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Chapter

The MOR Cryptosystem in
Classical Groups with a Gaussian
Elimination Algorithm for
Symplectic and Orthogonal
Groups
Sushil Bhunia, Ayan Mahalanobis, Pralhad Shinde

and Anupam Singh

Abstract

In this chapter, we study the MOR cryptosystem with symplectic and orthogonal
groups over finite fields of odd characteristics. There are four infinite families of
finite classical Chevalley groups. These are special linear groups SL(d, q), orthogo-
nal groups O(d, q), and symplectic groups Sp(d, q). The family O(d, q) splits into
two different families of Chevalley groups depending on the parity of d. The MOR
cryptosystem over SL(d, q) was studied by the second author. In that case, the
hardness of the MOR cryptosystem was found to be equivalent to the discrete
logarithm problem in Fqd . In this chapter, we show that the MOR cryptosystem over

Sp(d, q) has the security of the discrete logarithm problem in Fqd . However, it seems

likely that the security of the MOR cryptosystem for the family of orthogonal
groups is F

qd
2 . We also develop an analog of row-column operations in symplectic

and orthogonal groups which is of independent interest as an appendix.

Keywords: public-key cryptography, MOR cryptosystem, Chevalley groups,
Gaussian elimination, 2010 Mathematics Subject Classification: 94A60, 20H30

1. Introduction

Public-key cryptography is the backbone of this modern society. However with
recent advances in quantum computers and its possible implication to factoring
integers and solving the discrete logarithm problems, it seems that we are left with
no secure cryptographic primitive. So it seems prudent that we set out in search for
new cryptographic primitives and subsequently new cryptosystems. The obvious
question is: how to search and where to look? One can look into several well-known
hard problems in Mathematics and hope to create a trap-door function, or one can
try to generalize the known, trusted cryptosystems.

This chapter is in the direction of generalizing a known cryptosystem with the
hope that something practical and useful will come out of this generalization. A new
but arbitrary cryptosystem might not be considered by the community as a secure
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cryptosystem for decades. So our approach is conservative but practical. Several
such approaches were earlier made by many eminent mathematicians. To name a
few, Maze et al. [1, 2] developed SAP and Shpilrain and Zapata developed CAKE,
both work in non-abelian structures. There is an interesting cryptosystem in the
work of Climent et al. [3]. We further recommend the work of Grogoriev et al. [4]
and Roman’kov [5].

The cryptosystem that we have in mind is the MOR cryptosystem [6–9]. In Section
2, we describe the MOR cryptosystem in details. It is a simple but powerful gener-
alization of the well-known and classic ElGamal cryptosystem. In this cryptosys-
tem, the discrete logarithm problem works in the automorphism group of a group
instead of the group. As a matter of fact, it can work in the automorphism group of
most algebraic structures. However, we will limit ourselves to finite groups. One
way to look at the MOR cryptosystem is that it generalizes the discrete logarithm
problem from a cyclic (sub)group to an arbitrary group.

The MOR cryptosystem over SL(d, q) was studied earlier [6] and cryptanalyzed
by Monico [10]. It became clear that working with matrix groups of size d over Fq

and with automorphisms that act by conjugation, like the inner automorphisms,
there are two possible reductions of the security to finite fields. It is the security of
the discrete logarithm problem in Fqd or Fqd

2 ([6], Section 7). This reduction is

similar to the embedding of the discrete logarithm problem in the group of rational
points of an elliptic curve to a finite field; the degree of the extension of that field
over the field of definition of the elliptic curve is called the embedding degree. In the
case of SL(d, q), it became the security of Fqd . The reason that we undertook this

study is to see if the security in other classical Chevalley groups is Fqd or Fqd
2 .

In cryptography, it is often hard to come up with theorems about security of a
cryptosystem. However, at this moment it seems likely that the security of the
MOR cryptosystem in orthogonal groups O(d, q) is F

qd
2 . The way we implement this

cryptosystem is by solving the word problem in generators. It presents no
advantage to small characteristic. In the light of Joux’s [11] improvement of the
index-calculus attack in small characteristic, this contribution of the MOR
cryptosystem is remarkable.

In summary, the proposed MOR cryptosystem is totally different from the
known ElGamal cryptosystems from a functional point of view. Its implementation
depends on Gaussian elimination and substitutions (substituting a matrix for a
word in generators). However, we do have a concrete and tangible understanding of
its security. It is clear from this work that the MOR cryptosystem over classical
groups is not quantum-secure. However, for other groups like solvable groups, the
answer is not known and could be a topic of further research.

1.1 Structure of the chapter

This chapter is an interplay between computational group theory and public-key
cryptography, in particular the MOR cryptosystem, and is thus interdisciplinary in
nature. In this chapter, we study the MOR cryptosystem using the orthogonal and
symplectic groups over finite fields of odd characteristic.

In Section 2, we describe the MOR cryptosystem in some details. We
emphasize that the MOR cryptosystem is a natural generalization of the classic
ElGamal cryptosystem. In Section 3, we describe the orthogonal and symplectic
groups and their automorphisms. In Appendix A, we describe few new
algorithms. These algorithms use row-column operations to write an element in
classical groups as a word in generators. This is very similar to the Gaussian
elimination algorithm for special linear groups. These algorithms are vital to the

Modern Cryptography – Current Challenges and Solutions
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implementation of the MOR cryptosystem. These algorithms are also of independent
interest in computational group theory.

1.2 Notations and terminology

It was bit hard for us to pick notations for this chapter. The notations used by a
Lie group theorist is somewhat different from that of a computational group theo-
rist. We tried to preserve the essence of notations as much as possible. For example,
a Lie group theorist will use SLlþ1 qð Þ to denote what we will denote by SL lþ 1; qð Þ or

SL d; qð Þ. We have used TX to denote the transpose of the matrix X. This was

necessary to avoid any confusion that might arise when using X�1 and TX simulta-
neously. In this chapter, we use K and Fq interchangeably, while each of them is a
finite field of odd characteristic. However, in the appendix the field k is

unrestricted. The matrix teij is used to denote the matrix unit with t in the i; jð Þth

place and zero everywhere else. We will often use xr tð Þ as generators, a notation
used in the theory of Chevalley groups. Here r is a short hand for i; jð Þ and xr tð Þ are
defined in Tables A1, A3, A5, and A7. We often refer to the orthogonal group as
O d; qð Þ, specifically, the split orthogonal group as Oþ 2l; qð Þ or Oþ 2lþ 1; qð Þ and the
twisted orthogonal group as O� 2l; qð Þ. All other notations used are standard.

2. The MOR cryptosystem

The MOR cryptosystem is a natural generalization of the classic ElGamal cryp-
tosystem. It was first proposed by Paeng et al. [9]. To elaborate the idea behind a
MOR cryptosystem, we take a slightly expository route. For the purpose of this
exposition, we define the discrete logarithm problem. It is one of the most com-
mon cryptographic primitive in use. It works in any cyclic (sub)group G ¼ gh i but
is not secure in any cyclic group.

Definition 2.1 (The discrete logarithm problem). The discrete logarithm problem
in G ¼ gh i, given g and gm, find m.

The word “find” in the above definition is bit vague, in this chapter we mean
compute m. The hardness to solve the discrete logarithm problem depends on the
presentation of the group and is not an invariant under isomorphism. It is believed
that the discrete logarithm problem is secure in the multiplicative group of a finite
field and the group of rational points of an elliptic curve.

A more important cryptographic primitive, related to the discrete logarithm
problem, is theDiffie-Hellman problem, also known as the computational Diffie-
Hellman problem.

Definition 2.2 (Diffie-Hellman problem). Given g, gm1 , and gm2 , find gm1m2 .
It is clear; if one solves the discrete logarithm problem, then the Diffie-Hellman

problem is solved as well. The other direction is not known.
The most prolific cryptosystem in use today is the ElGamal cryptosystem. It uses

the cyclic group G ¼ gh i. It is defined as follows:

2.1 The ElGamal cryptosystem

A cyclic group G ¼ gh i is public.

• Public-key: Let g and gm be public.

• Private-key: The integer m be private.

The MOR Cryptosystem in Classical Groups with a Gaussian Elimination Algorithm…
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Encryption:
To encrypt a plaintext M∈G, get an arbitrary integer r∈ 1; jGj½ � and compute gr

and grm. The ciphertext is gr;M grmð Þ.

Decryption:
After receiving the ciphertext gr;M grmð Þ, the user uses the private-key m. So she

computes gmr from gr and then computes M.
It is well known that the hardness of the ElGamal cryptosystem is equivalent to

the Diffie-Hellman problem ([12], Proposition 2.10).

2.2 The MOR cryptosystem

In the case of the MOR cryptosystem, one works with the automorphism group
of a group. An automorphism group can be defined on any algebraic structure, and
subsequently a MOR cryptosystem can also be defined on that automorphism
group; however, in this chapter we restrict ourselves to finite groups. Furthermore,
we look at classical groups defined by generators and automorphisms that are
defined as actions on those generators.

Let G ¼ g1; g2;…; gs
� �

be a finite group. Let ϕ be a non-identity automorphism.

• Public-key: Let ϕ gi
� �� �s

i¼1
and ϕm gi

� �� �s

i¼1
be public.

• Private-key: The integer m is private.

Encryption:
To encrypt a plaintext M∈G, get an arbitrary integer r∈ 1; jϕj½ � and compute ϕr

and ϕrm. The ciphertext is ϕr
;ϕrm

Mð Þð Þ.

Decryption:
After receiving the ciphertext ϕr

;ϕrm
Mð Þð Þ, the user knows the private-key m.

So she computes ϕmr from ϕr and then computes M.

Theorem 2.1 The hardness to break the above MOR cryptosystem is equivalent to the
Diffie-Hellman problem in the group ϕh i.

Proof. It is easy to see that if one can break the Diffie-Hellman problem, then one
can compute ϕmr from ϕm in the public-key and ϕr in the ciphertext. This breaks the
system.

On the other hand, observe that the plaintext is ϕ�mr ϕmr
Mð Þð Þ. Assume that

there is an oracle that can break the MOR cryptosystem, i.e., given ϕ,ϕm and a
plaintext ϕr

; gð Þ will deliver ϕ�mr gð Þ. Now we query the oracle s times with the

public-key and the ciphertext ϕr
; gi

� �

for i ¼ 1, 2,…, s. From the output, one can

easily find ϕmr gi
� �

for i ¼ 1, 2,…, s. So we just witnessed that for ϕm and ϕr, one can
compute ϕmr using the oracle. This solves the Diffie-Hellman problem.

In a practical implementation of a MOR cryptosystem, there are two things that
matter the most.

a: The number of generators. As we saw that the automorphism ϕ is presented
as action on generators. Larger the number of generators, bigger is the size of
the public key.

b: Efficient algorithm to solve the word problem. This means that given

G ¼ g1; g2;…; gs
� �

and g∈G, is there an efficient algorithm to write g as word in
g1, g2,…, gs? The reason of this importance is immediate—the automorphisms
are presented as action on generators, and if one has to compute ϕ gð Þ, then the
word problem must be solved.

Modern Cryptography – Current Challenges and Solutions
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The obvious question is: what are the right groups for the MOR cryptosystem? In
this chapter, we pursue a study of the MOR cryptosystem using finite Chevalley
groups of classical type, in particular, orthogonal and symplectic groups.

3. Description of automorphisms of classical groups

This chapter studies the MOR cryptosystem for orthogonal and symplectic
groups over a field of odd characteristics. As we discussed before, MOR cryptosys-
tem is presented as action on generators of the group. Then to use an automorphism
on an arbitrary element, one has to solve the word problem in that group with
respect to that set of generators.

The generators and the Gaussian elimination algorithm to solve the word prob-
lem are described in Appendix A. We will be very brief here.

Let V be a vector space of dimension d over a field K of odd characteristic. Let
β : V � V ! K be a bilinear form. By fixing a basis of V, we can associate a matrix
to β. We shall abuse the notation slightly and denote the matrix of the bilinear form
by β itself. Thus β x; yð Þ¼Txβy, where x, y are column vectors. We will work with
non-degenerate bilinear forms and that means detβ 6¼ 0. A symmetric or skew-
symmetric bilinear form β satisfies β¼Tβ or β ¼ �Tβ, respectively.

Definition 3.1 (Orthogonal group). A square matrix X of size d is called orthogonal

if TXβX ¼ β, where β is symmetric. It is well known that the orthogonal matrices form a
group known as the orthogonal group.

Definition 3.2 (Symplectic group). A square matrix X of size d is called symplectic

if TXβX ¼ β, where β is skew-symmetric. And the set of symplectic matrices form a
symplectic group.

We write the dimension of V as d ¼ 2lþ 1 or d ¼ 2l for l≥ 1. We fix a basis and
index it by 0, 1,…, l, � 1,…, � l in the odd dimension, and in the case of even
dimension where there are two non-degenerate symmetric bilinear forms up to
equivalence, we index the bases by 1, 2,…, l, � 1, � 2,…, � l and
1, � 1, 2,…, l, � 2,…, � l for split and twisted forms, respectively. We consider the
non-degenerate bilinear forms β on V given by the following matrices:

a: The odd-orthogonal group. The form β is symmetric with d ¼ 2lþ 1 and

β ¼

2 0 0

0 0 Il

0 Il 0

0

B

@

1

C

A
.

b: The symplectic group. The form β is skew-symmetric with d ¼ 2l and

β ¼
0 Il

�Il 0

� 	

.

c: The split orthogonal group. The form β is symmetric with d ¼ 2l and

β ¼
0 Il

Il 0

� 	

.

c0: The twisted orthogonal group. The form β is symmetric with d ¼ 2l and

β ¼

β0 0 0

0 0 Il�1

0 Il�1 0

0

B

@

1

C

A
,

where Il is the identity matrix of size l over K and for a fixed non-square ϵ∈K,

β0 ¼
1 0

0 ϵ

� 	

.

The MOR Cryptosystem in Classical Groups with a Gaussian Elimination Algorithm…
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We now describe the automorphism group of the orthogonal and symplectic
groups. This helps us in picking the right set of automorphisms for the MOR
cryptosystem.

Definition 3.3 (Orthogonal similitude group). The orthogonal similitude group is
defined as the set of matrices X of size d as

GO d; qð Þ ¼ X ∈GL d; qð ÞjTXβX ¼ μβ; μ∈F�
q

n o

,

where d ¼ 2lþ 1 or 2l and β is of type a, c, or c0, respectively.
Definition 3.4 (Symplectic similitude group). The symplectic similitude group is

defined as

GSp 2l; qð Þ ¼ X ∈GL 2l; qð ÞjTXβX ¼ μβ; μ∈F�
q

n o

,

where β is of type b.
Here μ depends on the matrix X and is called the similitude factor. The simili-

tude factor μ defines a group homomorphism from the similitude group to F�
q , and

the kernel is the orthogonal group O d; qð Þ when β is symmetric and symplectic
group Sp 2l; qð Þ and when β is skew-symmetric, respectively ([13], Section 12). Note
that scalar matrices λI for λ∈F�

q belong to the center of similitude groups. The

similitude groups are analog of what GL d; qð Þ is for SL d; qð Þ. For a discussion of the
diagonal automorphisms of Chevalley groups, we need the diagonal subgroups of
the similitude groups.

Definition 3.5 (Diagonal group). The diagonal groups are defined to be the group of
non-singular diagonal matrices in the corresponding similitude group and are as follows:
in the case of GO 2lþ 1; qð Þ, it is

diag α; λ1;…; λl; μλ
�1
1 ;…; μλ�1

l

� �

jλ1;…; λl; α
2 ¼ μ∈F�

q

n o

,

and in the case of GO 2l; qð Þ and GSp 2l; qð Þ, it is

diag λ1;…; λl; μλ
�1
1 ;…; μλ�1

l

� �

jλ1;…; λl; μ∈F
�
q

n o

:

Conjugation by these diagonal elements produces diagonal automorphisms in
the respective Chevalley groups. To build a MOR cryptosystem, we need to work
with the automorphism group of Chevalley groups. In this section we describe the
automorphism group of classical groups following Dieudonne [14].

Conjugation automorphisms: If N is a normal subgroup of a group G, then the
conjugation maps n↦gng�1 for n∈N and g∈G are called conjugation automor-
phisms of G. In particular, both inner automorphisms and diagonal automorphisms
are examples of conjugation automorphisms.

Central automorphisms: Let χ : G ! Z Gð Þ be a homomorphism to the center of
the group. Then the map g↦χ gð Þg is an automorphism of G, known as the central
automorphism. There are no nontrivial central automorphisms for perfect groups,
for example, the Chevalley groups SL lþ 1;Kð Þ and Sp 2l;Kð Þ, ∣K∣ ≥ 4, and l≥ 2. In
the case of orthogonal group, the center is of two elements I;�If g, where I is the
identity matrix. This implies that there are at most four central automorphisms in
this case.

Field automorphisms: Let f ∈Aut Kð Þ. In terms of matrices, field automor-
phisms amount to replacing each term of the matrix by its image under f.

Modern Cryptography – Current Challenges and Solutions
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Graph automorphisms: A symmetry of Dynkin diagram induces such auto-
morphisms. This way we get automorphisms of order 2 for SL lþ 1;Kð Þ and l≥ 2 and
Oþ 2l;Kð Þ and l≥4. We also get an automorphisms of order 3 for Oþ 4;Kð Þ.

In the case of SL(d, q) for d≥ 3, the map x↦A�1Tx�1A, where

A ¼

0 ⋯ 0 0 0 1

0 ⋯ 0 0 �1 0

0 ⋯ 0 1 0 0

0 ⋯ �1 0 0 0

⋮ ⋰ ⋮ ⋮ ⋮ ⋮

�1ð Þl�1
⋯ 0 0 0 0

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

explicitly describes the graph automorphism.

In the case of O(2l, q) for l≥ 5, the graph automorphism is given by x↦B�1xB
where B is a permutation matrix obtained from identity matrix of size 2l� 2l

by switching the lth row and �lth row. This automorphism is a conjugating
automorphism.

Theorem 3.1 (Dieudonne). Let K be a field of odd characteristic and l≥ 2.

1. For the group SL lþ 1;Kð Þ, any automorphism is of the form ιγθ where ι is a
conjugation automorphism defined by elements of GL lþ 1;Kð Þ and γ is a graph
automorphism for the special linear group.

2. For the group Oþ d;Kð Þ, any automorphism is of the form cχ ιθ where cχ is a
central automorphism and ι is a conjugation automorphism by elements of
GOþ d;Kð Þ (this includes the graph automorphism of even-orthogonal groups).

3. For the group O� d;Kð Þ, any automorphism is of the form ιθ, where ι is a
conjugation automorphism by elements of GO� d;Kð Þ.

4. For the group Sp 2l;Kð Þ, any automorphism is of the form ιθ where ι is a
conjugation automorphism by elements of GSp 2l;Kð Þ.

In all cases θ denotes a field automorphism.
For a proof of the above theorem, see [26], Theorems 30 and 36. In the above

theorem, conjugation automorphisms are given by conjugation by elements of a
larger group, and it includes the group of inner automorphisms. We introduce
diagonal automorphisms to make it more precise. The conjugation automorphisms ι
can be written as a product of ιg and η where ιg is an inner automorphism and η is a
diagonal automorphism.

Diagonal automorphisms: In the definition of the conjugating automorphism,
when the conjugating element is from the similitude group but not in the group we
get a diagonal automorphism. In the case of special linear groups, diagonal auto-
morphisms are given by conjugation by diagonal elements of PGL(l + 1, q) on
PGL(l + 1, q). In the case of symplectic and orthogonal groups, diagonal automor-
phisms are given by conjugation by corresponding diagonal group elements defined
in Definition 3.5.

4. Security of the proposed MOR cryptosystem

The purpose of this section is to show that for a secure MOR cryptosystem over
the classical Chevalley and twisted orthogonal groups, we have to look at automor-
phisms that act by conjugation like the inner automorphisms. There are other
automorphisms that also act by conjugation, like the diagonal automorphism and
the graph automorphism for odd-order orthogonal groups. Then we argue what is

The MOR Cryptosystem in Classical Groups with a Gaussian Elimination Algorithm…
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the hardness of our security assumptions. We denote the split orthogonal group by
Oþ 2l; qð Þ and twisted orthogonal group by O� 2l; qð Þ. Now onwards O(2l,q) means
either split or twisted orthogonal group and we will specify whenever required.

Let ϕ be an automorphism of one of the classical Chevalley groups G:
SL lþ 1; qð Þ,O 2lþ 1; qð Þ, Sp 2l; qð Þ, or O 2l; qð Þ. From Theorem 3.1, we know that
ϕ ¼ cχ ιηγθ where cχ is a central automorphism, ι is an inner automorphism, η is a
diagonal automorphism, γ is a graph automorphism, and θ is a field automorphism.

The group of central automorphisms are too small and the field automorphisms
reduce to a discrete logarithm in the field Fq. So there is no benefit of using these in
a MOR cryptosystem. Also there are not many graph automorphisms in classical
Chevalley and twisted orthogonal groups other than special linear groups and odd-
order orthogonal groups. In the odd-order orthogonal groups, these automorphisms
act by conjugation. Recall here that our automorphisms are presented as action on
generators. It is clear ([6], Section 7) that if we can recover the conjugating matrix
from the action on generators, the security is a discrete logarithm problem in Fqd , or

else the security is a discrete logarithm problem in F
qd

2 .

So from these we conclude that for a secure MOR cryptosystem, we must look at
automorphisms that act by conjugation, like the inner automorphisms. Inner auto-
morphisms form a normal subgroup of Aut Gð Þ and usually constitute the bulk of
automorphisms. If ϕ is an inner automorphism, say ιg : x↦gxg�1, we would like to
determine the conjugating element g. For the special linear group, it was done in [6].
We will follow the steps there for the present situation too. However, before we do
that, let us digress briefly to observe that G ! Inn Gð Þ given by g↦ιg is a surjective
group homomorphism. Thus if G is generated by g1, g2,…, gs, then Inn Gð Þ is gener-
ated by ιg1 ,…, ιgs . Let ϕ∈ Inn Gð Þ. If we can find gj, j∈ 1; 2;…; sf g generators, such

that ϕ ¼
Q

j ιgj , then ϕ ¼ ιg where g ¼
Q

j gj. This implies that our problem is equiv-

alent to solving the word problem in Inn Gð Þ. Note that solving word problem
depends on how the group is presented and it is not invariant under group homo-
morphisms. Thus the algorithm described earlier to solve the word problem in the
classical Chevalley and twisted orthogonal groups does not help us in the present
case.

In what follows, we will use generators xr tð Þ, where r ¼ i; jð Þ; i 6¼ j, 1≤ i, j≤ d
for the special linear group. For symplectic group r ¼ i; jð Þ; i, j∈ �1;�2;…;�lf g. For
the even-orthogonal group, r ¼ i; jð Þ; i, j∈ �1;�2;…;�lf g; � i 6¼ �j. For the odd-
orthogonal group r ¼ i; jð Þ; � l≤ i≤ l  and  j∈ �1;�2;…� lf g; � i 6¼ �j. These are
the Chevalley generators for the Chevalley groups we are dealing with and are
described in details in Tables A1, A5, A3, and A7 in the Appendix.

4.1 Reduction of security

In this subsection, we show that for special linear and symplectic groups, the
security of the MOR cryptosystem is the hardness of the discrete logarithm problem
in Fqd . This is the same as saying that we can find the conjugating matrix up to a

scalar multiple. We further show that the method that works for special linear and
symplectic groups does not work for orthogonal groups.

Let ϕ be an automorphism that works by conjugation, i.e., ϕ ¼ ιg, for some g, and
we try to determine g.

Step 1: The automorphism ϕ is presented as action on generators xr tð Þ.
Thus ϕ xr tð Þð Þ ¼ g I þ terð Þg�1 ¼ I þ tger g

�1. This implies that we know ger g
�1 for

all possible r. We first claim that we can determineN = gDwhereD is sparse, in fact,
diagonal in the case of special linear and symplectic groups.

Modern Cryptography – Current Challenges and Solutions
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In the case of special linear groups, write g ¼ G1;…;Gi;…;Gd½ �, where Gi are
column vectors of g. Then gei, j ¼ G1;…;Gd½ �ei, j ¼ 0;…;0;Gi;0…;0½ � where Gi is at

the jth place. Multiplying this with g�1 on the right, i.e., computing gei, j g
�1, deter-

mines Gi up to a scalar multiple di (say). Thus, we know N ¼ gD where
D ¼ diag d1;…; dlþ1ð Þ.

For the symplectic groups, we do the similar computation with the generators
I þ tei,�i and I þ te�i, i. Write g in the column form as G1;…Gl;G�1;…;G�l½ �. Now,

1. G1;…Gl;G�1;…;G�l½ �ei,�i ¼ 0;…;0;Gi;0;…;0½ � where Gi is at �ith place.
Multiplying this further with g�1 gives us scalar multiple of Gi, say diGi.

2. G1;…Gl;G�1;…;G�l½ �e�i, i ¼ 0;…;0;G�i;0;…;0½ � where G�i is at ith place.
Multiplying this with g�1 gives us scalar multiple of G�i, say d�iGi.

Thus we get N ¼ gD where D is a diagonal matrix diag d1;…; dl; d�1;…; d�lð Þ.

Step 2: Compute N�1ϕ xr tð Þð ÞN ¼ D�1g�1 gxr tð Þg
�1

� �

gD ¼ I þD�1erD which is

equivalent to computing D�1erD.
In the case of special linear groups, we have D a diagonal. Thus by computing

D�1ei, jD, we determine d�1
i dj for i 6¼ j and form a matrix diag 1; d�1

2 d1;…; d�1
l d1

� �

,

and multiplying this to N, we get d1 g. Hence we can determine g up to a scalar
matrix.

For symplectic groups, we can do similar computation as D is diagonal. First

compute D�1 ei, j � e�j,�i

� �

D to get d�1
i dj and d�1

�i d�j for i 6¼ j. Now compute

D�1ei,�iD,D�1e�i, iD to get did
�1
�i , d�id

�1
i . We form a matrix

diag 1; d�1
2 d1;…; d�1

l d1; d
�1
�1d�2:d

�1
�2d2:d

�1
2 d1;…; d�1

�l d�1:d
�1
�1d1

� �

and multiply it to N ¼ gD to get d1g. Thus we can determine g up to a scalar
multiple say ag. Similarly we can determine gm up to a scalar multiple say bgm. Now,

compute agð Þq�1 ¼ gq�1 and bgmð Þ
q�1

¼ gmð Þq�1, and then we can recover m by
solving the discrete logarithm in the matrices using Menezes and Wu’s idea [15].
However, if we choose g such that gq�1 ¼ 1, then it seems that we might avoid this
line of attack. We can bypass this argument by recovering the scalars a and b, and
then to determine m, we compute the discrete logarithm in gh i using Menezes and
Wu’s idea. We prove the following proposition.

Proposition 4.1 Given any g∈ Sp d; qð Þ up to scalar multiple ag, a∈Fq. If

gcd d; q� 1ð Þ ¼ 1, we can determine the scalar a. Otherwise one can find the scalar a by
solving a discrete logarithm problem in Fq.

Proof. We can recover the scalar a as follows: Let λ1;…; λdf g be a set of eigen-
values of g, and then the eigenvalues of ag are aλ1;…; aλdf g. Set α ¼ aλ1⋯aλd and

thus α ¼ ad as λ1⋯λd ¼ det gð Þ ¼ 1. Suppose gcd d; q� 1ð Þ ¼ ζ, using extended
Euclidean algorithm, we find u and v such that udþ v q� 1ð Þ ¼ ζ. Next, computing

αu, we get aud ¼ aζ�v q�1ð Þ ¼ aζ. Thus, if gcd d; q� 1ð Þ ¼ 1, then we have recovered
the scalar a; otherwise we can recover the scalar by solving the discrete logarithm
problem in Fq.

Thus, if gcd d; q� 1ð Þ ¼ 1, then using the above proposition, we can recover the
scalars a and b from ag and bgm, respectively. Otherwise one needs to solve discrete
logarithm problem in Fq to recover the scalars. Now, we can recover g and gm from

ag and bgm just by multiplying with scalar matrices a�1I and b�1I, respectively.
Finally, we recover m using Menezes and Wu’s idea. Thus, if we choose g such that
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gq�1 ¼ 1 and gcd d; q� 1ð Þ 6¼ 1, then to solve the discrete logarithm in ϕh i, one needs
to solve the discrete logarithm in Fq and Fqd .

However, in the case of orthogonal groups, we show that one cannot recover g
up to a diagonal matrix using the above approach, and hence the above reduction
attack does not work.

Theorem 4.1 Let g∈GO d; qð Þ. Consider the conjugation automorphism
ϕ : O d; qð Þ ! O d; qð Þ. Let xrf g be a set of Chevalley generators of O(d,q) described in
Appendix A. Suppose that the public-key is presented as an action of ϕ on xrf g, then it is
impossible to recover a matrix gD, where D is a diagonal matrix using the above
reduction.

Proof. We prove the theorem for Oþ d; qð Þ, d even, and the theorem follows for
other cases similarly. Let d ¼ 2l and we write g in columns form as
g ¼ C1;…;Cl;C�1;…;C�l½ �. We compute gerg

�1 which gives the following equations:

1. Note that g ei, j � e�j,�i

� �

g�1 ¼ 0;…;0;Ci;0;…;0;C�j;0;…;0

 �

g�1, where Ci is at

jth place and C�j is at �ith place. After multiplying by g�1, we get a matrix
whose all columns are linear combinations of columns Ci and C�j.

2.Note that g ei,�j � ej,�i

� �

g�1 ¼ 0;…;0;Ci;0;…;0;Cj;0;…;0

 �

g�1, where Ci is at

�jth place and Cj is at �ith place. After multiplying by g�1, we get a matrix
whose all columns are linear combinations of columns Ci and Cj.

3.Note that g e�i, j � e�j, i

� �

g�1 ¼ 0;…;0;C�i;0;…;0;C�j;0;…;0

 �

g�1, where C�i

is at jth place and C�j is at i
th place. After multiplying by g�1, we get a matrix

whose all columns are linear combinations of columns C�i and C�j.

Suppose one can construct a matrix B from columns obtained above such that
B ¼ gD, where D is diagonal, then we can see that diCi ¼ aiCj þ bjCk for some i, j, k
which is a contradiction as det gð Þ 6¼ 0. Thus, it is not possible to construct a matrix
B such that B ¼ gD, where D is diagonal.

This conclusively proves that the attack on the special linear groups and
symplectic groups will not work for most orthogonal groups.

For orthogonal groups, the best we can do is the following: We can construct N
such that N ¼ g D1 þ PD2ð Þ, where D1 and D2 are diagonal and P is a permutation
matrix. We demonstrate the construction of N in the case of a split orthogonal
group Oþ 2l; qð Þ; similar construction works for other cases as well. Computing

gerg
�1 gives the following equations:

1. G1;…Gl;G�1;…;G�l½ � ei, j � e�j,�i

� �

g�1 ¼ 0;…;0;Gi;0;…;0;G�j;0;…;0

 �

g�1,

where Gi is at jth place and G�j is at �ith place. This gives us a linear
combination of the columns Gi and G�j.

2. G1;…Gl;G�1;…;G�l½ � ei,�j � ej,�i

� �

g�1 ¼ 0;…;0;Gi;0;…;0;Gj;0;…;0

 �

g�1,

where Gi is at �jth place and Gj is at �ith place. This will give us a linear
combination of the columns Gi and Gj.

3. G1;…Gl;G�1;…;G�l½ � e�i, j � e�j, i

� �

g�1 ¼ 0;…;0;G�i;0;…;0;G�j;0;…;0

 �

g�1,
where G�i is at jth place and G�j is at ith place. This will give us a linear
combination of the columns G�i and G�j.
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We construct a matrix N as follows: For each i ¼ 1,…, l� 1, compute
g I þ ei, iþ1 � e� iþ1ð Þ,�i

� �

g�1 � I whose each column is a linear combination of Ci and

C� iþ1ð Þ. Choose one of its column say riCi þ siC� iþ1ð Þ for each i ¼ 1,…, l� 1. Simi-

larly compute g I þ eiþ1, i � e�i,� iþ1ð Þ

� �

g�1 � I and choose r�iC�i þ s�iC iþ1ð Þ for each

i ¼ 1,…, l� 1. Further, we compute g I þ e1,�l � el,�1ð Þg�1 � I to get rlCl þ slC1 and

g I þ e�1, l � e�l,1ð Þg�1 � I to get r�lC�l þ s�lC�1. We set N ¼ r1C1 þ s1C�2;…; rl�1½
Cl�1 þ sl�1C�l; rlCl þ slC1; r�1C�1 þ s�1C2;…; r� l�1ð ÞC� l�1ð Þ þ s� l�1ð ÞCl; r�lC�lþ s�lC�1�.
Now it is easy to note that N ¼ g D1 þ PD2ð Þ, where D1 ¼ diag r1;…; rl; r�1;…; r�lð Þ,
D2 ¼ diag s1;…; sl; s�1;…; s�lð Þ, and P are permutation matrix corresponding to the
permutation of indexing set 1 ! �2 ! 3 ! �4 ! ⋯ ! l� 1 ! �l ! �1 ! 2 !
�3 ! 4 ! ⋯ ! � l� 1ð Þ ! l ! 1:

Thus we get N ¼ g D1 þ PD2ð Þ, where D1 and D2 are diagonal and P is a permu-
tation matrix. This is not a diagonal matrix. One can do a similar computation for
the odd-orthogonal group and twisted orthogonal group as well.

Remark 4.1 An observant reader would ask the question: why does this attack works
for the special linear and symplectic groups but not for orthogonal groups? The answer lies
in a closer look at the generators (elementary matrices) for these groups.

In the special linear groups, the generators are the elementary transvections of
the form I þ tei, j where i 6¼ j and t∈Fq. Then the attack goes on smoothly as we saw
earlier. However, when we look at generators of the form I þ tei, j � te�j,�i, where
t∈Fq and i 6¼ j, conjugating by them, it gets us a linear sum of the ith and jth
column, not scalar multiple of one particular column. This stops the attack from
going forward. However in the symplectic groups, there are generators of the form
I þ ei,�i and I þ e�i, i for 1≤ i≤ l. These generators make the attack possible for the
symplectic groups. However there are no such generators for orthogonal groups,
and so this attack turns out to be impossible for orthogonal groups.

5. The case for two-generators and prime fields

One serious objection against a MOR cryptosystem is the size of the key ([10],
Section 7). The reason is that in a MOR cryptosystem, the automorphisms are
presented as action on generators. Now the bigger the number of generators, the
larger the key-size.

On the other hand, many of the finite simple groups can be generated by two
elements. However, a set of generators is not enough. We must be able to compute
the image of an arbitrary element. When the automorphism is presented as action
on generators, we need an efficient solution to the word problem in order to do that.
We have demonstrated in Appendix A that there is one set of generators, the
elementary matrices, for which the word problem is easy.

The theme of this section is that for symplectic and even-order split orthogonal
groups, there are two generators and for the odd-orthogonal group there are three
generators. Over the prime field of odd characteristic, one can easily compute the
word corresponding to the elementary matrices for these generators.

So one can present the automorphisms ϕ and ϕm as action on these few genera-
tors and then compute the action of these automorphisms on the elementary matri-
ces later. This substantially reduces the key-size. To do this we use the technique of
straight line programs, which is popular in computational group theory. These are
programs, but in practice are actually easy to use formulas. Say, for example, we

want to compute xi, j tð Þ for some t∈Fq. We have loaded matrices wi�1x1,2 �ð Þw i�1ð Þ in
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the memory in such a way that this formula takes as input t and put it in the (1, 2)
position of the matrix x1,2 �ð Þ and do the matrix multiplication. This is one straight
line program. Since these programs are loaded in the memory, computation is much
faster. This is somewhat similar to a time-memory trade-off. We have built a series
of these straight line programs, where one straight line program can use other
straight line programs and have written down the length of these programs. The
length is nothing but the number of matrices in the formula.

Using the symplectic group in the MOR cryptosystem is straightforward. How-
ever, using orthogonal groups is little tricky because of the presence of λ in the
output of the Gaussian elimination algorithm (see Section A.2.3). It is well known
that the elementary matrices, without wi—the row interchanges matrices and gen-
erates Ω, the commutator subgroup of a orthogonal group. However in between the
commutator and the whole group, there is another important subgroup,
WΩ ¼ Ω;wih i for some i. From the algorithmic point of view, it is the subgroup of
all the matrices for which the λ is a square. Now once the λ is a square and we can
efficiently compute the square root, we can write this matrix down as product of
elementary matrices, and it is easy to implement in the MOR cryptosystem. It is well
known that if p � 3 mod4ð Þ, then it is easy to compute the square root. Only for this
reason, in the latter part of this section and for orthogonal groups, we concentrate
on p � 3 mod4ð Þ.

5.1 Symplectic group Sp (2l, p)

Let p be an odd prime. It is known [16] that the group Sp(2l,p) is generated by
two elements:

x ¼ x1,2 1ð Þ (1)

w ¼
0 1

�I2l�1 0

� 	

(2)

We will refer these two elements as Steinberg generators. However in the
context of the MOR cryptosystem, we need to know how to go back and forth
between these two generating sets—Steinberg generators and elementary matrices
(see Table A3). To write w as a product of elementary matrices is easy, just put this
generator through our Gaussian elimination algorithm. Here we demonstrate the
other way round, that is, how to write elementary matrices as a product of x and w.
In what follows, we denote the length of SLPs by L δ; ið Þ, where δ ¼ j� i and
1≤ i, j≤ l.

δ ¼ 1, xi, j tð Þ ¼ wi�1x1,2 tð Þw� i�1ð Þ,

δ ¼ 2, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ

 �

,

δ ¼ 3, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ

 �

,

⋮ ⋮ ⋮

δ ¼ l� 1, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ

 �

:

Here

L δ; ið Þ ¼
2i� 1 for δ ¼ 1,

2L δ� 1ð Þ þ 4 iþ δð Þ � 6 for δ ¼ 2, 3,…, l� 1:

�
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Now wl ¼ �1ð Þl�1 0 Il

�Il 0

� 	

and xj, i tð Þ ¼ wlxi, j �tð Þw�l, so length of this SLP is

L δ; ið Þ þ 2l. Hence we get all xi, j tð Þ for 1≤ i 6¼ j≤ l. Number of SLP is l. Next observe
the following:

Elements Indices Equation Length

x1,�l tð Þ wxl�1, l tð Þw
�1 2l� 1

x1,�i tð Þ 2≤ i≤ l� 1 xi, l tð Þ; x1,�l 1ð Þ½ � 2 L l� i; ið Þ þ 2l� 1ð Þ

xi,�j tð Þ 2≤ i≤ l� 1

iþ 1≤ j≤ lð Þ

xi,1 tð Þ; x1,�j 1ð Þ

 �

2 L i� 1; 1ð Þ þ 4l� 1ð Þ

2 L i� 1; 1ð Þ þ 2L l� j; jð Þ þ 6l� 2ð Þ

j ¼ l

j 6¼ l

xi,�i tð Þ i ¼ 1, 2,…, l� 1 xi, iþ1
t
2

� �

; xi,� iþ1ð Þ 1ð Þ

 �

2 2L l� 2; 1ð Þ þ 10l� 5ð Þ

2ðL 1; ið Þ þ 2L i� 1; 1ð Þþ

4L l� iþ 1ð Þ; iþ 1ð Þ þ 12l� 4Þ

i ¼ l� 1

i 6¼ l� 1

xl,�l tð Þ xl, l�1
t
2

� �

; xl�1,�l 1ð Þ

 �

2 2L l� 2; 1ð Þ þ 12l� 5ð Þ

So we generate all xi,�j tð Þ for 1≤ i, j≤ l and xi,�i tð Þ for 1≤ i≤ l. Now

wlxi,�j tð Þw
�l ¼ x�i, j tð Þ for 1≤ i, j≤ l and wlxi,�i tð Þw

�l ¼ x�i, i tð Þ for 1≤ i≤ l,
then we get x�i, j tð Þ and x�i, i tð Þ. Total number of SLPs is lþ 3þ 1ð Þ þ 2þ 1ð Þ

¼ lþ 7. Hence we generate all the elementary matrices (Table A3) using only
two generators x and w. Hence Sp(2l, p) is generated by only two generators x
and w.

5.2 Split orthogonal group O+(2l, p)

Let p � 3 mod4ð Þ be a prime. It is known [16] that the group O+(2l,p) is gener-
ated by two elements:

x ¼ x1,2 1ð Þ, (3)

ð4Þ

We will refer these two elements as Steinberg generators. As we discussed
earlier, in context of the MOR cryptosystem, we need to know how to go back and
forth between these two generating sets—Steinberg generators and elementary
matrices (Table A1). To write w as a product of elementary matrices is easy, just
put this generator through our Gaussian elimination algorithm. Here we demon-
strate the other way round, that is, how to write elementary matrices as a product of
x and w. In what follows, we denote the length of SLPs by L δ; ið Þ, where δ ¼ j� i
and 1≤ i, j≤ l.
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δ ¼ 1, xi, j tð Þ ¼ wi�1x1,2 tð Þw� i�1ð Þ,

δ ¼ 2, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ

 �

,

δ ¼ 3, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ

 �

,

⋮ ⋮ ⋮

δ ¼ l� 1, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ

 �

:

Here

L δ; ið Þ ¼
2i� 1 for δ ¼ 1,

2L δ� 1ð Þ þ 4 iþ δð Þ � 6 for δ ¼ 2, 3,…, l� 1:

�

Now wl ¼ �1ð Þl
0 Il

Il 0

� 	

and xj, i tð Þ ¼ wlxi, j �tð Þw�l, so length of this SLP is

L δ; ið Þ þ 2l. Hence we get all xi, j tð Þ for 1≤ i 6¼ j≤ l. The number of SLPs is l. Next
observe the following:

Elements Indices Equation Length

x1,�l tð Þ wxl�1, l tð Þw
�1 2l� 1

x1,�i tð Þ 2≤ i≤ l� 1 xi, l tð Þ; x1,�l 1ð Þ½ � 2 L l� i; ið Þ þ 2l� 1ð Þ

xi,�j tð Þ 2≤ i≤ l� 1

iþ 1≤ j≤ lð Þ

xi,1 tð Þ; x1,�j 1ð Þ

 �

2 L i� 1; 1ð Þ þ 2L l� j; jð Þ þ 6l� 2ð Þ

2 L i� 1; 1ð Þ þ 4l� 1ð Þ

j 6¼ l

j ¼ l

So we generate all xi,�j tð Þ for i. j. Now wlxi,�j tð Þw
�l ¼ x�i, j tð Þ, and we get

x�i, j tð Þ and the total number of SLPs is lþ 4. It is shown by Ree [17] that elementary
matrices xi, j tð Þ generate Ω 2l; pð Þ, the commutator subgroup of O(2l, p). Hence we
generate Ω 2l; pð Þ, using only two elements x and w. Since we generate xi, j tð Þ and wi, j

as a product of xi, j tð Þ and w ¼ w1,2 1ð Þw2,3 1ð Þ⋯wl�1, l 1ð Þwl, so we are able to generate

wl. Here wi, j tð Þ ¼ xi, j tð Þxj, i �t�1ð Þxi, j tð Þ for i 6¼ j and wl ¼ I � el, l � e�l,�l þ el,�lþ

e�l, l. Now we know wl�1 ¼ wlwl, l�1 1ð Þwl�1,�l 1ð Þ, so we generate wl�1. Hence by
induction, we generate wi ¼ wiþ1wiþ1, i 1ð Þwi,� iþ1ð Þ 1ð Þ for i ¼ l� 1,…, 1. Here

wi,�j tð Þ ¼ xi,�j tð Þ 1ð Þx�i, j t
�1ð Þxi,�j tð Þ, for i, j. Hence we generate all the elementary

matrices (Table A1) using only two generators x and w. So we generate a new
subgroup WΩ 2l; pð Þ of O(2l,p), which is a normal subgroup of O(2l, p). Our algo-

rithm output matrix is d λð Þ ¼ diag 1; 1;…; λ; 1; 1;…; λ�1
� �

. If λ∈F�2
p , say

λ � t2 mod pð Þ, then t � λ
pþ1
4 mod pð Þ, since p � 3 mod 4ð Þ. Then

d λð Þ ¼ diag 1;…; t2; 1;…; ; t�2
� �

¼ wl�1, l 1ð Þdiag 1;…; t2; 1; 1;…; ; t�2
; 1

� �

wl�1, l �1ð Þ

¼ wl�1, l 1ð Þwl�1, l tð Þwl�1, l �1ð Þwl�1,�l tð Þwl�1,�l �1ð Þwl�1, l �1ð Þ:

Hence we generate WΩ 2l; pð Þ using only two generators x and w.

5.3 Orthogonal group O(2l+1, p)

Let p � 3 mod4ð Þ be a prime. It is known [16] that the group O(2l+1, p) is
generated by these elements:
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x ¼ x0,1 1ð Þ, (5)

w ¼

�1 0 0

0 0 �1

0 �I2l�1 0

0

B

@

1

C

A
, (6)

wl ¼ I � el, l � e�l,�l þ el,�l þ e�l, l: (7)

We will refer these three elements as Steinberg generators. However in context
of the MOR cryptosystem, we need to know how to go back and forth between
these two generating sets—Steinberg generators and elementary matrices
(Table A5). To write w as a product of elementary matrices is easy, just put this
generator through our Gaussian elimination algorithm. Here we demonstrate the
other way round, that is, how to write elementary matrices as a product of w and x.

First we compute, x0, i tð Þ ¼ wi�1x0,1 1ð Þw� i�1ð Þ which is of length 2i� 1 for 1≤ i≤ l.
Now

wl ¼ �1ð Þl
1 0 0

0 0 Il

0 Il 0

0

B

@

1

C

A

and xi,0 tð Þ ¼ wlx0, i �tð Þw�l for 1≤ i≤ l, and length of this SLP is 2lþ 2i� 1. So
we get xi,0 tð Þ and x0, i tð Þ for i ¼ 1, 2,…, l. Again we have x1,2 tð Þ ¼ x1,0

t
2

� �

; x0,2 1ð Þ

 �

and length of this SLP is 4lþ 8. In what follows, we denote the length of SLPs by
L δ; ið Þ, where δ ¼ j� i and 1≤ i, j≤ l.

δ ¼ 1, xi, j tð Þ ¼ wi�1x1,2 tð Þw� i�1ð Þ,

δ ¼ 2, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ

 �

,

δ ¼ 3, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ

 �

,

⋮ ⋮ ⋮

δ ¼ l� 1, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ

 �

:

Here

L δ; ið Þ ¼
2iþ 4lþ 6 for δ ¼ 1,

2L δ� 1; ið Þ þ 4 iþ δþ 2lþ 2ð Þ for δ ¼ 2, 3,…, l� 1:

�

As xj, i tð Þ ¼ wlxi, j �tð Þw�l, so the length of this SLP is L δ; ið Þ þ 2l. Hence we
generate all xi, j tð Þ for 1≤ i 6¼ j≤ l and the number of SLPs is 3þ l� 1ð Þ þ 1 ¼ lþ 3.
Next observe the following:

Elements Indices Equation (SLP) Length

x1,�l tð Þ wxl�1, l tð Þw
�1 6lþ 6

x1,�i tð Þ 2≤ i≤ l� 1 xi, l tð Þ; x1,�l 1ð Þ½ � 24lþ 20

2L l� i; ið Þ þ 12 lþ 1ð Þ

i ¼ l� 1

i 6¼ l� 1

xi,�j tð Þ 2≤ i≤ l� 1

iþ 1≤ j≤ lð Þ

xi,1 tð Þ; x1,�j 1ð Þ

 �

2L i� 1; 1ð Þ þ 4L l� j� δ; j� δð Þ þ 4 7lþ 6ð Þ

2L i� 1; 1ð Þ þ 4 7lþ 5ð Þ

2L i� 1; 1ð Þ þ 10lþ 6

j, l� 1

j ¼ l� 1

j ¼ l
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So we generate all xi,�j tð Þ for i, j. Now wlxi,�j tð Þw
�l ¼ x�i, j tð Þ, and we have

x�i, j tð Þ. The total number of SLPs is lþ 7. It is shown in Ree [17] that elementary
matrices xi, j tð Þ generate Ω 2lþ 1; pð Þ, the commutator subgroup of O 2lþ 1; pð Þ

which is of index 4. So we generate Ω 2lþ 1; pð Þ, using only two generators x and
w. Now we know wl�1 ¼ wlwl, l�1 1ð Þwl�1,�l 1ð Þ, so we generate wl�1. Hence
inductively we can generate wi ¼ wiþ1wiþ1, i 1ð Þwi,� iþ1ð Þ 1ð Þ for i ¼ l� 1,…, 1. Here

wi, j tð Þ ¼ xi, j tð Þxj, i �t�1ð Þxi, j tð Þ for i 6¼ j and wi,�j tð Þ ¼ xi,�j tð Þx�i, j t
�1ð Þxi,�j tð Þ for

i, j. Hence we generate all the elementary matrices (Table A5) using only two
generators x and w and an extra element wl. Hence we generate a new subgroup
WΩ 2lþ 1; pð Þ of the orthogonal group O 2lþ 1; pð Þ, containing Ω, which is indeed
a normal subgroup of O 2lþ 1; pð Þ. In our algorithm the output matrix is

d λð Þ ¼ diag 1; 1;…; λ; 1;…; λ�1
� �

. If λ∈F�2
p , say λ � t2 modpð Þ, here t � λ

pþ1
4 modpð Þ,

since p � 3 mod4ð Þ. Then

d λð Þ ¼ diag 1; 1;…; t2; 1;…; ; t�2
� �

¼ wl�1, l 1ð Þdiag 1; 1;…; t2; 1; 1;…; ; t�2
; 1

� �

wl�1, l �1ð Þ

¼ wl�1, l 1ð Þwl�1, l tð Þwl�1, l �1ð Þwl�1,�l tð Þwl�1,�l �1ð Þwl�1, l �1ð Þ:

Hence we generate WΩ 2lþ 1; pð Þ using x,w and wl.

Remark 5.1 Let d ζð Þ ¼ diag 1; 1;…; ζ; 1;…; ζ�1
� �

, where ζ is non-square in F�
p . The

group WΩ; d ζð Þh i is the orthogonal group.

5.4 Twisted orthogonal group O� 2l;pð Þ

We use the following generators which we refer as Steinberg generators.

x ¼ x1,2 1ð Þ,

x0 ¼ x�1,2 1ð Þ,

w ¼

�I2 0 0

0 0 �1

0 �I2l�3 0

0

B

@

1

C

A
,

wl ¼ I � el, l � e�l,�l � el,�l � e�l, l,

x1 t; sð Þ, where t∈F�
p , s∈Fp and x2:

In the context of MOR cryptosystem, we need to know how to go back and forth
between these generators and elementary matrices (Table A7). The procedure is
almost similar to the case of O+(2l,p). Again, note that x ¼ x1,2, x0 ¼ x�1,2, x1 t; sð Þ,
and x2 are elementary matrices. Thus, we just need to write w as a product of
elementary matrices. However, computing w is fairly easy, just put this generator
through our Gaussian elimination algorithm in Appendix A. Here we demonstrate
the other way round, that is, how to write elementary matrices as a product of w, x,

and x0. First, we compute x1, i tð Þ ¼ wi�1x1,2 1ð Þw� i�1ð Þ which is of length 2i� 1 for

2≤ i≤ l. Now we compute xi,1 tð Þ using the relation xi,1 tð Þ ¼ wl�1x1, i �tð Þw� l�1ð Þ for
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2≤ i≤ l, where wl�1 ¼ �1ð Þl�1

I2 0 0

0 0 Il�1

0 Il�1 0

0

B

@

1

C

A
and length of this SLP is

2 l� 1ð Þ þ 2i� 1. Thus, we get xi,1 tð Þ and x1, i tð Þ, for i ¼ 2,…, l. Similarly we compute

xi,�1 tð Þ and x�1, i tð Þ using the relations x�1, i tð Þ ¼ wi�1x�1,2 1ð Þw� i�1ð Þ and

xi,�1 tð Þ ¼ wl�1x�1, i �tð Þw� l�1ð Þ for 2≤ i≤ l, and length of this SLP are 2i� 1 and
2 l� 1ð Þ þ 2i� 1, respectively. Next, we compute x2,3 tð Þ using the commutator for-
mula x2,3 tð Þ ¼ x2,1

t
2

� �

; x1,3 1ð Þ

 �

, and length of this SLP is 4 l� 1ð Þ þ 8. In what fol-

lows, we denote the length of SLPs by L δ; ið Þ, where δ ¼ j� i and 2≤ i, j≤ l.

δ ¼ 1, xi, j tð Þ ¼ wi�1x2,3 tð Þw� i�1ð Þ,

δ ¼ 2, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ

 �

,

δ ¼ 3, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ

 �

,

⋮ ⋮ ⋮

δ ¼ l� 1, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ

 �

:

Here

L δ; ið Þ ¼
2iþ 4 l� 1ð Þ þ 6 for δ ¼ 1,

2L δ� 1; ið Þ þ 4 iþ δþ 2 l� 1ð Þ þ 2ð Þ for δ ¼ 2, 3,…, l� 2:

�

As xj, i tð Þ ¼ wl�1xi, j �tð Þw� l�1ð Þ, so length of this SLP is L δ; ið Þ þ 2 l� 1ð Þ. Hence,
we get all xi, j tð Þ for 2≤ i 6¼ j≤ l and the number of SLPs is lþ 2. Next, we compute
the remaining elementary matrices using the commutator formula and are listed in
the table; let r ¼ l� 1.

Elements Indices Equation (SLP) Length

x1,�l tð Þ wxl�1, l tð Þw
�1 6 l� 1ð Þ þ 6

x1,�i tð Þ 2≤ i≤ l� 1 xi, l tð Þ; x1,�l 1ð Þ½ � 24 l� 1ð Þ þ 20

2L r � i; ið Þ þ 12 r þ 1ð Þ

i ¼ l� 1

i 6¼ l� 1

xi,�j tð Þ 2≤ i≤ r � 1

iþ 1≤ j≤ lð Þ

xi,1 tð Þ; x1,�j 1ð Þ

 �

2L i� 1; 1ð Þ þ 4 7r þ 6ð Þ þ 4L r� j� δ; j� δð Þ

2L i� 1; 1ð Þ þ 4 7r þ 5ð Þ

2L i� 1; 1ð Þ þ 10r þ 6

j, l� 1

j ¼ l� 1

j ¼ l

Thus, we have generated all xi,�j tð Þ for i, j. Now, using the formula

wlxi,�j tð Þw
�l ¼ x�i, j tð Þ, we get x�i, j tð Þ and the total number of SLPs required is

lþ 6. Now we know wl�1 ¼ wlwl, l�1 1ð Þwl�1,�l 1ð Þ, so we generate wl�1. Hence by
induction we can generate wi ¼ wiþ1wiþ1, i 1ð Þwi,� iþ1ð Þ 1ð Þ, for i ¼ l� 1,…, 2. Here

wi, j tð Þ ¼ xi, j tð Þxj, i �t�1ð Þxi, j tð Þ, for i 6¼ j, and wi,�j tð Þ ¼ xi,�j tð Þx�i, j t
�1ð Þxi,�j tð Þ, for

i, j. Hence we generate all the elementary matrices defined in Table A7 using
generators x, x0, x1 t; sð Þ, x2, and w and an extra element wl. In our algorithm the

output matrix is d λð Þ ¼ diag 1; 1; 1;…; λ; 1;…; λ�1
� �

. If λ∈F�2
p , say λ � t2 mod pð Þ,

here t � λ
pþ1
4 mod pð Þ, since p � 3 mod 4ð Þ.

Then d λð Þ ¼ diag 1; 1; 1;…; t2; 1;…; ; t�2
� �

¼ wl�1, l 1ð Þdiag 1; 1; 1;…; t2; 1; 1;…; ; t�2
; 1

� �

wl�1, l �1ð Þ

¼ wl�1, l 1ð Þwl�1, l tð Þwl�1, l �1ð Þwl�1,�l tð Þwl�1,�l �1ð Þwl�1, l �1ð Þ:
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Remark 5.2 Let d ζð Þ ¼ diag 1; 1; 1;…; ζ; 1;…; ζ�1
� �

, where ζ is non-square in F�
p .

Then as a consequence of our Gaussian elimination algorithm in Appendix A, we can see
that x, x0, x1 t; sð Þ, x2,w and wl along with d ζð Þ generate the twisted orthogonal group.

6. Conclusion

This section is similar to ([6], Section 8). A useful public-key cryptosystem is a
delicate dance between speed and the security. So one must talk about speed along
with security.

The implementation of the MOR cryptosystem that we have in mind uses the
row-column operations. Let g1; g2;…; gs

� �

be a set of generators for the orthogonal

or symplectic group as described before. As is the custom with a MOR cryptosys-
tem, the automorphisms ϕ and ϕm are presented as action on generators, i.e., we
have ϕ gi

� �

and ϕm gi
� �

as matrices for i ¼ 1, 2,…, s.
To encrypt a message in this MOR cryptosystem, we compute ϕr. We do that by

square-and-multiply algorithm. For this implementation, squaring and multiplying
is almost the same. So we will refer to both squaring and multiplication as multipli-
cation. Note that multiplication is composed of automorphisms.

The implementation that we describe in this chapter can work in parallel. Each
instance computes ϕr gi

� �

for i ¼ 1, 2,…, s. First thing that we do is write the matrix

of ϕ gi
� �

as a word in generators. So essentially the map ϕ becomes a map gi↦wi

where wi is a word in generators of some fixed length. Then multiplication
becomes essentially a replacement, replace all instances of gi by wi. This can be done
very fast. However, the length of the replaced word can become very large. The
obvious question is how soon are we going to write this word as a matrix. This is
a difficult question to answer at this stage and depends on available computational
resources.

Once we decide how often we change back to matrices, how are we going to
change back to matrices? There can be a fairly easy time-memory trade-offs. Write
all words up to a fixed length and the corresponding matrix as a pre-computed table
and use this table to compute the matrices. Once we have matrices, we can multiply
them together to generate the final output. There are also many obvious relations
among the generators of these groups. One can just store and use them. The best
strategy for an efficient implementation is yet to be determined. It is clear now that
there are many interesting and novel choices.

The benefits of this MOR cryptosystem are:
This can be implemented in parallel easily.
This implementation does not depend on the size of the characteristic of the
field. This is an important property in light of Joux’s recent improvement of the
index-calculus attacks [11].

For parameters and complexity analysis of this cryptosystem, we refer to ([6],
Section 8). Assume that we take a prime of size 2160 and we are using two generators
presentation of ϕ for the even-orthogonal group. Then the security is the discrete
logarithm problem in F

pd
2 . Now if we take d ¼ 4, then the security is better than

F22560 . Our key-size is about 8000 bits. Comparing with Monico ([10], Section 7),
where he says an ElGamal will have about 6080 bits, our system is quite
comparable. Moreover, the MOR cryptosystem is better suited to handle large
primes and can be easily parallelized.
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Appendix A. Solving the word problem in G

In computational group theory, one is always looking for algorithms that solve
the word problem. When G is a special linear group, one has a well-known algo-
rithm to solve the word problem—the Gaussian elimination algorithm. One
observes that the effect of multiplying an element of the special linear group by an
elementary matrix (also known as elementary transvection) from left or right is
either a row or a column operation, respectively. Using this algorithm one can start
with any matrix g∈ SL lþ 1; kð Þ and get to the identity matrix, thus writing g as a
product of elementary matrices ([18], Proposition 6.2). One of the objective of this
appendix is to discuss a similar algorithm for orthogonal and symplectic groups,
with a set of generators that we will call elementary matrices in their respective
groups. Similar algorithms can be found in the works of Brooksbank [19, 20] and
Costi [21]. However, we have no restrictions on the cardinality or characteristic of
the field k.

We first describe the elementary matrices and the row-column operations for
the respective groups. These row-column operations are nothing but multiplication
by elementary matrices from left and right, respectively. Here elementary matrices
used are nothing but Chevalley generators which follows from the theory of
Chevalley groups.

The basic idea of the algorithm is to use the fact that multiplying any orthogonal
matrix by any one of the generators enables us to perform row or column opera-
tions. The relation Tgβg ¼ β gives us some compact relations among the blocks of g
which can be used to make the algorithm faster. To make the algorithm simple, we
will write the algorithm for O 2lþ 1; kð Þ, Oþ 2l; kð Þ, and O� 2l; kð Þ separately.

A.1 Groups in which Gaussian elimination works

• Symplectic groups: Since all non-degenerate skew-symmetric bilinear forms
are equivalent ([22], Corollary 2.12), we have a Gaussian elimination algorithm
for all symplectic groups over an arbitrary field.

• Orthogonal groups:

• Since non-degenerate symmetric bilinear forms over a finite field of odd
characteristics are classified ([22], p. 79) according to the β (see Section
3), we have a Gaussian elimination algorithm for all orthogonal groups
over a finite field of odd characteristics.

• Since non-degenerate quadratic forms over a perfect field of even
characteristics can be classified ([23], p. 10) according to quadratic forms
Q(x) defined in ([24], Section 4.2), we have a Gaussian elimination
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algorithm for all orthogonal groups over a perfect field of even
characteristics.

• Furthermore, we have Gaussian elimination algorithm for orthogonal
groups that are given by the above bilinear forms or quadratic forms over
arbitrary fields. This algorithm also works for bilinear or quadratic forms
that are equivalent to the above forms.

A.2 Gaussian elimination for matrices of even size—orthogonal group
Oþ d; kð Þ and symplectic group

Recall that the bilinear forms β are the following:

• For symplectic group, Sp d; kð Þ, d ¼ 2l, and β ¼
0 Il

�Il 0

� 	

.

• For orthogonal group, Oþ d; kð Þ, d ¼ 2l, and β ¼
0 Il

Il 0

� 	

.

Note that any isometry g satisfies Tgβg ¼ β. The main reason our algorithm

works is the following: Recall that a matrix g ¼
A B

C D

� 	

, where A, B, C, and D are

matrices of size l, is orthogonal or symplectic if Tgβg ¼ β for the respective β. After
some usual calculations, for orthogonal group it becomes

TCAþTAC TCBþTAD
TDAþTBC TDBþTBD

� 	

¼
0 Il

Il 0

� 	

(A.1)

The above equation implies among other things, TCAþTAC ¼ 0. This implies
that TAC is skew-symmetric. In an almost identical way, one can show, if g is
symplectic, TAC is symmetric. The working principle of our algorithm is simple—
use the symmetry of TAC. The problem is, for arbitrary A and C, it is not easy to use
this symmetry. In our case we were able to reduce A to a diagonal matrix, and then
it is relatively straightforward to use this symmetry. We will explain the algorithm
in details later. First of all, let us describe the elementary matrices and the row-
column operations for orthogonal and symplectic groups. The genesis of these
elementary matrices lies in the Chevalley basis of simple Lie algebras. We will not
go into details of Chevalley’s theory in this appendix. Furthermore, we do not need
to, the algorithm that we produce will show that these elementary matrices are
generators for the respective groups.

Next we present the elementary matrices for the respective groups and then the
row-column operations in a tabular form.

A.2.1 Elementary matrices (Chevalley generators) for orthogonal group
Oþ d; kð Þ of even size

Following the theory of root system in a simple Lie algebra, we index rows by
1, 2,…, l, � 1, � 2,…, � l. For t∈ k, the elementary matrices are defined as follows
(Tables A1 and A2):

Let us note the effect of multiplying g by elementary matrices. We write
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g∈Oþ 2l; kð Þ as g ¼
A B

C D

� 	

, where A, B, C, and D are l� l matrices.

A.2.2 Elementary matrices (Chevalley generators) for symplectic group

For t∈ k, the elementary matrices are defined as follows (Table A3):
Let us note the effect of multiplying g by elementary matrices. We write

g∈ Sp 2l; kð Þ as g ¼
A B

C D

� 	

, where A, B, C, and D are l� l matrices (Table A4).

A.2.3 Gaussian elimination for Sp 2l; kð Þ and Oþ 2l; kð Þ

Step 1: Use ER1 and EC1 to make A into a diagonal matrix. This makes A into a
diagonal matrix and changes other matrices A, B, C, and D. For the sake of
notational convenience, we keep calling these changed matrices as A, B, C, and
D as well.

Char(k) Elementary matrices

xi, j tð Þ I þ t ei, j � e�j,�i

� �

i 6¼ j

Both xi,�j tð Þ I þ t ei,�j � ej,�i

� �

i, j

x�i, j tð Þ I þ t e�i, j � e�j, i

� �

i, j

wi I � ei, i � e�i,�i þ ei,�i þ e�i, i 1≤ i≤ l

Table A1.
Elementary matrices for Oþ 2l; kð Þ.

Row operations Column operations

ER1 ith↦ithþ tjth row EC1 jth↦jthþ tith column

�jth↦� jth� t �ið Þth row �ith↦� ith� t �jð Þth column

ER2 ith↦ithþ t �jð Þth row EC2 �ith↦� ith� tjth column

jth↦jth� t �ið Þth row �jth↦� jthþ tith column

ER3 �ith↦� ith� tjth row EC3 jth↦jthþ t �ið Þth column

�jth↦� jthþ tith row ith↦ith� t �jð Þth column

wi Interchange ith and �ið Þth row Interchange ith and �ið Þth column

Table A2.
The row-column operations for Oþ 2l; kð Þ.

Char(k) Elementary matrices

xi, j tð Þ I þ t ei, j � e�j,�i

� �

i 6¼ j

Both xi,�j tð Þ I þ t ei,�j þ ej,�i

� �

i, j

x�i, j tð Þ I þ t e�i, j þ e�j, i

� �

i, j

xi,�i tð Þ I þ tei,�i 1≤ i≤ l

x�i, i tð Þ I þ te�i, i 1≤ i≤ l

Table A3.
Elementary matrices for Sp 2l; kð Þ.
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Step 2: There are two possibilities. One, the diagonal matrix A is of full rank,
and two, the diagonal matrix A is of rank r less than l. This is clearly
identifiable by looking for zeros in the diagonal of A.

Step 3: Make r rows of C, corresponding to the non-zero entries in the diagonal
of A zero by using ER3. If r ¼ l, we have C as zero matrix. If not let us assume

that ith row is zero in A. Then we interchange the ith row with the �ith row in
g. We do this for all zero rows in A. The new C is a zero matrix. We claim that
the new A must have a full rank. This follows from Equation A.1; in particular
TCBþTAD ¼ Il. If C is zero matrix, then A is invertible. Now make A a
diagonal matrix by using Step 1. Then one can make A a matrix of the form
diag 1;…; 1; λð Þ, where λ∈ k� using ER1 ([18], Proposition 6.2). Once A is

diagonal and C a zero matrix, the equation TCBþTAD ¼ Il makes D a diagonal
matrix of full rank.

Step 4: Use ER2 to make B a zero matrix. The matrix g becomes a diagonal
matrix of the form

diag 1;…; 1; λ; 1;…; 1; λ�1
� �

, where λ∈ k�.

Step 5: (Only for symplectic groups) Reduce the λ to 1 using Lemma A.1.

Lemma A.1 For Sp 2l; kð Þ, the element diag 1;…; 1; λ; 1;…; 1; λ�1
� �

is a product of

elementary matrices.
Proof. Observe that

I þ λel,�lð Þ I � λ�1e�l, l

� �

I þ λel,�lð Þ ¼ I � el, l � e�l,�l þ λel,�l � λ�1e�l, l and denote it
by wl λð Þ, and then the diagonal element is wl λð Þwl �1ð Þ.

Remark A.1 As we saw in the above algorithm, we will have to interchange ith and

�ith rows for i ¼ 1, 2,…, l. This can be done by pre-multiplying with a suitable matrix.
Let I be the 2l� 2l identity matrix over k. To swap ith and �ith row in Oþ 2l; kð Þ,

swap ith and �ith rows in the matrix I. We will call this matrix wi. It is easy to see
that this matrix wi is in Oþ 2l; kð Þ and is of determinant �1. Pre-multiplying with wi

does the row interchange we are looking for.
In the case of symplectic group Sp 2l; kð Þ, we again swap two rows ith and�ith in

I. However we do a sign change in the ith row and call it wi. Simple computation
with our chosen β shows that the above matrices are in Oþ 2l; kð Þ and Sp 2l; kð Þ,
respectively.

Row operations Column operations

ER1 ith↦ithþ tjth row EC1 jth↦jthþ tith column

�jth↦� jthþ t �ið Þth row �ith↦� ithþ t �jð Þth column

ER2 ith↦ithþ t �jð Þth row EC2 �ith↦� ithþ tjth column

jth↦jthþ t �ið Þth row �jth↦� jthþ tith column

ER3 �ith↦� ithþ tjth row EC3 jth↦jthþ t �ið Þth column

�jth↦� jthþ tith row ith↦ithþ t �jð Þth column

ER1a ith↦ithþ t �ið Þth row EC1a �ith↦� ithþ tith column

ER2a �ith↦� ithþ tith row EC2a ith↦ithþ t �ið Þth column

wi Interchange ith and (�i)th rows Interchange ith and (�i)th columns

with a sign change in the ith row with a sign change in the ith column

Table A4.
The row-column operations for symplectic groups.
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However there is one difference between orthogonal and symplectic groups. In
symplectic group, wi can be generated by elementary matrices because
wi ¼ xi,�i 1ð Þx�i, i �1ð Þxi,�i 1ð Þ. In the case of orthogonal groups, that is not the case.
This is clear that the elementary matrices come from the Chevalley generators and
those generates Ω, the commutator of the orthogonal group. All matrices in Ω have
determinant 1. However wi has determinant �1. So we must add wi as an elemen-
tary matrix for Oþ 2l; kð Þ.

Remark A.2 This algorithm proves every element in the symplectic group is of
determinant 1. Note the elementary matrices for the symplectic group are of determinant
1, and we have an algorithm to write any element as product of elementary matrices. So
this proves that the determinant is 1.

Remark A.3 This algorithm proves if X is an element of a symplectic group then so is
TX. The argument is similar to the above; here we note that the transpose of an elementary
matrix in symplectic groups is an elementary matrix.

A.3 Gaussian elimination for matrices of odd size—the odd-orthogonal
group

In this case, matrices are of odd size and there is only one family of group to
consider; it is the odd-orthogonal group O 2lþ 1; kð Þ. This group will be referred to
as the odd-orthogonal group.

A.3.1 Elementary matrices (Chevalley generators) for O 2l þ 1; kð Þ

Following the theory of Lie algebra, we index rows by 0, 1,…, l, � 1,…, � l.
These elementary matrices are listed in Table A5.

Elementary matrices for the odd-orthogonal group in even characteristics differ
from that of odd characteristics. In above table we made that distinction and listed
them separately in different rows according to the characteristics of k. If char(k) is

even, we can construct the elements wi, which interchanges the ith row with �ith

row as follows:

wi ¼ I þ e0, i þ e�i, ið Þ I þ e0,�i þ ei,�ið Þ I þ e0, i þ e�i, ið Þ ¼ I þ ei, i þ e�i,�i þ ei,�i þ e�i, i:

Otherwise, we can construct wi, which interchanges the ith row with �ith row

with a sign change in ith, � ith and 0th row in odd-orthogonal group as follows:

Char(k) Elementary matrices

Both xi, j tð Þ I þ t ei, j � e�j,�i

� �

i 6¼ j

xi,�j tð Þ I þ t ei,�j � ej,�i

� �

i, j

x�i, j tð Þ I þ t e�i, j � e�j, i

� �

i, j

Odd xi,0 tð Þ I þ t 2ei,0 � e0,�ið Þ � t2ei,�i 1≤ i≤ l

x0, i tð Þ I þ t �2e�i,0 þ e0, ið Þ � t2e�i, i 1≤ i≤ l

Even xi,0 tð Þ I þ te0,�i þ t2ei,�i 1≤ i≤ l

x0, i tð Þ I þ te0, i þ t2e�i, i 1≤ i≤ l

Table A5.
Elementary matrices for O 2lþ 1; kð Þ.
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wi ¼ x0, i �1ð Þxi,0 1ð Þx0, i �1ð Þ ¼ I � 2e0,0 � ei, i � e�i,�i � ei,�i � e�i, i:

The Gaussian elimination algorithm for O 2lþ 1; kð Þ follows the earlier algorithm
for symplectic and even-orthogonal group closely, except that we need to take care
of the zero row and the zero column. We write an element g∈O 2lþ 1; kð Þ as

g ¼

α X Y

E A B

F C D

0

B

@

1

C

A
, where A, B, C, and D are l� l matrices, X and Y are 1� l matri-

ces, E and F are l� 1 matrices, α∈ k and β ¼

2 0 0

0 0 Il

0 Il 0

0

B

@

1

C

A
. Then from the condi-

tion Tgβg ¼ β, we get the following relations:

2TXXþTACþTCA ¼ 0 (A.2)

2αTXþTAFþTCE ¼ 0 (A.3)

2αYþTEDþTFB ¼ 0 (A.4)

2TXYþTADþTCB ¼ Il (A.5)

Let us note the effect of multiplying g by elementary matrices (Table A6).

Row operations Column operations

ER1 ith↦ithþ tjth row EC1 jth↦jthþ tith column

(both) �jth↦� jth� t �ið Þth row (both) �ith↦� ith� t �jð Þth column

ER2 ith↦ithþ t �jð Þth row EC2 �ith↦� ith� tjth column

(both) jth↦jth� t �ið Þth row (both) �jth↦� jthþ tith column

ER3 �ith↦� ith� tjth row EC3 jth↦jthþ t �ið Þth column

(both) �jth↦� jthþ tith row (both) ith↦ith� t �jð Þth column

ER4 0th↦0th� t �ið Þth row EC4 0th↦0thþ 2tith column

(odd) ith↦ithþ 2t0th� t2 �ið Þth row (odd) �ið Þth↦ �ið Þth� t0th� t2ith column

ER5 0th↦0thþ tith row EC5 0th↦0th� 2t �ið Þth column

(odd) �ið Þth↦ �ið Þth� 2t0th� t2ith row (odd) ith↦ithþ t0th� t2 �ið Þth column

ER6 0th↦0thþ t �ið Þth row EC6 �ið Þth↦ �ið Þthþ t0thþ t2ith column

(even) ith↦ithþ t2 �ið Þth row (even)

ER7 0th↦0thþ tith row EC7 ith↦ithþ t0thþ t2 �ið Þth column

(even) �ið Þth↦ �ið Þthþ t2ith row (even)

wi Interchange ith and �ið Þth rows wi Interchange ith and �ið Þth column

(odd) with a sign change in ith, � ith and 0th

rows

(odd) with a sign change in ith, � ith and 0th

columns

wi

(even)

Interchange ith and �ið Þth row wi

(even)

Interchange ith and �ið Þth column

Table A6.
The row-column operations for O 2lþ 1; kð Þ.
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A.3.2 Gaussian elimination for O 2l þ 1; kð Þ

Step 1: Use ER1 and EC1 to make A into a diagonal matrix, but in the process, it
changes other matrices A, B,C,D, E, F, X, and Y. For the sake of notational
convenience, we keep calling these changed matrices as A, B, C,D, E, F, X, and
Y as well.

Step 2: Now there will be two cases depending on the rank r of matrix A. The
rank of A can be easily determined using the number of non-zero diagonal
entries. Use ER3 and non-zero diagonal entries of A to make corresponding r

rows of C zero.

1. If r ¼ l then C becomes zero matrix.

2. If r, l then interchange all zero rows of A with corresponding rows of C
using wi so that the new C becomes a zero matrix.

Once C becomes zero, note that Relation A.2 if char(k) is odd or Relation
Q g vð Þð Þ ¼ Q vð Þ if char(k) is even guarantees that X becomes zero. Relation A.5
guarantees that A has full rank lwhich also makesD a diagonal with full rank l.
Thus Relation A.3 shows that F becomes zero as well. Then use Step 1 to reduce
A ¼ diag 1;…; 1; λð Þ, where λ∈ k�.

Step 3: Now if char(k) is even, then Relation A.4 guarantees that E becomes
zero as well. If char(k) is odd, then use ER4 to make E a zero matrix.

Step 4: Use ER2 to make B a zero matrix. For char(k) even the relation
Q g vð Þð Þ ¼ Q vð Þ guarantees that Y is a zero matrix, and for char(k) odd
Relation A.4 implies that Y becomes zero.

Thus the matrix g reduces to diag �1; 1;…; λ; 1;…; λð Þ, where λ∈ k�.
Remark A.4 Let k be a perfect filed of characteristics 2. Note that we can write the

diagonal matrix diag 1;…; 1; λ; 1;…; 1; λ�1
� �

as a product of elementary matrices as fol-

lows:

diag 1;…; 1; λ; 1;…; 1; λ�1
� �

¼ xl,�l tð Þx�l, l �t�1ð Þxl,�l tð Þ, where t2 ¼ λ,

and hence we can reduce the matrix g to identity.

A.4 Gaussian elimination in twisted orthogonal groups

In this section we present a Gaussian elimination algorithm for twisted orthogo-
nal groups. The size of the matrix is even; the bilinear form used is c0 from Section 3.

A.4.1 Elementary matrices (Chevalley generators) for twisted orthogonal
groups O� 2l; kð Þ

In this section, we describe row-column operations for twisted Chevalley
groups. These groups are also known as the Steinberg groups. An element

g∈O� 2l; kð Þ is denoted as g ¼

A0 X Y

E A B

F C D

0

B

@

1

C

A
, where A, B,C, and D are

l� 1ð Þ � l� 1ð Þ matrices, X and Y are 2� l� 1ð Þ matrices, E and F are l� 1ð Þ � 2
matrices, and A0 is a 2� 2 matrix. In the Gaussian elimination algorithm that we
discuss, we reduce X, Y, E, F, B, and C to zero and A and D to diagonal matrices.
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However, unlike the previous cases, we were unable to reduce A0 to an identity
matrix. However, for odd characteristics we were able to reduce A0 to a two-
parameter subgroup.

We now talk about the output of the algorithm. In the output we will have a

2� 2 block (also called A0) which will satisfy TA0β0A0 ¼ β0, where β0 ¼
1 0

0 ϵ

� 	

for odd characteristics and ε is a non-square. Then A0 is a orthogonal matrix given

by the bilinear form β0. Now if we write A0 ¼
a b

c d

� 	

, then we get the following

equations:

a2 þ c2ϵ ¼ 1, abþ cdϵ ¼ 0, b2 þ d2ϵ ¼ ϵ:

Considering the fact that det A0ð Þ ¼ �1, one more equation ad� bc ¼ �1 and
this leads to two cases either a ¼ d and b ¼ �cϵ or a ¼ �d and b ¼ cϵ. Recall that,
since ϵ is not a square, d 6¼ 0. Then if c ¼ 0, then there are four choices for A0 and

these are A0 ¼
�1 0

0 �1

� 	

.

To summarize, the output of the algorithm A0 will have one of the following
forms

t �sϵ

s t

� 	

or
t sϵ

s �t

� 	

,where t2 þ s2ϵ ¼ 1, (A.6)

and t∈ k�, s∈ k, and ϵ are non-square. There are now two ways to describe the
algorithm: one is to leave A0 as it is in the output of the algorithm, and the other is to
include these matrices as generators. For the purpose of uniform exposition, we
chose the latter and included the following two generators

Char(k) Elementary matrices

xi, j tð Þ I þ t ei, j � e�j,�i

� �

i 6¼ j

Both xi,�j tð Þ I þ t ei,�j � ej,�i

� �

i, j

x�i, j tð Þ I þ t e�i, j � e�j, i

� �

i, j

wi I � ei, i � e�i,�i þ ei,�i þ e�i, i 2≤ i≤ l

xi,1 tð Þ I þ t e1, i � 2e�i,1ð Þ � t2e�i, i 2≤ i≤ l

x1, i tð Þ I þ t �e1,�i þ 2ei,1ð Þ � t2ei,�i 2≤ i≤ l

xi,�1 tð Þ I þ t e�1, i � 2εe�i,�1ð Þ � εt2e�i, i 2≤ i≤ l

Odd x�1, i tð Þ I þ t �e�1,�i þ 2εei,�1ð Þ � εt2ei,�i 2≤ i≤ l

x1 t; sð Þ I þ t � 1ð Þe1,1 � t þ 1ð Þe�1,�1 þ s e�1,1 þ εe1,�1ð Þ t2 þ εs2 ¼ 1

x2 I � 2e�1,�1

x1,�i tð Þ I þ te1,�i þ tei,�1 þ αt2ei,�i 2≤ i≤ l

Even x�1,�i tð Þ I þ te�1,�i þ tei,1 þ αt2ei,�i 2≤ i≤ l

xA0 I þ t � 1ð Þe1,1 þ s� 1ð Þe�1,�1 þ pe1,�1 þ re�1,1 tsþ pr ¼ 1

Table A7.
Elementary matrices for O� 2l; kð Þ.
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x1 t; sð Þ ¼ I þ t� 1ð Þe1,1 � tþ 1ð Þe�1,�1 þ s e�1,1 þ ϵe1,�1ð Þ; t2 þ ϵs2 ¼ 1,

x2 ¼ I � 2e�1,�1,

in the list of elementary matrices in Table A7. In the case of even characteristics,

no such reduction is possible, and we included the matrix
t p

r s

� 	

in the list of

generators with the condition that the determinant is 1.
The elementary matrices for O� 2l; kð Þ depend on the characteristics of k. We

describe them separately in the following table. Let α be an Arf-invariant, 2≤ i, j≤ l
and t∈K and ξ∈ k�.

Let us note the effect of multiplying g by elementary matrices. Elementary
matrices for the twisted orthogonal group in even characteristics differ from that
of odd characteristics, so in the following tables (Tables A8 and A9), we made
that distinction and listed them separately in different rows according to the
characteristics of k.

Row operations

ER1 (both) ith↦ithþ tjth row and �jth↦� jth� t �ið Þth row

ER2 (both) ith↦ithþ t �jð Þth row and jth↦jth� t �ið Þth row

ER3 (both) �ith↦� ith� tjth row and �jth↦� jthþ tith row

ER4 (odd) 1st↦1st� t �ið Þth row and ith↦ithþ 2t1st� t2 �ið Þth row

ER5 (odd) 1st↦1stþ tith row and �ið Þth↦ �ið Þth� 2t1st� t2ith row

ER6 (odd) �1ð Þth↦ �1ð Þth� t �ið Þth row and ith↦ithþ 2εt �1ð Þth� εt2 �ið Þth row

ER7 (odd) �1ð Þth↦ �1ð Þthþ tith row and �ið Þth↦ �ið Þth� 2εt �1ð Þth� εt2ith row

ER8 (even) 1st↦1stþ t �ið Þth row and ith↦ithþ t �1ð Þthþ αt2 �ið Þth row

ER9 (even) �1ð Þth↦ �1ð Þthþ t �ið Þth row and ith↦ithþ t1stþ αt2 �ið Þth row

wi (both) Interchange ith and �ið Þth row

Table A8.
The row operations for O� 2l; kð Þ.

Column operations

EC1(both) jth↦jthþ tith column and �ith↦� ith� t �jð Þth column

EC2 (both) �ith↦� ith� tjth column and �jth↦� jthþ tith column

EC3 (both) jth↦jthþ t �ið Þth column and ith↦ith� t �jð Þth column

EC4 (odd) 1st↦1stþ 2tith column and �ið Þth↦ �ið Þth� t1st� t2ith column

EC5 (odd) 1st↦1st� 2t �ið Þth column and ith↦ithþ t1st� t2 �ið Þth column

EC6 (odd) �1ð Þth↦ �1ð Þthþ 2εtð Þith column and �ið Þth↦ �ið Þth� t �1ð Þth� εt2ith column

EC7 (odd) �1ð Þth↦ �1ð Þth� 2εt �ið Þth column and ith↦ithþ t �1ð Þth� εt2 �ið Þth column

EC8 (even) �1ð Þth↦ �1ð Þthþ tith column and �ið Þth↦ �ið Þthþ t1stþ αt2ith column

EC9 (even) 1st↦1stþ tith column and �ið Þth↦ �ið Þthþ t �1ð Þthþ αt2ith column

wi (both) Interchange ith and (�i)th column

Table A9.
The column operations for O� 2l; kð Þ.
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Note that any isometry g satisfies Tgβg ¼ β. The main reason the following

algorithm works is the closed condition Tgβg ¼ β which gives the following
relations:

TA0β0A0þ
TFEþTEF ¼ β0, (A.7)

TA0β0Xþ
TFAþTEC ¼ 0, (A.8)

TA0β0Yþ
TFBþTED ¼ 0, (A.9)

TXβ0Xþ
TCAþTAC ¼ 0, (A.10)

TXβ0Yþ
TCBþTAD ¼ Il�1: (A.11)

A.4.2 The Gaussian elimination algorithm for O� 2l; kð Þ

Step 1: Use ER1 and EC1 to make A into a diagonal matrix, but in the process, it
changes other matrices A0, A, B, C,D, E, F, X, and Y. For the sake of notational
convenience, we keep calling these changed matrices as A0, A, B, C,D, E, F, X,
and Y as well.

Step 2: Now there will be two cases depending on the rank r of the matrix A.
The rank of A can be easily determined by the number of non-zero diagonal
entries.

Step 3: Use ER3 and non-zero diagonal entries of A to make corresponding r

rows of C zero.
• If r ¼ l� 1 then C becomes zero matrix.

• If r, l� 1 then interchange all zero rows of A with corresponding rows of C
using wi, so that the new C becomes a zero matrix.

• Once C becomes zero one, can note that the relation TXβ0Xþ
TCAþTAC ¼ 0

if char kð Þ is odd or the relation Q g vð Þð Þ ¼ Q vð Þ and the fact that αt2 þ tþ α

is irreducible when char kð Þ is even guarantees that X becomes zero. Then
the relation TXβ0Yþ

TCBþTAD ¼ Il�1 guarantees that A has full rank l� 1
which also makes D a diagonal with full rank, and the relation
TA0β0Xþ

TFAþTEC ¼ 0 shows that F is zero. Now we diagonalize A again
to the form diag 1;…; 1; λð Þ, where λ∈ k� as in Step 1.

Step 4: Use EC4 and EC6 when char kð Þ is odd or use EC8 and EC9 when char kð Þ

is even to make E zero. Note that the relation TA0β0A0þ
TFEþTEF ¼ β0 shows

that A0 is invertible. Thus the relation TA0β0Yþ
TFBþTED ¼ 0 guarantees that

Y becomes zero.
Step 5: Use ER2 to make B a zero matrix. Thus the matrix g reduces to

g ¼ diag A0; 1;…; λ; 1;…; λ�1
� �

. Now if char kð Þ is odd, then go to Step 6;
otherwise go to Step 7.

Step 6: Using the relation TA0β0A0 ¼ β0, it is easy to check that A0 has the form
t �ϵs

s t

� 	

or
t ϵs

s �t

� 	

. If the determinant of A0 is �1, multiply g by x2 to get

new g of the above form such that A0 has determinant 1. Now using the

elementary matrix x1 t; sð Þ, we can reduce g to diag I2; 1;…; λ; 1;…; λ�1
� �

.
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Step 7: Using elementary matrix xA0 , we can reduce g to

diag I2; 1;…; λ; 1;…; λ�1
� �

.

Lemma A.2 Let k be a field of characteristics 2 and let g ¼

A0 X Y

E A B

F 0 D

0

B

@

1

C

A
, where

A ¼ diag 1; 1;…; 1; λð Þ, be an element of O� 2l; kð Þ then X ¼ 0.
Proof. Let e1; e�1; e2;…; el; e�2;…; e�lf g be the standard basis of the vector space V.

Recall that for a column vector x ¼ x1; x�1; x2;…; xl; x�2;…; x�lð Þt, the action of the
quadratic form Q is given by Q xð Þ ¼ α x21 þ x2�1

� �

þ x1x�1 þ…þ xlx�l, where

αt2 þ tþ α is irreducible over k t½ �. By definition, for any g∈O� 2l; kð Þ, we have

Q g xð Þð Þ ¼ Q xð Þ for all x∈V. Let X ¼
x11⋯x1 l�1ð Þ

x21⋯x2 l�1ð Þ

 !

be a 2� l� 1ð Þ matrix. Com-

puting Q g eið Þð Þ ¼ Q eið Þ for all 2≤ i≤ l, we can see that α x21i þ x22i
� �

þ x1ix2i ¼ 0. If
x2i ¼ 0 then we can see that x1i ¼ 0. Suppose x2i 6¼ 0 for some i, then we rewrite the

equation by dividing it by x2i as α
x1i
x2i


 �2
þ x1i

x2i
þ α ¼ 0, which is a contradiction to the

fact that αt2 þ tþ α is irreducible over k t½ �. Thus, x2i ¼ 0 for all 2≤ i≤ l and hence
X ¼ 0. •

A.5 Time complexity of the above algorithms

We establish that the worst-case time complexity of the above algorithm is

O l3
� �

. We mostly count the number of field multiplications.

Step 1: We make A a diagonal matrix by row-column operations that has

complexity O l3
� �

.

Step 2: In making both C and B zero matrix, we multiply two rows by a field
element and additions. In the worst case, it has to be done O lð Þ times and done

O l2
� �

many times. So the complexity is O l3
� �

.

Step 3: In odd-orthogonal group and twisted orthogonal group, we clear

X, Y, E, F, this clearly has complexity O l2
� �

.

Step 4: This step has only a few operations that is independent of l.

Then clearly, the time complexity of our algorithm is O l3
� �

.

We have implemented the above algorithms in Magma [25]. For details of that
implementation along with performance analysis of our algorithm, we refer to
Bhunia et al. ([24], Section 8).
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