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Chapter

An Alternative Framework
for Developing Material Models
for Finite-Strain Elastoplasticity
Ladislav Écsi, Pavel Élesztős, Róbert Jerábek,
Roland Jančo and Branislav Hučko

Abstract

Contemporary plasticity theories and their related material models for finite
deformations are either based on additive decomposition of a strain-rate tensor or
on multiplicative decomposition of a deformation gradient tensor into an elastic
part and a plastic part. From the standpoint of the nonlinear continuum mechanics,
the former theories, which are used to model hypoelastic-plastic materials, are
rather incomplete theories, while the latter theories, which are used to model
hyperelastic-plastic materials, are not even continuum-based theories, while none
of their related material models are thermodynamically consistent. Recently, a
nonlinear continuum theory for finite deformations of elastoplastic media was
proposed, which allows for the development of objective and thermodynamically
consistent material models. Therefore, the analysis results of the models are
independent of the description and the particularities of their mathematical formu-
lation. Here by the description we mean total or updated Lagrangian description
and by the particularities of formulation, the ability to describe the model in various
stress spaces using internal mechanical power conjugate stress measures and strain
rates. In this chapter, an alternative framework for developing objective and
thermodynamically consistent hypoelastic-plastic- and hyperelastic-plastic-based
material models is presented using the first nonlinear continuum theory of finite
deformations of elastoplastic media.

Keywords: nonlinear continuum theory for finite deformations of elastoplastic
media, objective and thermodynamically consistent formulation, J2 generalised
plasticity with isotropic hardening, hypoelastic-plastic- and hyperelastic-
plastic-based material models with internal damping

1. Introduction

There are two types of phenomenological flow plasticity theories and their
related material models used at present to model plastic behaviour of deformable
bodies within the framework of finite-strain elastoplasticity. The first type
of theories are considered to be ad hoc extensions of small-strain flow plasticity
theories into the area of finite deformations to describe materials, in which small
elastic deformations are accompanied by finite inelastic deformations during the
deformation process. They are based on additive decomposition of a strain-rate
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tensor into an elastic part and a plastic part to describe the plastic flow in the
material. As an example of such material is ductile metal, which at present is
modelled mainly by a kind of a hypoelastic-plastic-based material model, whose
constitutive equation does not have a form in terms of a finite-strain measure.
Without a need for completeness, let us just mention a few comprehensive studies
in technical literature, such as [1–4], where detailed descriptions of the most fre-
quently used contemporary hypoelastic-plastic-based material models are
presented.

The second type of flow plasticity theories, in which multiplicative decomposi-
tion of a deformation gradient tensor into an elastic part and a plastic part is used to
describe the plastic flow in the material, is based on the theory of single-crystal
plasticity [5–7]. The theories and their related material models, which are now
considered as ‘proper material models’ to model plastic behaviour of the deformable
body, assume that the intermediate configuration of the body is stress-free [1] or at
least locally unstressed [4]. As a result, there cannot exist a deformation or strain
tensor field that meets the conditions of compatibility [4]. Therefore these theories
treat the kinematics of motion differently between the initial and current or inter-
mediate configurations of the body. This means that the motion, the displacement
field and the deformation gradient, all of which have an exact physical meaning in
continuum mechanics, are considered in accordance with the continuum theory
between the initial and current configurations of the body, but not between the
configurations where one is an intermediate configuration. Here the motion and the
displacement fields are disregarded, and as a result, the deformation gradient loses
its physical meaning. Moreover, it should also be noted that the assumption of an
unstressed intermediate configuration is not compatible with the theory of
nonlinear continuum mechanics, as it violates proper stress transformations,
resulting from the invariance of the internal mechanical power, when switching
from one stress space to the other in any configuration of the body. As a result,
contemporary multiplicative plasticity theories and their related material models in
realty are not continuum-based.

Hypoelastic-plastic- and hyperelastic-plastic-based material models have been
the subject of study over recent decades, and there are a few issues to be concerned
about when the models are used in numerical analyses. These include energy accu-
mulation and residual stresses along a closed elastic strain path in the case of
hypoelastic-plastic-based material models in which the Jaumann rate is used to
calculate the Cauchy stress tensor [8], residual stress accumulation up to unaccept-
able values during multiple loading cycles along a closed elastic strain path using the
Jaumann rate and a few other rates [9] or shear oscillation in finite shearing prob-
lems [10, 11]. The aforementioned problems however can be eliminated by
replacing the Jaumann rate with the Green-Naghdi or Truesdell rate in the formu-
lation of the models [4]. Simo and Pistner showed that employing a constant spatial
elasticity tensor in objective stress integration is not compatible with elasticity and
that such models in fact fail to define the elastic material [12]. Equivalent rate
descriptions of hyperelastic-based models in terms of different strain measures have
been thoroughly discussed by Perić, who also showed that the Jaumann rate- and
the Green-Naghdi rate-based models provide different levels of approximation to
problems governed by the logarithmic strain-based Hencky hyperelastic law [4, 13].
We will show herein that all of the above problems actually resulted from the fact
that the related material models use thermodynamically inconsistent formulation.

The aim of this chapter is to present an alternative framework for developing
objective and thermodynamically consistent hypoelastic-plastic- and hyperelastic-
plastic-based material models using the first nonlinear continuum theory for finite
deformations of elastoplastic media [14]. We will show that the strain-rate tensor
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additive decomposition-based theories are in reality finite-strain theories, but they
are constrained when the plastic flow in them is defined in terms of a Cauchy’s
stress tensor-based yield surface in the current configuration of the body, while
contemporary deformation gradient multiplicative split-based theories are not even
continuum-based theories. Moreover, none of their related material models is ther-
modynamically consistent. In addition to this, we will show that all flow plasticity
theories are just variants of the nonlinear continuum theory for finite deformations
of elastoplastic media presented in this chapter, using the additive decomposition of
a Lagrangian displacement field into an elastic part and a plastic part. Eventually,
we will demonstrate the theory in numerical experiments using simple hypoelastic-
plastic- and hyperelastic-plastic-based material models with internal damping and
then briefly discuss their analysis results.

2. Theory

The Lagrangian description is used to describe the kinematics of motion and
constitutive and evolution equations of the material of a deformable body. Though a
single form of the constitutive equation of a material is sufficient to describe the
material, all forms of the constitutive equation of the material are needed in order to
prove that its formulation is thermodynamically consistent.

2.1 A short overview of the nonlinear continuum mechanical theory for finite
deformations of elastoplastic media

The nonlinear continuum theory for finite deformations of elastic media has
been developed in an elegant manner in the past decades [15–19]. The theory is
particularly suitable for modelling elastic materials, whose constitutive equations
are defined either in terms of a finite-strain tensor, as in the case of the St-Venant-
Kirchhoff material, or derived from an appropriate strain energy density function,
as in the case of the hyperelastic materials [17, 18]. Developing material models
for finite-strain elastoplasticity within the framework of thermodynamics with
internal variables of state, however, requires a somewhat different approach [20].
The constitutive and evolution equations of these materials either exist in rate
forms only, or contain rate equations, which at some point during the solution
process have to be integrated. Moreover, in nonlinear continuum mechanics, no
kinematics of motion can be described without the mathematical definitions of
the motion, the Lagrangian and Eulerian displacement fields and the deformation
gradient, respectively.

Starting with the definitions (see Figure 1), the motion x ¼ Φ X; tð Þ from the
mathematical pint of view is a vector function or vector field, which maps each
material point 0P ∈ 0

Ω with a position vector X in the initial configuration of the
body, into a spatial pint P∈ t

Ω with a position vector x in the current configuration
of the body. The function must exist whenever the body moves, and it determines
the position vector of a material particle at each time instant t≥0 [16]:

xjx ¼ Φ X; tð Þ; for X∈ 0
Ω;x∈ t

Ω and t≥0
� �

: (1)

In Eq. (1) 0
Ω is the domain of the function, which stands for the volume of the

body in its initial configuration; tΩ is the range of the function, which stands for the
volume of the body in its current configuration; and t is time. The vector field that
connects the position vectors of the material particle is the displacement field. It
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must have both, Lagrangian 0u ¼ 0u X; tð Þ and Eulerian u ¼ u x; tð Þ forms; other-
wise a physical phenomenon expressed in Lagrangian form cannot be re-expressed
in Eulerian form and vice versa. The Lagrangian and Eulerian displacement fields
are then defined as [16].

0u ¼ 0u X; tð Þ ¼ x�X ¼ Φ X; tð Þ �X, for t≥0 and X∈ 0
Ω, (2)

u ¼ u x; tð Þ ¼ x�X ¼ x�Φ
�1 x; tð Þ, for t≥0 and x∈ t

Ω: (3)

The deformation gradient F then becomes the derivative of the position vector
of the material point after motion with respect to the position vector of the material
point before motion F ¼ ∂x=∂X or simply the gradient of the vector function
describing the motion.

When the motion is decomposed into several parts, so that the body moves from
its initial configuration into its current configuration through several intermediate
configurations, the above definitions apply between any two configurations of the
body. Let us now consider a deformation process during which the body first
undergoes plastic deformations and then elastic deformations at its each constitu-
ent. Then the Lagrangian plastic motion pl�el

Φ
pl ¼ pl�el

Φ
pl X; tð Þ and the Lagrangian

plastic displacement field 0upl ¼ 0upl X; tð Þ, defined over the initial volume of the
body, take the following forms:

iX
�

�

iX ¼ pl�el
Φ

pl
X; tð Þ; for X∈ 0

Ω; iX ∈ i
Ω and t≥0

n o

, (4)

0upl ¼ 0upl X; tð Þ ¼ iX �X ¼ pl�el
Φ

pl
X; tð Þ �X, for t≥0, and X∈ 0

Ω: (5)

In Eqs. (4) and (5) iX stands for the position vector of the spatial point iP ∈ i
Ω,

at which the material particle is located when the body has undergone plastic
deformations only, and the left superscript pl�el •ð Þ denotes the order of elastic and
plastic deformations. Although the Eulerian elastic motion pl�el

Φ
el ¼ pl�el

Φ
el iX; t
� �

and the Eulerian elastic displacement field iuel ¼ iuel iX; t
� �

defined over the inter-

mediate volume of the body i
Ω have similar forms to the fields above, these

Figure 1.
The proper kinematics of motion of elastoplastic media.

4

Advances in Composite Materials Development



represent spatial vector fields, because the intermediate configuration of the body
changes during the deformation process.

xjx ¼ pl�el
Φ

el iX; t
� �

; for iX ∈ i
Ω; x∈ t

Ω; t≥0
n o

, (6)

iuel ¼ iuel iX; t
� �

¼ x� iX ¼ pl�el
Φ

el iX; t
� �

� iX, for t≥0 and iX ∈ i
Ω: (7)

Moreover, because the plastic motion exists, the vector fields have Lagrangian

forms too. Then the Lagrangian elastic motion pl�el
Φ

el pl�el
Φ

pl
X; tð Þ; t

h i

and the

Lagrangian elastic displacement field 0uel ¼ 0uel X; tð Þ, defined over the initial vol-
ume of the body, can be expressed as follows:

xjx ¼ pl�el
Φ

el pl�el
Φ

pl
X; tð Þ; t

h i

; for X∈ 0
Ω; x∈ t

Ω; t≥0
n o

, (8)

0u
el ¼ 0u

el
X; tð Þ ¼ x� iX ¼ pl�el

Φ

el
pl�el

Φ
pl

X; tð Þ; t
h i

� pl�el
Φ

pl

X; tð Þ, for t≥0 and X∈ 0
Ω:

(9)

Eqs. (1) and (8) then imply the following composite function for the overall
motion:

x ¼ Φ X; tð Þ ¼ pl�el
Φ

el pl�el
Φ

pl
X; tð Þ; t

h i

: (10)

Moreover, after adding Eqs. (5) and (9) up, the following formula for the overall
Lagrangian displacement field can be arrived at

0uel X; tð Þ þ 0upl X; tð Þ ¼ Φ
el
Φ

pl X; tð Þ; t
� �

�X ¼ x�X ¼ 0u X; tð Þ: (11)

Eq. (11) states that the Lagrangian displacement field can additively be
decomposed into a Lagrangian elastic part and a Lagrangian plastic part when the
kinematics of motion is considered in accordance with the theory of nonlinear
continuum mechanics. The deformation gradient then takes the form

F ¼ F X; tð Þ ¼ Iþ ∂
0u

∂X
¼ Iþ ∂

0u
pl

∂X
þ ∂

0u
el

∂X
: (12)

It should be noted that Eq. (12) is the simplest form of the deformation gradient,
irrespective of whether the additive decomposition of the displacement field in the
above or the multiplicative decomposition of the deformation gradient tensor is
used as a starting point in its formulation. In the latter case the formulation would
modify as follows:

F X; tð Þ ¼ ∂x

∂X
¼ ∂x

∂
iX

� ∂
iX

∂X
¼ pl�elFel X; tð Þ � pl�elFpl X; tð Þ ¼ Iþ ∂

0u
el

∂X
þ ∂

0u
pl

∂X
, (13)

where

pl�elFel X; tð Þ ¼ ∂x

∂
iX

¼ Iþ ∂
iu

el

∂
iX

¼ Iþ ∂
0u

el

∂X
� pl�elF

pl
X; tð Þ

h i�1
, (14)
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pl�elFpl X; tð Þ ¼ ∂
iX

∂X
¼ Iþ ∂

0u
pl

∂X
, (15)

∂
iu

el

∂
iX

¼ ∂
0u

el

∂X
� ∂X
∂
iX

¼ ∂
0u

el

∂X
� pl�elF

pl
X; tð Þ

h i�1
, (16)

and where considering that 0uel ¼ iuel, in the Lagrangian form Eq. (16) of the
Eulerian gradient ∂iuel=∂iX, the inverse of pl�elFpl X; tð Þ would be expressed as

I ¼ ∂
iX

∂
iX

¼ ∂
iX

∂X
� ∂X
∂
iX

¼ pl�elFpl X; tð Þ � ∂X
∂
iX
⇔

∂X

∂
iX

¼ pl�elF
pl

X; tð Þ
h i�1

: (17)

Alternatively (see Eq. (10)), the deformation gradient can also be expressed as

F X; tð Þ ¼ ∂x

∂X
¼

∂
pl�el

Φ
el pl�el

Φ
pl

X; tð Þ; t
h i

∂X

¼
∂
pl�el

Φ
el pl�el

Φ
pl

X; tð Þ; t
h i

pl�elΦpl X; tð Þ
�
pl�el

Φ
pl

X; tð Þ
∂X

¼ pl�elF
el
X; tð Þ � pl�elF

pl
X; tð Þ:

(18)

It should be noted that by employing the same procedure (Eqs. (13)–(17)),
identical formula (Eq. (12)) for the deformation gradient would be arrived at, if the
order of elastic and plastic deformations was reversed, although in that case the
definitions of the elastic motion el�pl

Φ
el X; tð Þ, the plastic motion el�pl

Φ
pl X; tð Þ, the

elastic el�plFel X; tð Þ and plastic el�plFpl X; tð Þ parts of the deformation gradient would
be different. The corresponding elastic deformation gradient el�plFel X; tð Þ, which
from now on will be denoted as el�plFel ¼ Fel, then would take the following form:

Fel ¼ Iþ ∂
0u

el

∂X
¼ F� ∂

0u
pl

∂X
: (19)

When the deformation gradient is in the form of Eq. (12), the material _E and the
spatial d ¼ Le eð Þ strain-rate tensors take the forms

_E ¼ 1
2
� _FT � Fþ FT � _F
� �

¼ _Eel þ _Epl, ) d ¼ del þ dpl, (20)

where

d ¼ F�T � _E � F�1, del ¼ F�T � _Eel � F�1, dpl ¼ F�T � _Epl � F�1, (21)

_Eel ¼ 1
2
� ∂

0 _u
el

∂X

 !T

� Fþ FT � ∂
0 _u

el

∂X

2

4

3

5, _Epl ¼
_λ

2
� ∂

P
Ψ

∂P

	 
T

� Fþ FT � ∂
P
Ψ

∂P

" #

,

(22)

∂
0 _u

pl

∂X
¼ _λ � ∂

P
Ψ

∂P
, and

∂
P
Ψ

∂P
6¼ ∂

P
Ψ

∂P

	 
T

: (23)
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In the above E ¼ 1=2 � FT � F� I
� �

denotes the Green-Lagrangian strain tensor
and e ¼ 1=2 � I� F�T � F�1� �

the Eulerian-Almansi strain tensor, respectively.

The symbols _Eel, _Epl=del,dpl stand for the elastic and the plastic material/spatial
strain-rate tensors, wherein the latter plastic flow is defined by Eq. (23)1 as a
product of a plastic multiplier _λ and an appropriate yield surface normal, ∂PΨ=∂P,
defined in terms of a first Piola-Kirchhoff stress tensor P: Here the symbol
Le eð Þ ¼ F�T � ∂ FT � eð Þ � F

� �

=∂t
� �

� F�1 denotes the Lie derivative of the Eulerian-
Almansi strain tensor e: It should also be noted that both elastic and the plastic
strain-rate tensors have forms similar to the strain-rate tensor itself. Besides, it can
be shown that the plastic flow defined by Eq. (23)1 is not constrained, resulting in
Eqs. (22)2 and (21)3, respectively, being the only non-degenerated forms of the
material and spatial plastic strain-rate tensors.

A crucial role in the Lagrangian description plays the invariance of the internal
mechanical power. It not only defines conjugate pairs of stress measures and strain
or deformation rates, but, being the expression of the conservation of internal
mechanical energy (first law of thermodynamics), it plays an inevitable role in
making sure that the total Lagrangian description and the updated Lagrangian
description are equivalent. As a result, appropriate transformations can be found
between various stress measures and strain or deformation rates constituting con-
jugate pairs, when switching from one stress space in one configuration of the body
to the other stress space in the same or any other configuration of the body [15–18].
Unfortunately contemporary continuum theory does not cover materials whose
constitutive and evolution equations are defined in rate forms. In order to extend
the theory, so that it could cover the materials, Cauchy’s stress theorem [16] had to
be generalised as follows:

L
nð Þ
Tr T X; t;Nð Þ½ � ¼ L

nð Þ
P P X; tð Þ½ � �N and L

nð Þ
tr t x; t;nð Þ½ � ¼ L

nð Þ
T σ x; tð Þ½ � � n, (24)

for all n ¼ 0, 1,…, n∈N, where n denotes objective differentiation with respect
to time t≥0 and not an exponent and N the set of natural numbers. In Eq. (24) the

variables L nð Þ
Tr T X; t;Nð Þ½ �,L nð Þ

tr t x; t;nð Þ½ � stand for the nth objective derivatives of the
surface traction vectors T ¼ T X; t;Nð Þ, t ¼ t x; t;nð Þ in the initial and current
configurations of the body, and N,n are the corresponding unit outwards surface

normal vectors. Similarly, the quantities L nð Þ
P P X; tð Þ½ �,L nð Þ

T σ x; tð Þ½ � denote the nth
objective derivatives of the first Piola-Kirchhoff stress tensor P ¼ P X; tð Þ and the
Cauchy stress tensor σ ¼ σ x; tð Þ, respectively. Then the requirements of thermody-
namic consistency of the Lagrangian formulation are ensured by the following
postulates:

Postulate no. 1. The product of a surface traction vector, including all its higher-
order objective time derivatives and the surface of an infinitesimal volume element
in the initial and current configurations of the body, on which they act, have to be
the same during the deformation process, i.e.:

L
nð Þ
Tr Tð Þ � dS0 ¼L nð Þ

P Pð Þ �N � dS0 ¼ L
nð Þ
P Pð Þ � dS0 ¼ L

nð Þ
tr tð Þ � ds

¼ L
nð Þ
T σð Þ � n � ds ¼ L

nð Þ
T σð Þ � ds,

(25)
or

L
nð Þ
P Pð Þ � dS0 ¼ L

nð Þ
T σð Þ � ds ¼ J � L nð Þ

T σð Þ � F�T � dS0, for all n ¼ 0, 1, 2,…, n∈N, (26)

where dS0, ds ¼ J � F�T � dS0 denote the infinitesimal surface elements in the
initial and current configurations of the body, where the latter is expressed using
the Nanson’s formula [16].
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Postulate no. 2. The rate of change of the internal mechanical energy accumu-
lated in the infinitesimal volume element in the initial and current configurations of
the body and all its higher-order time derivatives have to be the same during the
deformation process, i.e.:

∂
ndW
∂tn

¼ ∑
n

k¼0

n

k

 !

� ∂
n�kS

∂tn�k :
∂
k _E

∂tk

" #

� dV0 ¼ ∑
n

k¼0

n

k

 !

� L n�kð Þ
P Pð Þ : L kð Þ

F
∂
0 _u

∂X

	 


" #

� dV0 ¼ ∑
n

k¼0

n

k

 !

� L n�kð Þ
O τð Þ : L kð Þ

e dð Þ
" #

� dV0 ¼ ∑
n

k¼0

n

k

 !

� L n�kð Þ
T σð Þ : L kð Þ

e dð Þ
" #

� dv, for all n ¼ 0, 1, 2,…, n∈N,

(27)or

∂
ndW
∂tn

¼ ∑
n

k¼0

n

k

 !

� ∂
n�kS

∂tn�k :
∂
k _E

∂tk

" #

� dV0 ¼ ∑
n

k¼0

n

k

 !

� F � ∂
n�kS

∂tn�k

	 


: F�T � ∂
k FT � _F
� �

∂tk

" #

�dV0 ¼ ∑
n

k¼0

n

k

 !

� F � ∂
n�kS

∂tn�k

	 


� FT : F�T � ∂
k _E

∂tk

	 


� F�1

" #

� dV0 ¼

¼ ∑
n

k¼0

n

k

 !

� F
J
� ∂

n�kS

∂tn�k

	 


� FT : F�T � ∂
k _E

∂tk

	 


� F�1

" #

� dv for all n ¼ 0, 1, 2,…, n∈N:

(28)

where dV0, dv ¼ J � dV0 stand for the infinitesimal volume elements in the initial
and current configurations of the body and J ¼ det Fð Þ: Then Eqs. (26)–(28) define
the following transformations:

L
nð Þ
P Pð Þ ¼ F � ∂

nS

∂tn

	 


,L nð Þ
O τð Þ ¼ F � ∂

nS

∂tn

	 


� FT, L
nð Þ
T σð Þ ¼ J�1 � F � ∂

nS

∂tn

	 


� FT,

L
nð Þ
e dð Þ ¼ F�T � ∂

n _E

∂tn

	 


� F�1,
∂
n _E

∂tn
¼ FT � L nð Þ

F
_F
� �

h isym
¼

∂
n FT � ∂

0 _u
∂X

� �

∂tn

2

4

3

5

sym

,

L
nð Þ
e dð Þ ¼ L

nð Þ
F

_F
� �

� F�1
h isym

¼ F�T � ∂
n FT �∂

0 _u
∂X

� �

∂tn


 �

� F�1
� �sym

for all n ¼ 0, 1, ::, n∈N,

(29)

as the sufficient conditions of thermodynamic consistency, because they ensure
that the two postulates above are met. It should also be noted that for n ¼ 0 the
transformations define the necessary conditions of thermodynamic consistency. In
that case the generalised Cauchy’s stress theorem Eq. (24) reduces to its well-known
form, T ¼ P �N and t ¼ σ � n, , while the transformations Eq. (29) reduce to the
already well-known transformations in nonlinear continuum mechanics, defining
the relationship between various stress measures and strain or deformation rates
constituting the conjugate pairs.

The objective rates, which meet the sufficient conditions of thermodynamic
consistency defined by Eq. (29), are already known in nonlinear continuum
mechanics as the nth Lie derivative of the first Piola-Kirchhoff stress tensor P
(Eq. (30)), the nth Lie derivative of the rate of deformation gradient tensor _F
(Eq. (31)), the nth Oldroyd derivative of the Kirchhoff stress τ tensor (Eq. (32)), the
nth Lie derivative of the spatial strain-rate tensor d (Eq. (33)) and the nth Truesdell
derivative of the Cauchy stress tensor Eq. (34), respectively:
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L
nð Þ
P Pð Þ ¼ F � ∂

n F�1 � P
� �

∂tn

" #

¼ F � ∂
nS

∂tn

	 


, (30)

L
nð Þ
F

_F
� �

¼ F�T � ∂
n FT � _F
� �

∂tn

" #

¼ F�T �
∂
n FT � ∂

0 _u
∂X

� �

∂tn
, (31)

L
nð Þ
O τð Þ ¼ F � ∂

n F�1 � τ � F�T� �

∂tn

" #

� FT ¼ F � ∂
nS

∂tn

	 


� FT, (32)

L
nð Þ
e dð Þ ¼ F�T � ∂

n FT � d � F
� �

∂tn

" #

� F�1 ¼ F�T � ∂
n _E

∂tn

	 


� F�1, (33)

L
nð Þ
T σð Þ ¼ J�1 � F � ∂

n J � F�1 � σ � F�T� �

∂tn

" #

� FT ¼ J�1 � F � ∂
nS

∂tn

	 


� FT : (34)

It should also be noted here that Eq. (27) is the result of straightforward manip-
ulation of the nth time derivative of the internal mechanical power (see Eq. (28)),
whose last terms formally define the formulas for evaluating the nth objective
derivative of the power with respect to time in the first Piola-Kirchhoff, Kirchhoff
and Cauchy stress spaces. Then Eq. (27) defines not only conjugate pairs of stress
measures and strain or deformations rates but also conjugate pairs of objective
differentiation operators and derivatives. Moreover, we used intentionally the term
‘requirements of thermodynamic consistency’ for the transformations Eq. (29),
because without the invariance of the internal mechanical power (first law of
thermodynamics) and its higher-order time derivatives (Eq. (27) or (28)), no
formulation is thermodynamically consistent, in spite of the fact that in thermo-
dynamics the term is associated with the second law of thermodynamics to show
that the constitutive equation of a material is compatible with the second law.

2.2 Modelling of the plastic flow in the material

In order to modify the nonlinear continuum theory for finite deformations of
elastoplastic media, it is assumed that the yield surface of the material has definitions
S
Ψ ¼ S

Ψ
Sσeq Sð Þ;q
h i

, PΨ ¼ P
Ψ

Pσeq Pð Þ;q
h i

, τ
Ψ ¼ τ

Ψ
τσeq τð Þ;q
h i

, σ
Ψ ¼ σ

Ψ

σσeq σð Þ;q
h i

in terms of the second Piola-Kirchhoff stress tensor S, the first

Piola-Kirchhoff stress tensor P, the Kirchhoff stress tensor τ, the Cauchy stress
tensor σ and a vector of internal variables q in the second Piola-Kirchhoff, first
Piola-Kirchhoff, Kirchhoff and Cauchy stress spaces, where Sσeq Sð Þ, Pσeq Pð Þ,
σσeq τð Þ, σσeq σð Þ are the corresponding equivalent stresses. After changing the physical
interpretation of the plastic flow and applying push-forward and pull-back operations
to the material gradient of the plastic velocity field, Eq. (23)1 is as follows:

∂ _upl

∂x
¼ ∂

0 _u
pl

∂X
� F�1 ¼ _λ � ∂

σ
Ψ

∂σ
,
∂ _upl

∂x
¼ ∂

0 _u
pl

∂X
� F�1 ¼ _λ � ∂

τ
Ψ

∂τ
,FT � ∂

0 _u
pl

∂X
¼ _λ � ∂

S
Ψ

∂S
,

(35)
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where it can be shown that the definitions of the yield surface are not
independent of each other but are related, and the following formulas hold true:

∂
P
Ψ

∂P
� F�1 ¼ ∂

σ
Ψ

∂σ
,

∂
P
Ψ

∂P
� F�1 ¼ ∂

τ
Ψ

∂τ
, FT � ∂

P
Ψ

∂P
¼ ∂

S
Ψ

∂S
: (36)

As a result, one of the definitions of the yield surfaces has to be chosen as a
reference to define the material model, and the rest of them can be calculated by
solving the differential equations in Eq. (36). Moreover, when σ

Ψ or τ
Ψ is used as

the reference definition of the yield surface in the current configuration of the
body, the contemporary flow plasticity models will be recovered. It also can be
verified that the various definitions of the yield surface and their equivalent stresses
Pσeq, Sσeq, τσeq, σσeq, which also meet the transformations defined by Eq. (36), have
the following properties:

Pσeq ¼ Sσeq ¼ τσeq ¼ J � σσeq, (37)

∂
S
Ψ

∂S
: S ¼ ∂

P
Ψ

∂P
: P ¼ ∂

τ
Ψ

∂τ
: τ ¼ J � ∂

σ
Ψ

∂σ
: σ, (38)

∂
S
Ψ

∂S
: _S ¼ ∂

P
Ψ

∂P
: LP Pð Þ ¼ ∂

τ
Ψ

∂τ
: LO τð Þ ¼ J � ∂

σ
Ψ

∂σ
: LT σð Þ, (39)

where Eqs. (38) and (39) represent ‘normality rules’, which from the physical
point of view are equivalent with the following equations:

dWpl ¼ _Epl : S � dV0 ¼ ∂
0 _u

pl

∂X
: P � dV0 ¼ dpl

: τ � dV0 ¼ dpl
: σ � dv, (40)

_Epl : _S � dV0 ¼ ∂
0 _u

pl

∂X
: LP Pð Þ � dV0 ¼ dpl

: LO τð Þ � dV0 ¼ dpl
: LT σð Þ � dv: (41)

where Wpl is the internal plastic power.

2.3 The constitutive equations of the material

Proper formulation of a material model for finite-strain elastoplasticity allows
for the definition of the model in all stress spaces in any configuration of the body.
These, however, have to comply with the principles of material modelling, particu-
larly to meet the requirements of material objectivity and be thermodynamically
consistent in order that they would define the same material. Finite-strain compu-
tational plasticity distinguishes between two major types of material models known
as hypoelastic-plastic-based material models and hyperelastic-plastic-based mate-
rial models. Moreover, hypoelastic-plastic-based material models exist in rate forms
only, because the additive decomposition of the strain-rate tensor Eqs. (20)–(23)
and (36) exists either in rate forms only. In this research we have modified our
former material model with internal damping, capable of imitating even ductile-to-
brittle failure mode transition at high strain rates, to model our hypoelastic-plastic-
based material [21]. The rate form of the constitutive equation of the material then
can take any of the following forms:

_S ¼ mat
C

el : _E � xx � _Epl� �

þ mat
C

vis : €E � 1� xxð Þ � €Epl� �

, (42)
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LP Pð Þ ¼ F � _S ¼ mix
C
el
: _F � xx � ∂

0 _u
pl

∂X

 !

þ mix
C

vis : LF _F
� �

� 1� xxð Þ � LF
∂
0 _u

pl

∂X

 !" #

,

(43)

LO τð Þ ¼ F � _S � FT ¼ J � spatCel
: d� xx � dpl
� �

þ J � spatCvis : Le dð Þ � 1� xxð Þ � Le dpl
� �h i

,

(44)

LT σð Þ ¼ J�1 � F � _S � FT ¼ spat
C
el
: d� xx � dpl
� �

þ spat
C

vis : Le dð Þ � 1� xxð Þ � Le dpl
� �h i

,

(45)where

mat
C

el ¼ 2 � G � Iþ λel � I⊗I, mat
C

vis ¼ 2 � Gvis � Iþ λvis � I⊗I, (46)

G ¼ E
2 � 1þ νð Þ , λ

el ¼ ν � E
1þ νð Þ � 1� 2 � νð Þ , (47)

Gvis ¼ Evis

2 � 1þ νvisð Þ , λ
vis ¼ νvis � Evis

1þ νvisð Þ � 1� 2 � νvisð Þ , (48)

mix
C

el
ijkl ¼ Fim � δjn � Fko � δlp � mat

C
el
mnop,

mix
C

vis
ijkl ¼ Fim � δjn � Fko � δlp � mat

C
vis
mnop,

(49)

spat
C

el
ijkl ¼ J�1 � Fim � Fjn � Fko � Flp � mat

C
el
mnop,

spat
C

vis
ijkl ¼ J�1 � Fim � Fjn � Fko � Flp � mat

C
vis
mnop:

(50)

In Eqs. (42)–(50) the symbols _S,LP Pð Þ,LO τð Þ,LT σð Þ denote the time derivative
of the second Piola-Kirchhoff stress tensor, the Lie derivative of the first Piola-
Kirchhoff stress tensor, the Oldroyd rate of the Kirchhoff stress and the Truesdell
rate of the Cauchy stress, respectively. Here the fourth-order material elasticity
tensor mat

C
el and the fourth-order material viscosity tensor mat

C
vis have similar

forms as the fourth-order elasticity tensor of the St. Venant-Kirchhoff material [17]
using two independent material parameters E, ν and Evis, νvis, respectively, where I
denotes the symmetric fourth-order identity tensor and I the second-order
identity tensor. The fourth-order mixed spatial-material elasticity and viscosity
tensors mat

C
el,mat

C
vis then can be determined in accordance with Eq. (49), where

δij is the Kronecker delta, and the fourth-order spatial elasticity and viscosity
tensors in accordance with Eq. (50). The variable xx denotes the ratio of ductile
and total damage increment [21]. It should be noted that the objective rates
_S,LP Pð Þ,LO τð Þ,LT σð Þ transform in the same way from one form into another as do
the stress tensors S,P, τ, σ, which ensure that the formulation is thermodynami-
cally consistent (see also Eq. (29)). Then, the corresponding rate forms of loading/
unloading discrete Kuhn-Tucker plastic optimization conditions in the second
Piola-Kirchhoff (Eq. (51)), first Piola-Kirchhoff (Eq. (52)), Kirchhoff (Eq. (53))
and Cauchy (Eq. (54)) stress spaces are modified as follows:
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_λ ≥0, S
Ψ ≤0, _λ � S _Ψ ¼ 0, (51)

_λ ≥0, P
Ψ ≤0, _λ � LP

P
Ψ

� �

¼ 0, (52)

_λ ≥0, τ
Ψ ≤0, _λ � LO

τ
Ψ

� �

¼ 0, (53)

_λ ≥0, σ
Ψ ≤0, _λ � LT

σ
Ψ

� �

¼ 0: (54)

It should be noted here that the above conditions resulted from the invariance of
the internal mechanical power and its first time derivative (see Eq. (27)), which
now also define conjugate pairs of differentiation operators and derivatives in all
stress spaces, and that all yield surface is the expression of the conservation of
internal plastic power, which will be shown later.

Hyperelastic-plastic-based material models are essentially elastic material
models. The starting point in their development is Eq. (19), wherein the constitu-
tive equation of the material the elastic Green-Lagrangian strain tensor and its time
derivative are modified as follows:

∗Eel ¼ 1
2
� Fel� �T � Fel � I
h i

, ∗ _Eel ¼ 1
2
� _Fel� �T � Fel þ Fel� �T � _Fel
h i

: (55)

In our research, the St. Venant hyperelastic material with internal damping was
used, whose constitutive equation then takes any of the following forms:

S ¼ mat
C

el : ∗Eel þ mat
C

vis : ∗ _Eel, (56)

P ¼ F � S, τ ¼ F � S � FT, σ ¼ J�1 � F � S � FT: (57)

In the above equations and also in (19), the incremental form of the material
gradient of the plastic displacement field is determined as follows:

∂
nþ1;0u

pl

∂X
¼ Δt � ∂

0 _u
pl

∂X
þ ∂

n;0u
pl

∂X
, (58)

where the material gradient of the plastic velocity field ∂
0 _upl=∂X is calculated in

accordance with Eq. (23)1 or Eq. (36), depending on the reference definition of the
yield surface. The corresponding loading/unloading discrete Kuhn-Tucker plastic
optimization conditions then take the forms:

_λ ≥0, S
Ψ ≤0, _λ � SΨ ¼ 0, (59)

_λ ≥0, P
Ψ ≤0, _λ � PΨ ¼ 0, (60)

_λ ≥0, τ
Ψ ≤0, _λ � τΨ ¼ 0, (61)

_λ ≥0, σ
Ψ ≤0, _λ � σΨ ¼ 0: (62)

12

Advances in Composite Materials Development



2.4 The reference definition of the yield surface

Objective and thermodynamically consistent formulation of the plastic flow
allows for the development of consistent material models. As a result, the material
model can by formulated in any stress space and in whatever configuration of the
body, though we intentionally omitted to give an example of the constitutive equa-
tion of our hypoelastic-plastic-based and hyperelastic-plastic-based material models
in the intermediate configuration of the body, as it is just a matter of proper stress
transformation using the multiplicative split of the deformation. Moreover, one of
the formulations of the yield surface has to be a reference, from which other
definitions of the yield surface in the second Piola-Kirchhoff, first Piola-Kirchhoff,
Kirchhoff and Cauchy stress spaces can be calculated by solving Eq. (36). The
various definitions of the yields surface then have the properties Eqs. (37)–(39),
from which the ‘normality rules’ (Eqs. (38) and (39)) (whose physical meaning is
defined by Eqs. (40) and (41)) are used in the return mapping/rate form of the
return mapping algorithms to calculate the plastic multiplier. In this study the
reference yield surface was defined in the first Piola-Kirchhoff stress space, because
the corresponding plastic flow Eq. (23)1 is the only not constrained. Then the
generalised J2 flow plasticity theory with isotropic hardening is defined by
Eqs. (63)–(67). It should be noted that the PJ2 Pð Þ ¼ P : P invariant in the definition
of the equivalent stress no longer bases on the deviatoric part of the first Piola-
Kirchhoff stress tensor. The change was implied by the objectivity requirements,
since the first Piola-Kirchhoff stress tensor transforms under the change of the
observer as Pþ ¼ Q R � P and PJ2 Pð Þ is the only invariant, which is not affected by
the change, i.e. PJ2 Pð Þ ¼ PJ2 Pþð Þ, where Q R is a rotating tensor expressing the
relative rotation of the coordinate systems of an arbitrarily moving observer with
respect to the reference coordinate system. The resulting yield surface is then no
longer a cylinder but a sphere:

P
Ψ ¼ Pσeq�Pσy ≤0, where Pσeq ¼ Pσeq Pð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

 PJ2 Pð Þ
q

¼
ffiffiffiffiffiffiffiffiffiffi

P : P
p

, (63)

Pσy ¼ FUT11 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � a � epl � center½ �2
q

, r ¼ σy þ Q, center ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � σ2y

q

and a ¼ centerþ r
b

,

(64)

spring _e
pl ¼ spring _e

pl
xx � ∂

0 _upl

∂X

	 


¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xx � ∂
0 _upl

∂X
: xx � ∂

0 _upl

∂X

r

¼ xx � _λ,

springepl ¼
ð

t

0

spring _e
pl � dt ¼

ð

t

0

xx � _λ � dt, with xx∈ 0; 1h i,
(65)

damper _e
pl ¼ damper _e

pl
1� xxð Þ � ∂

0 _upl

∂X

	 


¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� xxð Þ � ∂
0 _upl

∂X
: 1� xxð Þ � ∂

0 _upl

∂X

r

¼ 1� xxð Þ � _λ,

dampere
pl ¼

ð

t

0

damper _e
pl � dt ¼

ð

t

0

1� xxð Þ � _λ � dt, with xx∈ 0; 1h i,

(66)
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_epl ¼ _epl _Fpl� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂
0 _upl

∂X
:
∂
0 _upl

∂X

s

¼ _λ, epl ¼
ð

t

0

_epl � dt ¼
ð

t

0

_λ � dt, ∂
0 _upl

∂X
¼ _λ � ∂

PΨ

∂X
:

(67)

The actual yield stress Pσy, which is a first Piola-Kirchhoff stress measure,
determines the radius of the yield surface and is defined by Eq. (64)1. It is the only
nonzero component of a stress tensor PUT (i.e. Pσy ¼ PUT11 ¼ PUT½ �11) coming from
a uniaxial tensile test of the modelled material, where the operator •ð Þ½ �11 extracts
the element in the first row and the first column of a second-order tensor, •ð Þ, is
written as a 3 � 3 square matrix. The corresponding deformation gradient and the
Jacobian of deformation are denoted as FUT, JUT, where FUT11 ¼ FUT½ �11 and
JUT ¼ det FUTð Þ. Please also note that the only nonzero element of the related second
Piola-Kirchhoff stress tensor SUT, coming from the tensile test of the material, is

SUT11 ¼ SUT½ �11¼Sσy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � a � epl � center½ �2
q

. The equation defines an arc of a
circle using three material parameters: the constant yield stress of the material σy,
the maximum hardening stress Q by which the material can harden and the maxi-

mum accumulated plastic strain value b ¼ eplmax, at which the material loses its
integrity, i.e. Sσy ¼ 0. The relationship between the corresponding stress measures
then can be written in tensor form as PUT ¼ FUT � SUT, in which the parameters
σy, Q are second Piola-Kirchhoff stresses and epl ⊂ 0; bh i. It should also be noted that
the definitions of the accumulated plastic strain rate _epl (an equivalent strain rate
defined by Eq. (67)1); the accumulated plastic strain epl (Eq. (67)2), which controls
the hardening and denotes the plastic damage; and the equivalent stress Pσ eq
(Eq. (63)2), respectively, which have the following physical meaning in the uniaxial

tensile test of the material, _epl ¼ ∂
0 _upl

UTX=∂X, e
pl ¼ ∂

0 _upl
UTX=∂X,

Pσ eq ¼ PUT11 ¼
FUT11 � SUT11, have changed. The changes were required by consistency conditions,
so that the model could work properly in either a one-dimensional (1D) stress
state or a three-dimensional (3D) stress state, which may occur at a material particle
during the analysis. In the above equations, the variables springepl (see Eq. (65))
and damperepl (see Eq. (66)) denote the ductile and brittle damage defined in terms of
the ratio of ductile and total damage increment xx [21].

2.5 Calculation of the plastic multiplier

A thermodynamically consistent formulation of the plastic flow allows for the
calculation of the plastic multiplier in whatever (second Piola-Kirchhoff, first Piola-
Kirchhoff, Kirchhoff and Cauchy) stress spaces using the corresponding definition
of the yield surface. There are altogether two types of return mapping procedures
for plastic multiplier calculation, which result in a thermodynamically consistent
material model.

The first type of return mapping procedure, which is best suited for
hyperelastic-plastic-based materials, is the ordinary return mapping procedure. Its
thermodynamically consistent form in terms of the normality rules is defined by
Eq. (38). Here the equation of the yield surface is solved directly for the plastic
multiplier value, which in the case of our hyperelastic-plastic material takes the
form (see Eq. (63)1)
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Pσeq�Pσy ¼ 0: (68)

In order to show that the return mapping is thermodynamically consistent, the
equivalent stress in the material model is manipulated as follows:

Pσeq ¼
ffiffiffiffiffiffiffiffiffiffi

P : P
p

¼ P
ffiffiffiffiffiffiffiffiffiffi

P : P
p : P ¼ ∂

P
Ψ

∂P
: P: (69)

Then after multiplying Eq. (68) by the plastic multiplier _λ and the infinitesimal
volume element dV0 in the initial configuration of the body, the first term of
Eq. (68) becomes the internal plastic power at a material constituent of the model
_λ � Pσeq � dV0 ¼ _λ � ∂PΨ=∂P : P � dV0 ¼ ∂

0 _upl=∂X : P � dV0 ¼ dWpl: Similarly, the

second term of Eq. (68) becomes _λ�Pσy � dV0 ¼ _epl�Pσy � S0 � dX ¼ ∂
0 _upl

UTX=∂X�Pσy�
S0 � dX ¼ dWpl, which is just the internal plastic power at a material constituent of
the specimen coming from the tensile test of the material, where S0 ¼ S0 Xð Þ is the
cross-sectional area of the specimen.

The second type of return mapping procedure, which is best suited for
hypoelastic-plastic-based materials, is the rate form of the return mapping proce-
dure. Its thermodynamically consistent form in terms of the normality rules is
defined by Eq. (39). Here the objective time derivative of the yield surface is used
for the plastic multiplier calculation, which in the case of our hypoelastic-plastic
material model takes the form

∂
P
Ψ

∂P
: LP Pð Þ � LP PUTð Þ½ �11 ¼ 0, (70)

where LP Pð Þ is then replaced by the rate form of the constitutive equation of the
material Eq. (43) and the second term on the LHS of Eq. (70) by the form

LP PUTð Þ½ �11 ¼ FUT11 � �a � a � epl � center
� �� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � a � epl � center½ �2
q

� �

� _epl. It

should be noted that the first term of Eq. (70) can be replaced by any other term of
Eq. (39), because the formulation is thermodynamically consistent. Moreover,
multiplying Eq. (70) by the plastic multiplier _λ and the infinitesimal volume ele-
ment dV0 in the initial configuration of the body, it is easy to see that by solving
Eq. (70), the following conservation equation is enforced:

∂
0 _u

pl

∂X
: LP Pð Þ � dV0 �

∂
0 _u

pl
UTX

∂X
� LP PUTð Þ½ �11 � S0 � dX ¼ 0: (71)

Therefore, both return mapping algorithms in the above result in such a
plastic multiplier calculation, during which the internal plastic power density of the
models becomes the same as the internal plastic power density of the specimen,
coming from the uniaxial tensile test of the material. It should also be noted that
Eq. (70) is just the objective and thermodynamically consistent rate form of the
Eq. (68) resulting from the invariance of the internal mechanical power and its first
derivative Eq. (27), which now defines not only conjugate pairs of stress measures
and strain or deformation rates but also conjugate differentiation operators and
derivatives. Moreover, using Eqs. (20)–(23) and (40) and considering the fact that
the physical meaning of Eqs. (68)–(71) is the conservation of plastic energy, the
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overall power at a material particle of the body dW can be decomposed into an
elastic part dWel and a plastic part dWpl as follows:

dW ¼ _E : S � dV0 ¼ ∂
0 _u

∂X
: P � dV0 ¼ d : τ � dV0 ¼ d : σ � dv ¼ dWel þ dWpl, (72)

where

dWel ¼ _Eel : S � dV0 ¼ ∂
0 _u

el

∂X
: P � dV0 ¼ del

: τ � dV0 ¼ del
: σ � dv, (73)

dWpl ¼ _λ � ∂
S
Ψ

∂S
: S � dV0 ¼ _λ � ∂

P
Ψ

∂P
: P � dV0 ¼ _λ � ∂

τ
Ψ

∂τ
: τ � dV0 ¼ _λ � ∂

σ
Ψ

∂σ
: σ � dv,

(74)

which also proves that the formulation of the material model is thermodynami-
cally consistent.

2.6 The ratio of ductile and total damage increment

The idea of the ratio of ductile and total damage increment xx was first intro-
duced by Écsi and Élesztős in order to take into account the internal damping
properly during plastic deformation of the hypoelastic-plastic material, where xx
allowed for the redistribution of the plastic flow between the spring and the damper
of a 1D frictional device representing the rheological model of the material [21]. The
ratio is determined in an elastic corrector phase during return mapping, and its
value is then kept constant. Since the return mapping procedure in our material
model is carried out in the first Piola-Kirchhoff stress space, we had to modify the
definition of the ratio as follows:

xx ¼
N : F � mat

C
el
: _E

� �D E

N : F � mat
C

el
: _E

� �D E

þ N : F � mat
C

vis
: €E

� �D E , (75)

where

∂
P
Ψ

∂P
¼ N, N ¼ P

ffiffiffiffiffiffiffiffiffiffi

P : P
p ¼ P

Pk k , yh i ¼ yþ yj j
2

≥0: (76)

Eqs. (75) and (76) yh i denote the McCauly’s brackets, which return zero if y <0
and where we also used the transformation LP Pð Þ ¼ F � _S. Please also note that all
terms of Eq. (75) are objective stress rates, so that the value of xx is not affected by
the change of the observer.

3. Numerical experiment

In our numerical experiment a cantilever, size 50 mm � 50 mm � 600 mm was
studied applying dynamic pressure on 1/3 of its upper surface near the cantilever
free end. The loading was defined as a product of a constant p = 3 MPa pressure and
the Heaviside step function. The analysis was run as dynamic using Δt ¼ 5 � 10�6 s
time step size. Table 1 lists the used material properties, and Figure 2 depicts the
spatially discretized model of the cantilever.

16

Advances in Composite Materials Development



In order to assess the value of the axial component of the deformation gradient
coming from the tensile stress of the material FUT11, we solved the one-dimensional
(1D) rate form of the constitutive equation of the material (Eq. (42)) for the
unknown component of the derivative of the axial elastic displacement field with
respect to the axial material coordinate ∂

0uelx =∂X. The rate form of the constitutive
equation of this specific 1D stress analysis, after neglecting the internal damping in
the material, can be expressed in the following finite-strain form:

S _σ y ¼ _S11 ¼ E � ∂
0 _u

el
x

∂X
� 1þ ∂

0uelx
∂X

þ ∂
0uplx
∂X

 !" #

, (77)

where S _σy ¼ _S11 is the axial component of the second Piola-Kirchhoff stress rate
tensor from the tensile test of the material and E is the Young’s modulus. Further-
more considering that the accumulated plastic strain rate Eq. (67) 1 in this 1D stress

state is _epl ¼ ∂
0 _upl

x =∂X ¼ _λ, and that its integral is epl ¼ ∂
0uplx =∂X (Eq. (67)2), one

can find FUT11 as a function of the accumulated plastic strain epl only in the follow-
ing form:

FUT11 ¼ 1þ ∂
0uelx
∂X

þ ∂
0uplx
∂X

¼ 1þ � 1þ epl
� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ eplð Þ2 þ 2 �
Sσy
E

r
" #

þ epl, (78)

where Sσy ¼ Sσy epl
� �

see also Eq. (64)1.

Hypoelastic-plastic material

with damping

Hyperelastic-plastic material with/

without damping

E [Pa] 7.31 � 1010 7.31 � 1010

Evis Pa � s½ � 7.31 � 102 7.31 � 102/0.0

ν ¼ νvis ‐½ � 0.33 0.33

σy Pa½ � 220.0 � 106 220.0 � 106

Q Pa½ � 110.0 � 106 110.0 � 106

b ‐½ � 1064 1064

ρ0 kg �m�3½ � 2770.0 2770.0

Table 1.
Material properties.

Figure 2.
The spatially discretized model.

17

An Alternative Framework for Developing Material Models for Finite-Strain Elastoplasticity
DOI: http://dx.doi.org/10.5772/intechopen.85112



4. Numerical results

Figure 3 depicts a few selected analysis results. These are the first principal
Cauchy stress and the accumulated plastic strain distributions over the body, which
is similar in the case of both materials, the vertical displacement time history curves
and the accumulated plastic strain time history curves for the used material at
selected nodes (see Figure 2 for the location of the nodes).

It should be noted that in order to avoid problems with convergence with the
used hypoelastic-plastic material, the value of the b parameter had to be set
extraordinarily high. As a result, the isotropic hardening curve becomes flat in the
range of the accumulated plastic strain value that occurred in the analysis, i.e. no
isotropic hardening took place in the analysis. Moreover, for the same reasons, a
very small viscous damping parameter has to be used with the model. The viscous
damping, however, did not affect the analysis result at this kind of intensive load-
ing, resulting in the plastic collapse of the beam, which can be seen in the time
history curves. The analysis results otherwise seem to be reasonable.

5. Conclusions

In this chapter an alternative framework for developing objective and thermo-
dynamically consistent hypoelastic-plastic- and hyperelastic-plastic-based material
models was presented using the first nonlinear continuum theory for finite defor-
mations of elastoplastic media. The related material models were demonstrated in

Figure 3.
Selected results from the analyses.
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numerical experiments. The most important implication of the presented theory is
that the analysis results of the related models are no longer affected by the descrip-
tion and the particularities of the mathematical formulation. The nonlinear contin-
uum theory was also briefly presented, while the thermodynamic consistency of the
formulation was in detail discussed. Another important implication of the theory is
that the dissipated plastic power density of the model can directly be related to the
dissipated plastic power density of the specimen coming from the uniaxial tensile
stress of the modelled material. Moreover, contemporary tensile testing for material
parameter determination will also have to be extended by determination of the
deformation gradient of the specimen of the modelled material, as it is an important
entry for the presented material models.
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