombinant 
uricases—pegloticase) [11]. Environmental factors and genetic factors are the major 
causes to influence the drugs’ efficiencies and side effects for gout.

2. Clinical managements of gout

Effective treatment of acute gout attacks and long-term urate lowering therapy 
are clinical managements of gout. An acute attack should be treated as soon as 
possible with non-steroidal anti-inflammatory drugs (NSAIDs) or colchicine as 
first line treatment options. For patients who do not respond NSAIDs or colchicine, 
systemic corticosteroids generally are applied [13]. Long-term management of gout 
with ULT is required for patients who are confirmed as diagnosis of gout and tophi. 
The diagnosis includes more than two times gout attacks per year, renal stones or 
stage 2 or worse chronic kidney disease. A sustained reduction of serum urate to less 
than 0.36 mmol/l (6 mg/dl) is generally recommended and a lower target of less than 
0.30 mmol/l (5 mg/dl) is recommended in patients with tophi [14, 15]. A xanthine 
oxidase inhibitor is the recommended as first-line choice for ULT. A uricosuric can 
be serviced as second-line medication for ULT. It is for patients who do not response 
xanthine oxidase inhibitors well. Uricases are the third-line treatments for patients 
who have refractory disease and are intolerant to oral ULTs. Optimizing therapy for 
improving the outcomes with affordable drugs such as allopurinol, as well as ratio-
nalizing the use of new, more expensive agents is an important clinical goal. The roles 
of pharmacogenetics and pharmacogenomics are becoming more and more impor-
tant to predict drug response and adverse events of medications. Rationalization and 
combination of common medications with genetic screening and other environmen-
tal factors will revolutionize gout managements in near future.

3. Pharmacogenetics and pharmacogenomics in ULT

“Pharmacogenetics” was a term originally to describe clinical observations of 
inherited differences in drug effects in 1950s [16]. It is now defined as the study of 
individual DNA variants that are related to drug responses [17, 18]. Genetic variants 
also underlie the differential susceptibility to diseases and the sensitivity to drug 
adverse events. Most drug effects are determined by the interplay of several pro-
teins that influence the pharmacokinetics and pharmacodynamics of medications, 
including inherited differences in drug targets such as receptors, drug disposition 
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such as metabolizing enzymes and transporters, drug metabolism, and drug adverse 
reaction. In human, about 20–95% of variability in drug disposition and effects are 
determined by genetic polymorphisms in the genome [18]. For all practical purpose, 
the terms pharmacogenetics and pharmacogenomics may be synonymous, but phar-
macogenomics normally refers genome-wide approaches to investigate all genes in 
the genome that influence drug responses while pharmacogenetics implies the study 
of a single gene’s interactions with drugs. The pharmacogenomics approach tends to 
be applied to identify genes in the search for novel drug targets. This is in contrast to 
traditional drug design that depends on a prior knowledge of the target and is based 
on high-throughput screening to identify small-molecule antagonists or agonists.

3.1 Genetic and genomic approaches of hyperuricaemia and gout

Genetic approaches for complicated diseases and associated traits such as 
gout and hyperuricaemia are to identify genetic variants in genome that underlie 
the diseases and syndromes. There are many kinds of genetic variants in human 
genome. Single nuclear polymorphisms (SNPs) are the most frequent variants 
found in the genome, accounting for 90% of human genetic variation. Total 84.7 
million SNPs were found in 26 human populations [19]. SNPs can be found within 
coding sequences and noncoding regions of genes, as well as within intergenic 
regions. Insertion and deletion of short segments of DNA (INDEL) is another type 
of common polymorphism. More than 3.6 million short insertions/deletions are 
distributed throughout the human genome, with approximately 36% of them being 
located within promoters, introns, and exons of known genes [19, 20]. They can 
have a significant impact on gene function not only when present in exonic cod-
ing sequence but also when within a gene intron [21]. Variable number of tandem 
repeats (VNTRs) polymorphisms is widespread in the genome and contain variable 
numbers of repeated nucleotide sequences that result in alleles of varying lengths. 
VNTR loci typically have high levels of heterozygosity that make them very infor-
mative for genetics research. There are about 60,000 structural variants around 
human genome [19]. Inversions may involve larger regions of the genome in which 
a segment of a chromosome is reversed end to end and occur when a chromosome 
breaks in two places. A copy number variant (CNV) is a segment of DNA for which 
there are more than two copies in the genome. The genetic segment involved may 
range from one kilobase to several megabases in size [22]. Many techniques can 
allow the detection and discovery of CNVs including cytogenetic techniques such as 
fluorescent in situ hybridization, comparative genomic hybridization, array com-
parative genomic hybridization, and by large-scale SNP genotyping.

The genetic approaches to hyperuricaemia and gout include candidate gene 
studies, positional cloning studies and genome-wide association studies (GWASs). 
Candidate gene study needs to have relatively big case and control groups to 
increase the power for statistical analysis. Positional cloning is another genetic 
approach that identifies disease genes by progressive dissection of linkage regions 
that are consistently co-inherited with the disease. Nowadays, GWASs have been 
rapidly changing the landscape of the search of the genes that underlie complicated 
diseases such as hyperuricaemia and gout. It is a powerful approach to overcome 
the limitations of candidate gene and positional cloning studies. It examines the 
relationships between allele frequencies and disease status or associated traits with 
a large number of genetic polymorphism markers covering of whole genome [23]. 
GWASs provide the opportunity to identify novel mechanisms of disease pathogen-
esis that are caused by previously unsuspected genes or regulatory regions. About 
10,000 strong associations have been reported between genetic variants and one or 
more complex traits [24].
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3.2 GWASs for hyperuricaemia and gout

More than 30 GWASs papers on hyperuricaemia and gout have been published 
so far. The first GWAS study identified the associations of three genetic loci with 
uric acid concentration and risk of gout [25]. The three loci were SLC2A9, ABCG2 
and SLC17A3. Since then, many GWSs papers have been published across the world 
and discovered more than 40 genes that showed the associations with hyperuri-
caemia or gout. Many genes identified by GWASs encode urate transporters and 
interacting proteins. The identified genetic variation can only explain less than 10% 
level of variance for serum uric acid levels [26]. The rest could be explained by envi-
ronmental factors and the interactions of genetic factors and environmental factors. 
We listed 10 genes that were frequently identified in GWASs studies worldwide in 
Table 1 and also discussed the genes’ potential function roles in regulating uric acid 
metabolism in serum.

3.2.1 SLC2A9

SLC2A9 was a gene that was identified in almost every GWAS across the world. 
The gene is located on human chromosome 4p16 and encodes a member of the 

Genes Encoded protein Chr. Ref. Populations Possible function 

roles

SLC2A9 Solute carrier family 2 

member 9: GLUT9

4p16 [25, 27–37] African, 

Asian, 

European

Regulating renal 

and gut excretion of 

uric acid

ABCG2 ATP binding cassette 

subfamily G member 2

4q22 [25, 29, 30, 

33, 35, 36, 

45]

Asian, 

European

Regulating extra-

renal uric acid 

under-excretion

SLC17A 

cluster

Sodium phosphate 

transporters

6p22 [25, 33, 35, 

45]

Asian, 

European

Regulating renal 

and excretion of 

uric acid

GCKR SIS (Sugar ISomerase) 

family protein

2p23 [33, 35, 45] Asian, 

European

Regulating 

glucokinase in cells

SLC22A 

cluster

Integral membrane 

proteins

11q12 [28–30, 33, 

35, 45]

African, 

Asian, 

European

Preventing 

potentially harmful 

organic anions

PDZK1 PDZ domain-

containing scaffolding 

protein

1q21 [33, 35, 36] Asian, 

European

Regulating the 

high-density 

lipoproteins

INHBC 

and 

INHBE

TGF-beta superfamily 

of proteins

12q13 [33, 45] Asian, 

European

Regulating 

numerous cellular 

processes

A1CF APOBEC1 

complementation 

factor

10q11 [33, 35] Asian, 

European

Regulating RNA-

binding subunit

MAF Leucine zipper-

containing 

transcription factor

16q23 [30, 33] Asian, 

European

Regulating several 

cellular processes

SLC16A9 Solute carrier family 

16 member 9

10q21 [33, 35] Asian, 

European

Regulating 

monocarboxylic 

acid transporter

Chr: chromosome; Ref: reference.

Table 1. 
The 10 most replicated genes in GWAS studies for hyperruricemia and gout.
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SLC2A facilitative glucose transporter family GLUT-9. The associations with 
hyperuricaemia and gout were found in populations from Africa American, Asia, 
Europe and the United States [25, 27–37], but not found in Hispanic American [38]. 
Variation in SLC2A9 was the most statistically significant genetic determinant 
of serum urate; accounting for 3.4–8.8% of the variance in women and 0.5–2.0% 
of the variance in men [25, 31, 34, 37, 39, 40]. The encoded protein is involved in 
p21-activated protein kinase (PAK) pathway for transport of glucose, bile salts, 
organic acids, metal ions and amine compounds. Recent studies showed that 
GLUT-9 was participated in renal and gut excretion of uric acid and was impli-
cated in antioxidant defense [41–43]. There are two distinct N-terminal isoforms 
of human GLUT-9: GLUT-9a (540 residues) and GLUT-9b (511 residues) [44]. 
These isoforms are generated by alternative splicing of 5′ ends and differ in mem-
brane trafficking. GLUT-9b has a more substantial role in urate homeostasis than 
GLUT-9a. GLUT-9a is likely to function as the exit site for urate from proximal 
tubule cells, whereas GLUT-9b might transport urate into the proximal tubule cells 
across the apical membrane [26].

3.2.2 ABCG2

ABCG2 gene is located in human chromosome 4q22. It encodes ATP binding 
cassette subfamily G member 2. ABC proteins transport various molecules across 
extra- and intra-cellular membranes. The gene was also found to have associa-
tions with hyperuricaemia and gout in Asian, European and the United States  
[25, 29, 30, 33, 35, 36, 45]. The gene product is involved primarily in extra-renal 
uric acid under-excretion. Multiple transcript variants encoding different iso-
forms had been found for this gene [46]. ABCG2 is expressed in the brush border 
membrane of the proximal tubules of the kidney and has a role in the apical [47]. 
The ABCG2 Q141 K variant is highly likely to be causal and results in internaliza-
tion of ABCG2, which can be rescued by drugs [48]. The SNP rs2231142 in ABCG2 
gene had significant associations between gout and controls, between gout and 
hyperuricaemia, and between hyperuricaemia and controls, respectively. In a cell 
model investigation it showed significantly higher IL-8 release from endothelial 
cell (EC) combined with ABCG2 knockdown [49]. The Glu141Lys polymorphism 
was accounted for 0.57% of the variation in serum urate from a meta-analysis of 
GWAS data [35]. The polymorphism had a significantly larger effect on serum 
urate levels in men than in women. The Glu141Lys substitution was shown that it 
caused a 53% reduction in the rate of ABCG2-assocaited urate transport [35]. The 
polymorphism of the gene could also affect the response to allopurinol [50].

3.2.3 SCL17A gene cluster

SCL17A gene cluster is located on human chromosome 6p21 containing three 
members of the SLC17 gene family (SLC17A3, SLC17A1 and SLC17A4). The 
polymorphisms of the genes were identified as a significant predictor of uric acid 
levels and gout in many GWASs [25, 33, 35, 45]. The strongest association was with 
SNP rs1165205 within intron 1 of SLC17A3. The SLC17A3 gene encodes a sodium 
phosphate transporter (NPT4) which is expressed at the apical membrane of renal 
proximal tubule cells. The SLC17A1 gene lies immediately downstream of SLC17A3 
and encodes sodium phosphate transporter NPT1, which is expressed in the human 
kidney and can transport uric acid in vitro [51]. SNP rs1183201 within SLC17A1 was 
identified as the strongest predictor of serum urate in a meta-analysis of GWAS 
[35]. Further investigations will be required to identify the causal SNPs in the gene 
cluster that regulate uric acid levels and susceptibility to gout [52].
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3.2.4 GCKR

GCKR gene is located on human chromosome 2p23. The gene encodes a protein 
belonging to the glucokinase regulator (GCKR) subfamily. It inhibits glucokinase 
in liver and pancreatic islet cells by binding non-covalently to form an inactive 
complex. This gene is also considered a susceptibility candidate gene for a form 
of maturity-onset diabetes of the young (MODY) and it has been found to have 
association with gout or hyperuricaemia in many populations [25, 33, 35, 45].

3.2.5 SLC22A cluster

SLC22A cluster is located on human chromosome 11q13. The cluster contains 
SLC22A11 and SLC22A12. The encoded proteins are involved in the sodium-inde-
pendent transport and excretion of organic anions. They are integral membrane 
proteins and are found mainly in the kidney and in the placenta, where they may act 
to prevent potentially harmful organic anions from reaching the foetus. The cluster 
was found to have associations to hyperuricaemia and gout in many populations 
[28–30, 33, 35, 45]. Selected rare variants in SLC22A12 were validated in transport 
studies, confirming three as loss-of-function (R325W, R405C, and T467M) and 
providing the therapeutic potential of the new URAT1-blocker lesinurad [53].

3.2.6 PDZK1

PDZK1 gene is located on human chromosome 1q21. This gene encodes a protein 
containing a PDZ domain. It mediates the subcellular localization of target proteins. 
PDZK1 mediates the localization of cell surface proteins and plays an important role 
in cholesterol metabolism by regulating the high-density lipoproteins (HDL) recep-
tor. Alternatively spliced transcript variants encoding multiple isoforms have been 
observed for this gene. The gene was showed to have associations with gout and 
hyperuricaemia in many populations [33, 35, 36]. The maximally associated genetic 
variant SNP rs1967017 at the PDZK1 locus was found to elevated PDZK1 expression. 
Transcriptional factor hepatocyte nuclear factor 4 alpha (HNF4A) physically binds 
the rs1967017 region. The urate-raising T allele of rs1967017 enhances HNF4A bind-
ing to the PDZK1 promoter to increase PDZK1 expression [54].

3.2.7 INHBC and INHBE

The INHBC and INHBE genes are located on human chromosome 12q13. The 
genes encode members of the TGF-beta (transforming growth factor-beta) super-
family of proteins. These proteins were implicated in regulating numerous cellular 
processes including cell proliferation, apoptosis, immune response and hormone 
secretion. They may be upregulated under conditions of endoplasmic reticulum 
stress, and may inhibit cellular proliferation and growth in pancreas and liver. The 
GWAS investigation found the genes had associations with gout and hyperuricae-
mia in some populations [33, 45].

3.2.8 A1CF

The A1CF gene is located on human chromosome 10q11. The encoded protein 
has three non-identical RNA recognition motifs and belongs to the heterogeneous 
ribonucleoproteins (hnRNP) family of RNA-binding proteins. It has been proposed 
that this complementation factor functions as an RNA-binding subunit and docks 
APOBEC-1 to deaminate the upstream cytidine. Studies suggest that the protein may 
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also be involved in other RNA editing or RNA processing events. Several transcript 
variants encoding a few different isoforms have been found for. This gene was showed 
to have associations with gout and hyperuricaemia in some populations [33, 35].

3.2.9 MAF

The MAF gene is located on human chromosome 16q23. The encoded protein is a 
DNA-binding, leucine zipper-containing transcription factor and acts as a homodimer 
or as a heterodimer. It plays a role in the regulation of cellular processes, development, 
apoptosis and chondrocyte differentiation. Two transcript variants encoding different 
isoforms have been found for this gene. The polymorphisms of the gene were showed 
to have associations with gout and hyperuricaemia in some populations [30, 33].

3.2.10 SLC16A9

The SLC16A9 gene is located on human chromosome 10q21. The encoded 
protein has importer activity and monocarboxylic acid transmembrane transporter 
activity. GWAS studies found gene to have associations with gout and hyperuricae-
mia in some populations [33, 35].

GWASs also discovered other genes in some populations. These genes were 
TRIM46, ACVR2A, LRP2, CNTN4, MUSTN1, SFMBT1, FAM134B, TMEM171, 
RREB1, VEGFA, SGK1, MLXIPL, PRKAG2, STC1, HNF4G, A1CF, DIP2C, SLC16A9, 
OVOL1, HNF1A, ACVR1B, ACVRL1, USP2, ATXN2, TSHR, IGF1R, NFAT5, HLF, 
BCAS3, PRPSAP1, ALDH16A1, ZNF160 [55]. It is likely these genes contribute small 
portion of risks in the development of hyperuricaemia and gout. Other genes that 
are responsible for some Mendelian syndromes are also associated with hyperuri-
caemia and gout. These genes are HPRT1, PRPS1, G6PC, SLC37A4, AGL, PYGM, 
PFKM, AMPD1, CPT2, AMPD1, ACADS, ALDOB, UMOD. These are responsible 
for the diseases caused congenital errors of purine metabolism, excessive cell death 
and urate generation and reduced renal excretion of uric acid [26].

3.3 Pharmacogenetics and pharmacogenomics of LUT for gout

The current pharmacogenetics and pharmacogenomics majorly focus on the 
medications on the three paths that balance the uric acid levels in the serum. 
Together with treating acute gout, there are about 10 genetic loci that modify the 
common medications’ effectiveness or adverse events in gout management.

3.3.1 The genes that influence xanthine oxidase inhibitors (XOIs)

XOIs are the first line medications in the long-term treatment of hyperuricae-
mia and gout. Allopurinol and febuxostat are two important XOIs. Allopurinol is 
transformed into its active metabolite oxypurinol that reversibly blocks xanthine 
oxidase while febuxostat is a non-purine-selective inhibitor of xanthine oxidase 
[56]. Allopurinol is a common efficacious ULT but it associates with rare serious 
adverse drug reactions of Stevens-Johnson syndrome (SJS) and toxic epidermal 
necrolysis (TEN) [57]. The human leukocyte antigen B allele HLA-B*5801 was 
reported to be a genetic marker for allopurinol-induced side effects [58, 59]. Strong 
associations between HLA-B*5801 and allopurinol-induced TEN/SJS were found in 
Hong Kong [60], Korea [61] and Thailand [62]. Genome-wide association study of 
Stevens-Johnson syndrome and toxic epidermal necrolysis also confirmed that the 
HLA-B*5801 allele was associated with allopurinol-induced symptoms in Europe 
[63]. Patients who are HLA-B*5801 carriers can be alternatively given febuxostat. 
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The clinical consideration is the cost of febuxosat as it is much higher than the 
administration of allopurinol. There is a paucity of evidence about economic value 
of such testing as allopurinol is an affordable medication. Testing HLA-B*5801 prior 
to allopurinol management is cost-effective for Asians and African American, but 
not for Caucasians or Hispanic in the United States [64]. In Thailand it was also 
shown highly potential cost-effective intervention [65]. Chinese Han population is 
a high risk group of the side-effects of allopurinol [14]. In our previous retrospec-
tive investigation of HLA-B*5801 in hyperuricaemia patients in a Han population 
of China, we found 30 carriers of HLA-B*5801 allele in 253 cases of hyperuricaemia 
or gout patients in Chinese Han population (11.9%). Most importantly allopurinol 
was prescribed in both HLA-B*5801 positive and negative groups. We also assessed 
four models with or without genetic screening and management of allopurinol or 
febuxostat, the results indicated the HLA-B*5801 screening had significant cost 
benefit for clinical management for gout patients. The other alleles of HLA locus 
(for example HLA-B*1502) are also responsible for SJS/TEN induced by other 
drugs [66]. The prevalence of HLA-B*5801 in hyperuricaemia patients in a Han 
population of China indicated the importance of genotyping the allele to prevent 
the severe side-effects induced by allopurinol. HLA-B*5801 should be screened in 
all allopurinol-induced TEN patients no matter what their races are. To all SJS/TEN 
patients, if allopurinol was not administrated, other HLA allele screening should 
be considered [67, 68]. HLA-DR9 and HLA-DR14 were also found to have associa-
tions with the allopurinol induced hypersensitivity in hematologic malignancy [69]. 
Genetic variation in aldehyde oxidase (AOX1), encoding the enzyme responsible for 
the conversion of allopurinol to oxypurinol, also was reported to be associated with 
allopurinol dose and change in serum urate [70]. ABCG2, encoding an efflux pump, 
was associated with SUA reduction and a missense allele (rs2231142) was associated 
with a reduced response to allopurinol [50].

3.3.2 The genes that influence uricosurics

Uricosurics are the second line of choice to treat hyperuricaemia and gout clini-
cally. Currently three medications are working as uricosurics for renal excretion 
of uric acid. They are probenecid, benzbromarone (BBR) and lesinurad. BBR and 
its metabolite 6-hydroxybenzbromarone block the renal reabsorption of uric acid 
by inhibiting URAT1 in proximal renal tubular cells [11]. BBR undergoes hepatic 
hydroxylation to 1′-hydroxy BBR and 6-hydroxy BBR. The BBR elimination in serum 
was affected by genetic polymorphism in drug metabolism [71]. It was demonstrated 
that CYP2C9 was the main enzyme responsible for the 6-hydroxylation of BBR  
[72, 73]. CYP2C9 is highly polymorphic gene and it has around 57 variant alleles [11]. 
SNP rs1799853 (Cys144Arg) and SNP rs1057910 (Ile359Leu) were the most common 
poor metabolizer polymorphisms, existing in about 15–22% of Caucasians and 1–9% 
of Africans. SNP rs1799853 was rare in Asians, while rs1057910 frequencies range 
from 2 to 11% [74]. rs1799853 could typically results in a 20–30% reduction in maxi-
mum velocity (Vmax) for drug substrates whereas rs1057910 can reduce Vmax by as 
much as 70% [75]. The 144Arg substitution could affect the interaction of CYP2C9 
with CYP450 reductase [76], whereas the 359Leu substitution can alters substrate 
recognition [77]. CYP2C9*3 homozygotes have significantly reduced clearance of 
BBR and therefore may be at increased risk of hepatotoxicity [78].

3.3.3 The genes that influence uricase

Rasburicase is an urate oxidase. It is a peroxisomal liver enzyme to catalyze the 
oxidation of uric acid into the more water-soluble substrates. Urate oxidase is an 
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endogenous enzyme can be found in most mammals but not in humans. The inacti-
vation of the hominoid urate oxidase gene was caused by independent nonsense or 
frame-shift mutations during evolution [79] . Two nonsense mutations were found 
in the human urate oxidase gene that makes it non-functional in human [80, 81].  
Pegloticase is a recombinant uricase for the treatment of severe, treatment-refractory, 
chronic gout. It is a third-line treatment for patients who do not tolerate to other treat-
ments [56, 82]. Pegloticase also catalyze uric acid to allantoin which is 5–10 times more 
soluble than uric acid. Pegloticase is in pegylated form so it can increase its elimination 
half-life from about 8 hours to 10 or 12 days, and this can decrease the immunogenic-
ity of the foreign uricase protein. Among patients with chronic gout, the use of 
pegloticase 8 mg either every 2 weeks or every 4 weeks for 6 months resulted in lower 
uric acid levels compared with placebo [56]. A case of pegloticase-related methemo-
globinemia and haemolytic anaemia was reported as it was cause by two mutations in 
glucose-6-phosphate dehydrogenase (G6PD) gene known to confer G6PD deficiency 
[83]. It was recommended that avoiding the use of rasburicase in patient’s homo/
hemizygous for G6PD variants that confer deficiency [84].

Loci Chr Affecting drug Uric acid path or 

gout

Key 

reference

Pharmaceutical 

effects

HLA-B5801 6p21 Allopurinol Uric acid 

formation, XO 

inhibitors

[58] Adverse effect: 

drug allergic 

response

HLA-DR9 6p21 Allopurinol Uric acid 

formation, XO 

inhibitors

[69] Adverse effect: 

inducing 

hematologic 

malignancy

HLA-DR14 6p21 Allopurinol Uric acid 

formation, XO 

inhibitors

[69] Adverse effect: 

inducing 

hematologic 

malignancy

AOX1 2q33 Allopurinol Uric acid 

formation, XO 

inhibitors

[70] Dose and change 

in serum urate

ABCG2 4q22 Allopurinol Uric acid 

formation, XO 

inhibitors

[50] Reducing dose 

response

CYP2C9 10q23 Benzbromarone Uric acid renal 

excretion

[71] Reducing drug 

clearance and 

hepatic failure

G6PD Xq28 Pelgoticase Uric acid 

transforming

[83] Adverse effects: 

inducing 

haemolytic 

anaemia

PTGS2 1q31 NSAID Acute gout [86] Drug response: 

Aspirin 

insensitivity

ITGA2 5q11 NSAID Acute gout [88] Drug response: 

Aspirin 

insensitivity

ABCB1 7q21 Colchicine Acute gout [90] Drug response

Table 2. 
The pharmacogenetic loci that regulating ULT.
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3.4 The genes that influence medications for acute gout

Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently used to 
quickly relieve the pain and swelling of an acute gout episode and can shorten the 
attack, but NSAIDs may not be suitable for patients with other comorbidities. A 
proton pump inhibitor should be offered to people at high risk of NSAID-related 
gastrointestinal complications [85]. Cyclooxygenase-2 (COX-2) is encoded by 
prostaglandin-endoperoxide synthase 2 (PTGS2). COX-2 catalyzes arachidonic 
acid to prostaglandin (PG) G2 and H2. A promoter SNP variant of PTGS2-765G>C 
(rs20417) was shown evidence of association with NSAID response [86, 87]. A 
recent meta-analysis reported a significant association of the variant with aspirin 
insensitivity in Chinese population [88]. The variant rs1126643 of integrin subunit 
alpha 2 gene (ITGA2) genetic defects might also increase the risk of having aspirin 
insensitivity [88]. Colchicine works by decreasing swelling and lessening the 
build-up of uric acid crystals that cause pain in the affected joint (s). ATP binding 
cassette subfamily B member 1 (ABCB1) gene is highly polymorphic and codes 
for the drug efflux pump MDR1, and as such is considered an important gene that 
influences drug metabolisms [89]. The occurrence of colchicine unresponsiveness 
was significantly higher in patients who were homozygous or heterozygous for the 
major allele (ABCB1 3435C) than in minor allele homozygotes [90]. To date, there is 
no information on whether these polymorphisms are associated with nonresponse 
in patients with gout.

The potential pharmacological loci for hyperuricaemia and gout were listed in 
Table 2.

4.  Epigenetic factors and environmental factors for hyperuricaemia  
and gout

4.1 DNA methylation

GAWs have identified dozens of loci associated with gout, but for most cases, 
the risk genes and the underlying molecular mechanisms contributing to these 
associations are unknown. Epigenetics studies investigate heritable change in 
gene expression caused by molecules that bind to DNA without change the actual 
DNA sequence. There are three main classes of epigenetic marks as DNA methyla-
tion, modification of histone tails and noncoding RNAs. DNA methylation has 
been found to associate with many complicated diseases. Hypomethylation at the 
promoter region of the gout-risk gene NRBP1 can lead to enhanced gene expression 
both in vitro and in vivo, contributing to the development of gout [91]. Chinese 
Han population with gout had a significant association between CCL2 promoter 
hypomethylation and the risk of the disease [92]. Hypermethylation of uromodolin 
(UMOD) observed in gout patients might reduce the gene expression, leading to an 
augmented risk of gout [93]. A research on genetic variations in the DNA methyl-
transferases (DNMTs) gene identified DNMT1 SNP rs2228611 polymorphism may 
be involved in the pathogenesis of gout [94].

4.2 miRNA

MicroRNAs (miRNAs) are non-coding RNA species that are highly evolution-
arily conserved in human. Up to 5000 miRNAs were identified in human cells. 
miRNAs are key regulators of the expression of numerous targets at the post-
transcriptional level [95]. They are implicated in various cell processes including 
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cell differentiation, metabolism, and inflammation. Experimental evidence 
suggests that metabolic deregulation is a commonality between these different 
pathological entities, and that miRNAs are key players in the modulation of 
metabolic routes [96]. Recent studies have shown that interleukin (IL)-1β is a key 
inflammatory mediator in acute gouty arthritis (GA), and its level is regulated by 
miRNAs. Five miRNAs (hsa-miR-30c-1-3p, hsa-miR-488-3p, hsa-miR-550a-3p, 
hsa-miR-663a, and hsa-miR-920) were found to possibly target IL-1β. MSU 
crystals in GA patient could inhibit expression of miR-488 and miR-920 and the 
two miRNAs could directly target the 3′-UTR of IL-1β [97]. MSU crystal-induced 
IL-1 secretion can be targeted for the new therapeutic strategies in the treatment 
of acute gout [98].

4.3 Exosomes

Exosomes are best defined as extracellular vesicles that are released from 
cells upon fusion of an intermediate endocytic compartment, the multivesicular 
body (MVB), with the plasma membrane. Exosomes can be produced by most 
cell types. Exosomes derived from immunosuppressive dendritic cells (DCs) 
have been found to confer potent and lasting immunosuppressive effects, similar 
to their parental DC [99, 100]. Their protein content largely reflects that of the 
parental cells and is enriched in certain molecules including adhesion molecules, 
membrane trafficking molecules, cytoskeleton molecules, heat-shock proteins, 
cytoplasmic enzymes, signal transduction proteins, and cell-specific antigens 
[101–103]. Exosomes also contain functional mRNA and microRNAs molecules 
[104]. Certain types of exosomes have been shown to confer immunosuppres-
sive effects in different disease models including RA and gout. It is likely that 
exosomes represent a novel effective and safe therapeutic approach for treating 
arthritis [105]. In a neutrophil-derived microvesicles (PMN-Ecto) studied for a 
murine model of MSU-induced. PMN-Ecto from joint aspirates of patients with 
gouty arthritis had similar anti-inflammatory properties [106]. In a study for 
investigating the effects of MSU on synovial fibroblasts to elucidate the process 
of MSU-mediated synovial inflammation, human synovial fibroblasts were 
stimulated with MSU in the presence or absence of serum amyloid A [107]. MSU 
stimulation resulted in the activation of caspase-1 and production of active IL-1β 
and IL-1α. These findings provide insight into the molecular processes underlying 
the synovial inflammatory condition of gout [108].

4.4 Microbiota

The human microbiota consists of the 10–100 trillion symbiotic microbial 
cells in each person including primarily bacteria in the gut. The human microbi-
ome refers the genes these cells harbor [109]. Microbiota was found to play the 
important roles for the development of personalized medicine. Whole microbial 
genome sequencing revealed the extraordinary diversity of microorganisms 
and their vast genetic and metabolic repertoire [110]. In a cohort study with 33 
healthy and 35 gout patients, the intestinal microbiota of patients were highly 
distinct from healthy individuals in both organismal and functional structures. 
In gout, there were more Bacteroides caccae and Bacteroides xylanisolvens, there 
were less or absence Faecalibacterium prausnitzii and Bifidobacterium pseu-
docatenulatum. Intestinal microbiota of gout is more similar to those of type-2 
diabetes than to liver cirrhosis, whereas depletion of Faecalibacterium praus-
nitzii and reduced butyrate biosynthesis were shared in each of the metabolic 
syndromes [111].
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4.5 Metabolites

Metabolites are the intermediate products of metabolic reactions catalyzed by 
various enzymes that naturally occur within cells and play vital roles in cell growth, 
differentials and proliferations. In a study analyzing 355 metabolites in 1764 indi-
viduals and constructed a metabolite network around serum urate. The effect of sex 
and urate lowering medication on all 38 metabolites assigned to the three network. 
The three network included the well-known pathway of purine metabolism, as 
well as several dipeptides, a group of essential amino acids, and a group of steroids. 
Of the 38 assigned metabolites, 25 showed strong differences between sexes. The 
findings highlight pathways that are important in the regulation of serum urate and 
suggest that dipeptides, amino acids, and steroid hormones are playing a role in its 
regulation [112].

4.6  The relationships between genetic factors and environmental factors for 
hyperuricaemia and gout

The genetic influence and environmental factors should be considered equally 
importance for hyperuricaemia and gout. Determining the extent to which envi-
ronmental versus genetic factors are responsible for particular phenotypes such as 
gout or hyperuricaemia is a central question in gout or hyperuricaemia research. 
Elucidating associations between genotype and phenotype has been a central goal 
in human health research for some time [113]. The complications in cellular process 
of hyperuricaemia mean many genes may have interactions with each other for the 
regulation of the products of uric acid in cells; they may not be identifiable even in 
approaches with GWASs. The environmental factors can also interact with genetic 
factors that make the process even more complicated. For clinicians, it is important 
to understand the etiological causes for complicate diseases and always consider 
both genetic and environmental factors play important roles in hyperuricaemia 
and gout.

5. Personalized medicine for ULT and gout

The personalized medicine aims to provide the right treatments in the right 
time for individual patients with hyperuricaemia and gout. The genetics variants 
that underlie diseases and influence the medications will play great roles for the 
management of gout in near future. Therapeutics best suited for an individual’s 
genotype genetic origins of disease and drug response for LUT including adverse 
events. Precision medicine has made great progress due to the rapid development 
of pharmacogenomics research. Clinically, patients’ age, race, and gender are all 
associated with epigenetic status [114]. Together with the developments of miRNA 
profiling, epigenetics investigation, metabolites screening and microbiota research 
it will make personalized medicine possible for gout management.

5.1 Intrinsic factor assessment

For intrinsic factor assessment, patients age, gender, geographic residence, social 
economic status and other conditions for heart, kidney and liver, allergic status are 
all important factors to be considered for clinical managements of hyperuricaemia 
and gout. These factors should be considered to decide the medication choice, the 
dosage of medications. The decision should be managed to benefit for individual 
patients with hyperuricaemia and gout.
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5.2 The life style assessment

In clinical practice, lifestyle changes are frequently urged for prevention and 
management of gout [115]. It is advocated to promote healthy eating and drinking 
for gout patients, such as reducing intake of beer, sugar-sweetened drinks, and 
purine-rich foods such as meat, offal and seafood. Increased intake of cherries, 
omega-3 fatty acids, low fat milk and coffee are also advocated [116]. There was 
evidence for a non-additive interaction of sugar-sweetened drinks consumption 
with a urate-associated variant of SLC2A9 for the risk of gout [117] . Alcohol intake 
with T allele of lipoprotein receptor-related protein 2 gene (LRP2) rs2544390 was 
reported in determining the risk of hyperuricaemia and gout [118, 119].

5.3 The genetic inheritance and epigenetic affect

The studies of genetic inheritance of gout and hyperuricaemia provide a lot 
useful information. More than 40 genetic loci only can explain less than 10% of high 
uric acid levels in serum. We also need to consider the genetic background in differ-
ent ethnical populations. The further efforts will be to understand the functional 
roles of the novel genes in the pathways of uric acid metabolism. The investigation 
can identify the new pharmacological target for gout and bring new therapeutic tools 
from preventing to treating gout patients [55]. miRNAs and epigenetic screening are 
also helpful to identify the regulator elements for potential gout gene’s expression.

5.4 Microbiome and metabolite factors

Microbiome and metabolite factors are also need to be considered when manag-
ing gout patients clinically. At the present times, not enough reports have been 
published in the field. It can be useful to exam the intestinal levels of Bacteroides 
caccae, Bacteroides xylanisolvens, Faecalibacterium prausnitzii, Bifidobacterium 
pseudocatenulatum in gout patients. Screening key metabolites in serum may also 
helpful in clinical management of gout and hyperuricaemia patients.

5.5 The pharmacogenetic consideration

Total about 10 genetic loci were identified to influence the medications of 
gout. These loci can be used to predict the drug’s response and adverse effects. For 

Assessments Considering factors

Intrinsic factor 

assessment

Age; gender; geographic residence; other conditions for heart, kidney and 

liver, allergic history etc

Life style assessment Diet and activities; the in-taking of food with rich purines—such as meat, 

poultry, and seafood; alcohol consumption etc

Genetic inheritance Suspected gene screening such as SLC2A9, ABCG2, GCKR, PDZK1 and other 

SLC loci etc.

Epigenetic factors miRNA; methylation screening for suspected loci; histone methylation etc

Environmental factors Microbiota; metabolites screening

Pharmacogenetics 

consideration

For NSAIDs, screening PTGS2, ABCG2; for colchicine, screening ABCB1; 

for XO inhibitor allopurinol, screening HLA-B5801, HLA-DR9, HLA-DR14, 

AOX1 and ABCG2; for Benzbromarone, screening CYP2C9; for Pelgoticase, 

screening G6PD

Table 3. 
Personalized medicine approaches for management of LUT for gout.
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treating acute gout with NSAIDs, PTGS2, ABCG2 should be screened as the vari-
ants affect aspirin sensitivity. For colchicine treatment, ABCB1 should be screened 
as the variant affect drug’s response; For XO inhibitor allopurinol, HLA-B5801, 
HLA-DR9, HLA-DR14, AOX1and ABCG2 should be screened as the variants may 
induce adverse events or response changes. For benzbromarone, CYP2C9 should 
be screened as the variant may affect drug clearance and cause side effects. For 
pegloticase, G6PD should be screened as the variant may have adverse effects to 
induce haemolytic anaemia.

The personalized factors have been summarized in Table 3.

6. Summary

Personalized medicine has made great progress due to the development of the 
technology in genetic and genomic approaches. The ultimate goal for personal 
medicine of gout management is to provide the best medical advice and best medi-
cal treatment according to conditions of individual patients. The patient conditions 
including age, gender, ethnic group, life styles, genetic variations for common gout 
associated genes are important factors for clinical managements. Most importantly 
the pharmacogenetic loci for the common medications for gout provide useful guid-
ance for individual patients. The developments of miRNA profiling, epigenetics 
investigation, metabolites screening and microbiota research will make personal-
ized medicine even more in great details for management. It will revolutionize 
medical cares for gout patients in near future.
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INDEL insertion and deletion of short segments of DNA
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SU serum urate
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TEN toxic epidermal necrolysis
TGF transforming growth factor
ULT urate-lowering therapy
UMOD uromodolin
Vmax maximum velocity
VNTRs variable number of tandem repeats
XOI xanthine oxidase inhibitor
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