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Chapter

Evaluating Clinical Effectiveness
with CF Registries

Rhonda Szczesniak and Bin Huang

Abstract

Treatment and disease registries have played a vital role in understanding the
heterogeneous nature of cystic fibrosis (CF) disease progression. The maturity of so
many patient registries and recent national focus on their potential to improve patient-
centered outcomes have led to the establishment of guidelines for the conduct of
registry data analyses. Despite the insights garnered from utilizing CF patient regis-
tries, the analyses are plagued with methodological challenges, such as confounding,
missing data, time varying treatment and/or covariates, and treatment-by-selection
bias. Nonetheless, these registry studies have been essential for CF clinical effective-
ness research. They reflect real-world clinical practice and allow for evaluating patient
outcomes in a realistic clinical environment. In this chapter, we reflect on these
advancements in registries and study results broadly and specifically in CF. We iden-
tify the key statistical challenges with the analysis of CF registry data from start to
finish, including design considerations, quality assurance, issues with selection bias,
covariate effects, sample size justification and missing data. We describe how these
approaches are implemented to answer clinical effectiveness questions and undertake
an illustrative example on tobramycin effectiveness and lung function decline.

Keywords: confounding-by-indication bias, instrumental variables, lung function
decline, propensity scores, treatment-selection bias

1. Introduction

A registry is “an organized system that uses observational study methods to
collect uniform data (clinical or otherwise) to evaluate specified outcomes for a
population defined by a particular disease, condition or exposure, and that serves a
predetermined scientific, clinical or policy purpose(s)” [1]. Registries and other
non-intervention studies are often referred to as real-world data to distinguish them
from clinical trials or experimental studies.

Treatment and disease registries play a vital role in the advancement of patient-
centered outcomes research. These patient registries often include data arising from
patient surveillance in observational settings. Numerous epidemiologic studies have
used patient registries to characterize disease progression. In more recent years,
patient registries have been used for a variety of health-related inquiries, ranging
from comparative effectiveness studies to informing clinical decision making at the
point of care (see [2], for an example). The maturity of so many patient registries and
recent national focuses on their potential to improve patient-centered outcomes have
led to the establishment of guidelines for the conduct of registry data analyses [1].
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Although these guidelines are recent, the statistical challenges posed in these
observational settings were noted decades ago in epidemiology and public health
research [3]. Indeed, registry analyses are plagued with methodological challenges,
such as confounding, missing data, time varying treatment and/or covariates, and
treatment-by-selection bias.

Despite these challenges, registry studies are essential for clinical effectiveness
research. They reflect real-world clinical practice and allow for evaluating patient
outcomes in a realistic clinical environment. A registry encompasses the general
patient population, including those who are severely ill or less likely to adhere with
assigned treatment. These patients commonly are excluded from the randomized
controlled trials, and are likely to have very different treatment responses. Further,
registry study offers the opportunity to examine important factors such as physi-
cian’s practice behavior, prescription preference and other covariates pertaining to
quality of care, which are impossible to assess in an experimental study. Registry
studies commonly include long-term observation and therefore can reflect change
of treatment practices, in order to provide a timely assessment of emerging research
questions. The use of registry data to evaluate outcomes is of mutual benefit to both
patients and clinicians, and it facilitates management of patient care, thereby
improving the health care system.

1.1 Evaluating the effectiveness of tobramycin on lung function decline

Throughout the chapter, we will refer to an example from a retrospective longi-
tudinal cohort study, which used the Cystic Fibrosis Foundation Patient Registry
(CFFPR) to evaluate the clinical effectiveness of a treatment for lung function
decline [4]. Cystic fibrosis (CF) is a lethal autosomal disease in which respiratory
failure is the primary cause of death. Pseudomonas aeruginosa (Pa) is a common,
chronic pulmonary infection in CF patients. Inhaled tobramycin (hereafter, Tobi)
has been shown to improve lung function in CF patients with Pa in the clinical trial
setting. In this example, it is our objective to evaluate the clinical effectiveness—as
opposed to efficacy—of Tobi using the CFFPR. We will refer to this case study, in
order to illustrate statistical methods for registry data analysis. The Appendix
includes analysis implementation using SAS 9.3 (SAS Institute, Cary, NC).

In this chapter, we focus on the design and statistical analyses of patient registry
studies. We begin in Section 2 by describing processes to design a study involving
registry data, in accordance with the aforementioned guidelines from Gliklich and
colleagues. We follow this section with overviews of inferential analyses methods
that can be used in registry study to combat selection bias, missing data, time
varying treatment or covariates in Section 3. In Section 4, we describe details of
the application to the aforementioned patient registry. We discuss the utility of
existing methods and remaining analytic challenges in Section 5. Finally, we
provide an appendix in Appendix A with implementation of the statistical analyses
in our illustrative application.

2. Design considerations for registry studies

Registries may be organized around conditions or exposures (e.g., a cystic fibro-
sis registry, stroke registry); a healthcare service (e.g., procedure); or a product
(drug or device) and can address questions ranging from treatment effectiveness
and safety to the quality of care delivered. Registries vary in complexity from
simply recording product use as a requirement for reimbursement to more system-
atic efforts to collect prospective data on many types of treatment, risk factors, and
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clinical events in a defined population. Follow-up can be retrospective, prospective,
or a combination of both. The mode and duration of follow-up can range from days
(e.g., hospital admission registry) to decades (e.g., orthopedic implant registry).
Constructing and maintaining a large registry requires substantial resources, col-
laborative effort, and often requires a multi-center or inter-institutional agreement,
and a governing body that oversees and coordinates all activities. Typically, there
are standard guidelines or written procedures in place that help researchers to gain
familiarity and/or access to the registry study.

Before utilizing data from any registry, it is imperative to define the research
question and develop a study protocol. Clinical or public health questions of interest
should be stated as research questions. Each research question should correspond to
a testable hypothesis, which may be assessed using an approach fully described in
the statistical considerations (this is particularly important for comparative effec-
tiveness studies).

2.1 Selecting a registry and target population

Finding a registry that is appropriate to answer the research question of interest
will require us to review preliminary information about each of the prospective
registries, particularly regarding the data elements. For example, consider the fol-
lowing two studies. In each study, it is of interest to determine treatment effective-
ness for cystic fibrosis (CF) lung disease. The first study utilized the Cystic Fibrosis
Foundation Patient Registry (hereafter, CFFPR) [5] to examine the association
between ibuprofen and lung function decline [6, 7]. In a subsequent study, Konstan
et al. [8] assessed the relationship between a different treatment, dornase alfa, and
lung function decline using registry data from the Epidemiologic Study of Cystic
Fibrosis (ESCF) [9]. Although both studies examined treatment effectiveness on
the same outcome (lung function decline), each study required distinct data ele-
ments to answer the research questions regarding treatment effectiveness. The
CFFPR includes data collected on ibuprofen usage; however, the ECSF does not
include information for this treatment, eliminating this database as an option for
the first study. On the other hand, the ECSF has detailed information on pulmonary
symptoms (e.g., coughing), which are known predictors of more rapid lung func-
tion decline [7] and therefore need to be considered as potential confounders to
assessing treatment effectiveness. Although both registries include data elements to
measure dornase alfa usage, which are necessary to answer the research question in
the second study, the ECSF enabled the authors to consider detailed pulmonary
symptoms as potential confounders. If our research question involves a newly
diagnosed condition or rare disorder, we may be limited to a single patient registry.
In those instances, the research question may need additional refinement.

In the study protocol, we will need to state the specific objectives. The objective
of our CF study is to evaluate the effect of tobramycin on lung function decline.
Once the objectives are clarified, we consider the most appropriate study design. In
registry analyses, the selection of our study design often depends on how the
registry was structured. Registries constructed to capture natural histories are often
amenable to studies with longitudinal cohort designs. We can identify the popula-
tion of interest at this point in the study protocol. Acquiring the subset of data
which best reflects the population of interest, exposure variables, and primary and
secondary endpoints may include some manipulation of the original registry data
files. In our CF example, it is of interest to limit our cohort to individuals chronically
infected with Pseudomonas aeruginosa (Pa). We target this population, since our
research question is related to the effectiveness of tobramycin, which is a drug
recommended for treating CF chronic Pa in patients with CF. In our example, we
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Characteristics Treated with Not treated with P-value”
tobramycin tobramycin
Age, mean + SD (n), y 12.82 + 4.68 (6451) 12.78 + 4.59 (6255) 0.84
Male sex, % (n) 47.2% (3046) 53.5% (3346) <0.0001
FEV;, mean + SD (n), % predicted 74.46 + 25.33 (6451) 83.69 + 22.68 (6255) <0.0001
Weight-for-age percentile, 30.05 + 26.08 (6446) 33.92 + 26.88 (6252) <0.0001
mean 4 SD (n)
CF-related diabetes, % (1) 2.3% (150) 1.5% (96) 0.0012
Pancreatic insufficiency, % () 95.3% (6145) 94.8% (5932) 0.27
No or state/federal insurance, % () 32.3% (2082) 30.5% (1910) 0.0348
Prior hospitalizations” — — —
None, % (n) 57.2% (3360) 75.7% (4448) <0.0001
1, % (n) 23.9% (1401) 16.0% (940)
2, % (n) 9.3% (546) 4.6% (273)
3 or more, % (1) 9.6% (566) 3.7% (219)
Dornase alfa, % (n) 79.3% (5116) 49.4% (3087) <0.0001

Abbreviations: CF, cystic fibrosis; FEV, percentage predicted of forced expiratory volume in 1s.
“P-values from Wilcoxon Mann-Whitney or chi-square test.
Y Number of hospitalizations in the year before baseline.

Table 1.
Descriptive analysis of CF registry variables.

determine chronic Pa status for each patient by examining the number of recorded
Pa infections throughout the calendar year. Our primary endpoint is the mean
change in FEV;% predicted over a 2-year period. We selected additional exposure
variables of interest, which are known predictors of change in FEV,% (see Table 1).

2.2 Data elements and quality assurance

For many different types of research, particularly comparative effectiveness
research or research involving children and/or rare disease conditions, no single
institution has a large enough patient population to perform a proper study. This,
along with the growing infrastructures of electronic medical records, has led to an
increased effort to create distributed research networks. The widespread adoption
of electronic health records (EHRs) has enabled them to become a main source for
registry data, capable of capturing the necessary elements as part of routine clinical
care, and the ever-changing clinical practices.

The number of data elements and scope of collection often increase over the life
of the registry. Well-maintained registries typically include data dictionaries, but
verifying data quality specific to our study is essential. In our CF example, we had to
calculate specific variables for analysis. Understanding how the data have been
collected over time and to what extent (e.g., every clinical encounter) will help
determine the appropriate subset of data to extract from the registry. For example,
the CFFPR data are collected at every clinical encounter and hospitalization, as well
as on an annual basis, on each patient and provided to the CF Foundation. Using
descriptive statistics, such as the 5-number summary, mean and standard deviation
for each variable, and histograms or boxplots can highlight data discrepancies in
continuous variables. Similarly, computing the frequency and percentage of each
category in a nominal or ordinal variable may identify variables with questionable
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entries. Furthermore, summary statistics stratified by calendar year can inform
selection of an optimal time frame from natural history registries. In our example,
CF-related diabetes, a known predictor of lung function decline that should be
included in the analysis, was not collected in earlier calendar years in the CFFPR.

Access to most registries requires approval by a local institutional review board
(IRB) prior to data release, and this approval is often necessary to have results of the
study peer-reviewed and published. In our experience, developing a protocol that is
in accordance with the aforementioned guidelines is sufficient for the IRB review.
Although registries rarely contain patient names or medical record numbers, they
often include clinical encounter and/or discharge dates. Having this type of
protected health information in the data often requires IRB approval.

3. Statistical considerations for comparative effectiveness using registry
studies

Statistical analyses in the registry data setting are subject to the statistical chal-
lenges previously described for analyses of observational studies [10]. Registries are
often established for the purpose of evaluating the effects of interventions. The
statistical analysis plan should include appropriate methods to test each hypothesis,
methods to address biases and confounding arising from various sources, and
sample size/power considerations.

3.1 Selection bias

Regardless of the research question, a registry study will likely be plagued with
numerous sources of bias. Selection bias, although inevitable, is typically the most
concerning. This type of bias distorts the results for the association of interest and
may yield misleading results. Failure to sample from the correct target population
and loss to follow-up due to death or some other event are types of selection bias.

A pervasive type of selection bias is confounding by indication, arising from
nonrandomized treatment assignment that is often related to the patient’s risk to
experience poor outcomes. This treatment-by-selection bias creates distinctions
between the risk profiles of treated and comparator groups and may violate statis-
tical assumptions in our analyses. In our CF example, treatment selection bias may
be more pronounced because the drug in question should only be prescribed to
individuals with CF who have a specific chronic infection. Narrowing the cohort to
“sicker” individuals can intensify the aforementioned risk profile imbalance
between Tobi and non-Tobi groups.

Statistical methods to combat treatment selection bias have been applied in previous
studies. Approaches to adjust for treatment selection bias include multivariable regres-
sion, propensity score methods, matching and instrumental variables analysis. Stukel
etal. [11] applied each of these four approaches to examine the association between
cardiac catheterization and long-term acute myocardial infarction mortality. The
authors found that the results differed according to the choice of statistical approach.
Next, we describe and outline each approach in the context of our CF example.

3.2 Statistical analyses of comparative effectiveness utilized for registry data
analysis

3.2.1 Multivariable regression

In the absence of randomization, intervention and comparator groups may
exhibit large differences with respect to observed covariates recorded in the
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registry. This approach, sometimes referred to as covariate adjustment, attempts to
account for such differences that may distort estimates of intervention effects
(Figure 1). Most biomedical studies employ ordinal least squares (OLS) regression
to adjust the association between the treatment indicator variable (T;) and outcome
variable (V) for measured confounders (X3, ... Xk ). The OLS regression model for
each subject (i = 1,...1) specifies

y; = Po + X1+ + X +yTi +u; (1)

where f, is the parameter for the model intercept and y; is an error term. Each of
the model parameters f,, ... fx correspond to the association between the measured
confounder and outcome variable. The parameter for treatment effect is y; we
denote its OLS estimate as y. OLS estimation requires that the error term (%) is not
correlated with the measured confounders (X3, ... Xi) or the treatment (T'). There-
fore, the only effect of T on outcome variable (Y) is the direct effect estimated as 7.
The challenge of utilizing multivariable regression model for comparative effec-
tiveness is that we must appropriate account for necessary set of confounders.
Failure to fully account for necessary confounder may lead to bias estimate of
treatment effect.

3.2.2 Propensity scove regression

The propensity score (PS) is a summary balancing score indicating the
likelihood for a patient to receive the active treatment (T; = 1) using observed
set of confounders (X3, ... Xg), represented in Figure 1. It is a balance score,
because by conditioning on the propensity score, one could achieve independence
between the treatment assignment and confounders; therefore, propensity scores
help to achieve quasi-experiment design for natural occurring treatment assign-
ment in a registry study. The PS can be estimated through a logistic regression
modeling

lOgltP(Tl = 1) = ﬂo +ﬂ1X1 + +ﬂKXK (2)
Instrument
Measured
Confounders
Treatment > Outcome

Figure 1.

Causal diagram. The multivariable vegression in Model (1) examines the treatment-outcome association, after
adjustment for measured confounders. The propensity score methods outlined in Model (2) use the measured
confounders to balance the treatment groups (exposure). The IV regression from Model (3) examines the
treatment-outcome association, to the extent that the exposure is associated with the instrument. The instrument
should not be velated the measured confounders; therefore no arrow is drawn for this relationship.
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where logit ' (p) = log 1’%?, and the propensity score is estimated by

#; = logit ' (By + 1X1 + - + PxXk). There are several propensity score approaches:
propensity score adjustment, stratified analyses by the quintiles of propensity score,
propensity score sub classification matches treated and untreated patients on

their propensity score sub-classes (often by percentiles), and inverse weighting of
propensity scores. The first approach includes propensity score directly in the
regression equation as a covariate to obtain adjusted treatment effect,

Y, = Po+ P+ 7T +u; (3)

The second and the third approaches often categorize patients into five groups
using propensity score quintiles. The stratified analyses will perform the regression
model of y, = f, , + 7, Ti for k =1, ..., 5, and estimate the treatment effect by
Y = Xk_1.57k/5. The PS sub-classification matched analyses will be matching the
Tobi and non-Tobi patients on their propensity score groups, then perform analyses
for matched pairs. The propensity matching could also be performed on a finer
grouping, for example, using 10 groups, or fine matching where a Tobi patient
finding matching non-Tobi patient(s) though a distance measure. The method of

inverse PS weighting assigns higher (lower) weight to patients who has lower

T

(higher) propensity of receiving Tobi, where the weight is defined as w; = fT + =5

1—
T

The intuition behind the weighting approach came from the survey sampling
method, and through inverse weighting, one could align the Tobi and non-Tobi
patients to have comparable distribution of the confounders. There are advantages
and disadvantage of each propensity score methods. Comparisons of these methods
can be found in an excellent review paper by Austin and Mandani [12] and the
references therein. Different methods are available for deriving propensity score.
Other than the logistic regression, one could use more flexible classification and
regression tree [13], boosted logistic regression [14], and covariate balancing pro-
pensity score method [15]. When applying PS approaches, it is important to check
PS balance between the two treatment groups. Patients who have extremely high or
low PS values that are not compatible with values from any patients in the other
treatment group should be excluded from the PS analyses. The balancing check can
be presented in graphic presentation, usually presenting the absolute standardized
mean difference (SMD).

3.2.3 Instrumental variables (IV) analysis

One of our primary analysis goals in the registry setting is to identify potential
sources of confounding and make the appropriate adjustments in our statistical
analysis. Failure to identify sources of measured confounding results in residual
confounding. This type of unaddressed confounding goes into the error term, u,
which was introduced in Model (1).

Inferential results can also be impacted by what is known as unmeasured
confounding. McClellan et al. [16] propose a technique known as instrumental
variables (IV) to combat both measured and unmeasured confounding. We
introduce the following notation for IV regression. From Model (1), recall that the

variables (Y, T;, X;) correspond to data from the i patient in the registry, and we
assume that there is no correlation between the treatment variable, T;, and the error
term, u;. This correlation is present when patients receive treatment based on
unmeasured characteristics. Let R; represent an instrument. Consider the following
example of a randomized controlled trial. If R; represents random assignment to
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treatment, it is the ideal instrument. By construction, it is related to outcome only
through treatment assignment [17].

In the typical clinical setting, a provider does not flip a coin to determine
whether she will prescribe her patient treatment A, as opposed to some alternative.
By construction, real-world data contained in registries represent non-random
assignment to treatment. Instead, we identify a variable—“an instrument”—that
is related to the outcome only through treatment. The variable R; is a valid
instrument, provided the following assumptions are met:

i. R; is associated with the treatment variable or exposure of interest, T;;

ii. R;is not directly associated with the outcome, Y;; R; is only associated with
Y; through the treatment variable, T

Fortunately, assumption (i) is testable by performing least-squares regression of
the proposed IV on the treatment variable and measured confounders:

T; =bo + AR; + b1 X1 + -+ + b Xk + 6, (4)

where by is the intercept; b1, ... bi are the parameters corresponding to the
aforementioned measured confounders, X3, ... X; 4 is the parameter estimate of the
association between the treatment variable, T;, and the IV, R;. The magnitude of
this association is a measure of the strength of the instrument [17]. Higher magni-
tude corresponds to greater strength. Let T; be the resulting prediction of the
treatment value, obtained from Model (4). This association is illustrated in Figure 1
by the arrow moving downward from the instrument to exposure.

We continue this approach, often referred to as two-stage least squares regres-
sion, by substituting T; from Model (4) into the multiple linear regression defined
in Model (1):

yi :ﬂlo+ﬁ/1X1+“’ +ﬂ;<X[(+}//T,'+I’]i (5)

In this regression, the same method of estimation is used; however, we use
distinct notation because parameter estimates and residual error will differ from
Model (1). Finally, we use the estimate of ' from Model (5) for our interpretations
of treatment effect on the outcome. This estimate corresponds to the association in
Figure 1 from treatment to outcome. Note that it is the same path as the multiple
linear regression, but the treatment effect has been “instrumented.” Assumption
(ii) cannot be formally tested, but can be explained in the context of the registry
analysis at-hand. We provide this type of explanation in our illustrative application.
Sensitivity analyses are imperative to determine the robustness of the IV. We
recommend analyzing the data in subgroups to understand how these groups may
drive heterogeneous treatment effects.

3.3 Time varying treatment/exposure and covariate

Incorporating time-varying treatment and/or covariate effects is a pervasive
issue in registry data analyses. The fundamental challenge arising from the change
in treatment and covariates over time often results from a patient’s responses and/or
experiences with the previous treatment assignment. Thus, simply including the
time varying treatment or covariate in such cases could induce bias in estimating
treatment effect. Special attention is needed to address this issue when analyzing
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registry data. Relatively few statistical approaches are available to assess time-
varying treatment effects or intermediate outcomes. Hogan and Lancaster [18]
proposed inverse probability weighting and instrumental variables as time-varying
treatment approaches; another population-based approach is the G-computation
formula [19].

3.4 Sample size justification

Completing this process implies that we have carefully considered the
hypothesis test and analysis variables, ultimately arriving at a statistical
model that will rigorously address the research question. Sample size
assessments will differ according to the statistical approach proposed to test the
hypothesis, and should incorporate previously established public health or clinical
information.

If the statistical approach entails adjustment for confounding and other sources
of bias, the sample size calculation is often straightforward. Suppose we plan to test
the significance of the treatment effect, y’, previously defined in Model (1), and we
have already identified measured confounders (i.e., covariates) that should be
included in the model, referred to as Xj, --- Xg. Our null hypothesis corresponds to
y = 0, while our alternative hypothesis corresponds to y # 0. Testing this hypothe-
sis corresponds to determining sample size/power for a multiple linear regression
model [20].

We now reconsider the importance of sample size justification for analyses
involving a large registry. Statistical significance depends on the sample size and is
typically declared if the P value obtained from the test statistic falls below a
predetermined threshold (e.g., 0.05). This type of significance may be reached in
any study, provided that the sample size is large enough; therefore, in addition to
this mathematical criterion, we recommend specifying conditions that must be met
to achieve practical (public health or clinical) significance within the context of the
research question. In biomedical studies, these criteria can often be defined by
determining the minimal clinically important difference (MCID). This technique
was originally proposed for clinical trials [21] but has spawned several other
approaches [22] to determine the MCID. Once we incorporate the MCID into our
null and alternative hypothesis statements, we can perform the sample size
calculation that corresponds to our proposed inferential analysis.

3.5 Missing data mechanisms and missing data modeling

Missing data can occur in the registry setting for a variety of reasons. Simply put,
a missing data point is an observation that should have been recorded; however, for
some reason, it was not recorded. It is our desire, as analysts, to understand the
reason for this “missingness.” In this section, we outline practical analytic
approaches to identify potential sources attributable to missing data and methods to
combat the resulting bias. We begin with a brief description of the three funda-
mental missing data mechanisms. For an elegant mathematical treatment of the

distinctions among the mechanisms, we refer the reader to the original work by
Rubin [23].

3.5.1 Missing completely at random (MCAR)

If the registry data are MCAR, then the reason for missingness is not related to
the data that we were able to observe or to the data that we were not able to observe.
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We now consider the CF example. MCAR could correspond to the following. The
probability of a lung function observation (the outcome variable) being missing
from the registry does not depend on any of the observed data (e.g., patient’s age)
or any of the unobserved data (e.g., having lower lung function does not alter the
risk of the observation being missing). Our analysis results from this subset of data
will be no different (aside from larger standard errors) than if we had been able to
perform the analysis on the entire dataset.

3.5.2 Missing at random (MAR)

This assumption is more relaxed than MCAR but still has specific requirements.
For MAR to hold, the missingness cannot be related to unobserved data, given what
we have been able to observe. In other words, the missingness can depend upon
data that we have already observed (i.e., data entries that were recorded in the
registry). Referring again to our CF example, the probability of a lung function
observation being missing does not depend upon the actual lung function value,
provided that we have the other covariate data. In this case, missingness can depend
upon characteristics that have been recorded in the CFFPR (e.g., gender).

3.5.3 Missing not at random (MINAR)

We are more likely to encounter this mechanism in registry data, compared to
the other mechanisms. If data are MNAR, then the missingness is related to
unobserved data (unlike MAR). The missing observation follows a different distri-
bution than the observed data, regardless of whether the two types of data have
other characteristics that are the same. Despite the fact that we have registry data,
the data that we are able to observe are not representative of the entire population.
Within the CFFPR example, consider the longitudinal data. According to CF Foun-
dation guidelines, patients are supposed to have at least one pulmonary function
test per quarter [5]. Suppose there is a subset of patients who do not have lung
function data recorded at every clinical encounter. There are many plausible expla-
nations for why these data are missing. For an individual patient, there may be a
lack of interest in managing his disease progression, or it could be an entry error.
In general, we may lack relations to observed values or those relations may be
irrelevant.

In practice, we do not have the information necessary to declare the reason for
the missingness. Even thoughtfully developed, well-maintained registries will have
missing data; therefore, sensitivity analyses are needed as part of the statistical
considerations. As a preliminary step, we recommend creating an indicator
(dummy) variable to indicate whether the observation is missing (=1) or otherwise
(=0). Regress this dichotomous variable on the other variables to determine
whether the missing indicator is associated with observed characteristics. If no
association is found, we may conclude that the data are MCAR; however, we still
encourage caution when making the MCAR assumption for statistical models using
registry data. Although small sample size may produce this result, it is not a likely
culprit in settings with large data sources. It is possible that the extent of the
missingness may be too low (e.g., 5% of observations are missing) to substantially
alter results, but having a low proportion of missing observations is also unlikely in
a registry setting. If there is a significant association from our preliminary regres-
sion with the indicator variable, then we can rule out the MCAR assumption and
more intently investigate the MAR and MNAR assumptions.

10
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We can further examine the MAR assumption by checking for variables that are
often missing simultaneously or other potential patterns of missingness. Whenever
possible, we recommend performing the analysis under the MAR assumption. The
two most common approaches under this mechanism are direct modeling and
multiple imputation. Direct modeling implies that we will consider all available data
points in our parameter estimation. This method is sometimes referred to as “avail-
able case analysis” [24]. In other words, the analysis will not exclude the records of
any individual subject who has at least one observed entry. There is a second
approach, multiple imputation [25], which has gained favor among analysts with
the expansion of computing resources. To perform this approach, several data
points for each missing data point are generated, resulting in several distinct
dataset. We employ our proposed statistical model separately on each dataset and
obtain parameter estimates. The estimates are combined to produce an aggregate
estimate. The aggregate estimate and standard error are used to make interpreta-
tions of results. This technique is available in many software packages (e.g., SAS
proc mi, proc mianalyze).

Unfortunately, there is no way to know whether the data are MAR or MNAR.
Previous work by experts in the analysis of missing data has shown that any
model we develop under the MNAR assumption will have an equivalent MAR
counterpart [26]. Developing an MNAR model requires technical steps that are
beyond the scope of our current chapter. Dmitrienko et al. [27] provide an
applied approach to investigating MNAR assumptions in the context of sensitivity
analyses. Although their text focuses on analyses for data from clinical trials, their
approach and accompanying SAS implementation may be adapted to registry data
analyses.

3.6 Interpretations of registry data analyses

To simplify interpretation and improve accuracy of the results, sources of
potential confounding (measured or unmeasured) should be considered as much in
advance as possible. Propensity score regression offers an effective method to
further balance the treatment and non-treatment groups. Like multivariable
regression, this approach accounts for treatment selection bias [28] only for mea-
sured confounders (e.g., measured comorbidities and severity of illness). The pro-
pensity score could utilize measured confounders to remove treatment-selection
bias. However, when there are unmeasured confounders that determine treatment-
selection bias, the propensity-score approach will be limited. In analyzing registry
data, IV analyses should be considered when unmeasured confounders are
suspected.

Although the IV analysis is a powerful approach, this method has some note-
worthy constraints. Large sample size is essential for performing IV analysis, but
this issue may not be a challenge in the registry setting. The IV must only affect
treatment assignment and have no direct association with outcome. If these
assumptions are satisfied, then the IV analysis will yield a consistent estimate of the
average causal effect [29]. Assumption (i) is directly testable, but making a heuris-
tic argument for assumption (ii) is a common approach. See Kahn et al. [30] for an
example. A weak IV will produce larger standard errors and may lead to incorrect
inferential results. This approach is ideal in the presence of small/moderate
confounding but becomes less reliable in the presence of large confounding.
Admittedly, this is a limitation of the IV analysis in the registry setting. On the other
hand, an appropriate IV minimizes the potential impacts of measured and
unmeasured confounding [31].
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Sensitivity analyses should be performed to examine potential impacts of miss-
ing data and particular subgroups that may drive inferential results. Analyses
corresponding to the missing at random assumption should be explored in the
registry setting. Subgroup analyses are essential to identify heterogeneous treat-
ment effects, particularly in the IV analysis. These sensitivity analyses should be
performed regardless of the statistical model that we choose to employ.

4. Illustrative application
4.1 Data summary and descriptive analysis

The CFFPR contains data on individuals receiving care from any CF center in
the United States, which has been accredited by the CF Foundation. Like many
registries, we underwent an application process to receive the data. The CFFPR data
that we received were in separate databases. We used the following two databases.
The encounter-level database had one record per patient, per clinical encounter.
The annual-level database contained one record per patient, per year. We merged
these data to extract the information necessary to determine whether there is a
significant association between the use of inhaled tobramycin and lung function in
individuals with CF who are chronically infected with Pa. Our primary outcome,
lung function, was defined as mean change in FEV,% predicted (FEV;). In this
application, we study short-term effectiveness of inhaled tobramycin, in order to
facilitate use of instrumental variables, which still pose several challenges in longi-
tudinal settings with multiple data points and time-varying exposures [17].

We considered the following restrictions to target the study cohort of interest.
We requested CFFPR data ranging from January 1, 1998 to December 31, 2009, in
order to capture the time at which inhaled tobramycin (Tobi) was recorded in the
registry on a consistent basis. We did not consider study records with individuals
<6 years of age, due to limitations of modality to measure lung function in young
children. We limited the maximum age to 21 years, in an effort to focus on first
occurrence of chronic Pa. We identified the first chronic Pa infection for each
individual by examining all Pa culture results available in the encounter-level data.
Patients recorded as having a positive Pa culture more than 50% of time in a given
year were considered as eligible for the study. This was determined by using the Pa
culture (indicator) variable available in the CFFPR. We took the first year that the
patient had chronic Pa infection as the baseline year. In an effort to keep our study
data to one record per patient, we only considered the first chronic Pa infection for
each patient. Patients who also had another infection at the same time, Burkholderia
cepacia complex, were not considered as part of the study cohort, because of previ-
ously established criteria [32]. An indicator variable for patient-level tobramycin
use was defined as receiving inhaled tobramycin within 6 months of initial chronic
Pa. Baseline FEV; was defined as the closest FEV; measurement recorded within
6 months after initial chronic Pa record. Follow-up FEV; was defined as the closest
recorded FEV; within 1.5-2.5 years of the baseline FEV,. Patients who did not have
arecorded FEV; measurement within 6 months after meeting criteria for chronic Pa
infection were excluded. The outcome variable, decline in FEV;, was calculated as
the difference between follow-up and baseline FEV, for each patient. A negative
value implies that FEV; declined over the 2-year period; a positive value indicates
that FEV; increased over the 2-year period. Figure 2 illustrates steps to determining
the analysis cohort and resulting sample size.

We identified potential confounders by looking at previous literature (see [6],
for example). These variables, measured in the CFFPR, included gender, baseline
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Patients in CFFPR

1998-2009
N=36,134
> Age<6 or Age>22
(n=12,787)
= Positive culture for
“| B Cepacia(n=1,727)
> No Pa cultures
(n=386)
Eligible Cohort:
N=21,234
Never Pa Positive Intermittent P2 infection
(n=5,447) > only (n=2,101)
Chronic Pa at least one year:
N=13,686
> No FEV1 at baseline
(n=980)

Analysis Cohort:
N=12,706

Figure 2.

Diagram of study population in the illustrative CF example, showing inclusion and exclusion steps to obtain an
analysis cohort from the registry. CEFFPR, Cystic Fibrosis Foundation Patient Registry; Pa, Pseudomonas
aeruginosa.

measurements for age, FEV;, weight-for-age percentile, insurance coverage, CF-
related diabetes (with or without fasting hyperglycemia), dornase alfa use, pancre-
atic insufficiency (defined as taking pancreatic enzymes) and number of hospitali-
zations in the preceding year. We can compare Tobi and non-Tobi groups with
respect to each of these variables using basic inferential testing (i.e., nonparametric
test for continuous variables and Chi-square test for categorical variables). Results
of the descriptive analysis are presented in Table 1. Our descriptive analysis reveals
that Tobi and non-Tobi groups differed by several demographic and clinical char-
acteristics. We note that the groups did not differ according to age or being pan-
creatic insufficient. Next, we utilize the aforementioned statistical models to test
this association.

4.2 Multiple linear regression

We use Model (1) to test the association between lung function and tobramycin
use, adjusting for potential confounders as covariates, represented as Xj, -+ Xk.
Table 2 shows the results of the multiple linear regression, which suggest that the
treated group experienced greater mean decline in FEV;% predicted than the
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Type of model

Multiple linear regression” Propensity score regression”

Covariates Coefficient (SE), (P-value) Coefficient (SE), (P-value)

Patient tobramycin use

Treated

—1.74 (0.31) (<0.0001)

—1.71 (0.30) (<0.0001)

Not treated

0

0

Age

—0.87 (0.04) (<0.0001)

—0.86 (0.04) (<0.0001)

Baseline FEV;

—0.27 (0.01) (<0.0001)

—0.27 (0.01) (<0.0001)

Sex
Female —1.16 (0.30) (<0.0001) —1.15 (0.31) (0.0002)
Male 0 0

Weight-for-age percentile 0.06 (0.01) (<0.0001) 0.05 (0.01) (<0.0001)

CF-related diabetes

Yes 2.06 (1.44) (0.15) 2.19 (1.36) (0.11)

No 0 0

Pancreatic insufficiency — _

Yes 0.52 (0.83) (0.54) 0.44 (0.83) (0.60)
No 0 0
Insurance — —

None or state/federal —1.66 (0.34) (<0.0001) —1.66 (0.34) (<0.0001)

Other 0 0

Baseline hospitalizations” — _

None 5.05 (0.70) (<0.0001) 4.63 (0.69) (<0.0001)
1 2.74 (0.74) 2.26 (0.74)

2 0.40 (0.87) 0.37 (0.87)

3 or more 0 0

Dornase alfa use — —

Yes —0.46 (0.39) (0.25) —0.38 (0.40) (0.34)

No 0 0

Abbreviations: CF, cystic fibrosis; FEV, percentage predicted of forced expiratory volume in 1s.

“For each categorical variable in the first-stage model, the coefficient is the difference in patient tobramycin use
between the indicated category and the reference category (labeled as coefficient = 0). For each continuous variable, it
is the change in patient tobramycin use when the variable is increased by 1 unit. A negative value implies decreased
fatient tobramycin use.

Predicted treatment obtained in Stage 1 serves as propensity score in Stage 2. For each categorical variable in the
second-stage model, the coefficient is the difference in FEV decline between the indicated group and the refevence group
(labeled as coefficient = 0).

“significant at 2-sided p value < 0.05
For each continuous variable, it is the change in FEV; when the variable is increased by 1 unit. A negative value
implies greater FEV decline.

Table 2.
Multiple linear regression and propensity scove method to predict lung function decline.

untreated group. Although most covariates were statistically significant at P < 0.05,
we found that CF-related diabetes, pancreatic insufficiency, and dornase alfa use
were not significant predictors of outcome.
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4.3 Propensity score method

The patient characteristics at the baseline, which are known to impact FEV
outcomes, are considered into the multivariable logistic regression model (Eq. (2))
for estimating propensity scores. Figure 3 presented the histograms of propensity
score for the Tobi treated and not-treated patient groups, showing different but
overlapping propensity scores between the two groups. Propensity scores are
grouped into five groups by quintiles. The distribution of propensity scores are
compared between the Tobi treated and not treated patients within each of the five
PS categories; as one could see from Figure 4, within each quintile categories, the
two patient groups present comparable patterns in their likelihood of receiving

400+

300

200+

No. of Patients

1004

014 018 022 026 030 034 038 042 046 050 054 058 062 066 070 074 078 082 086
Tobis [N No [ ves

Figure 3.
Histogram of the propensity scove distributions by Tobi use (ved) and not-group groups (blue). Related the
measured confounders; thevefore no arrow is dvawn for this relationship.

7
0.8 '
s T i *
(7]
] . T
&
044 i '
2
0.2 o |
*
I I I | I
Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
[Tobis B No B Yes|
Figure 4.

Box-Whisker plots of the distribution of propensity scores by Tobi use (ved) and not use (blue) groups stratified
by the quintiles.
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Characteristics Tobi Level Before PS After PS After IPW
matching matching weighting

Mean P-value Mean P-value Mean P-value

Sex Treated Male 47.8% <0.01 49.1% 0.44 50.8% 091
Not treated 54.0% 48.2% 50.9%
FEV,% predicted Treated 76.38 <0.01 81.68 0.86 81.26 0.85
Not treated 85.25 81.75 81.17
Age Treated 12.10 0.51 11.98 0.73 12.01 0.94
Not treated 12.05 12.01 12.01
Weight-for-age Treated 3024 <0.01 30.34 0.80 32.33 0.79
percentile Not treated 3378 30.18 32.19
CF-related Treated Yes 1.5% <0.01 1.3% 0.53 1.2% 0.49
diabetes Not treated 1.0% 1.2% 1.4%
Pancreatic Treated Yes 96.0% 0.94 96.6% 0.85 965% 0.72
i(r:)‘lfﬁdency’ * " Not treated 96.0% 96.7% 96.6%
No or state/federal ~ Treated None or 30.7% 053 302% 0.62 30.7% 0.81
insurance Not treated S 2¢/federal 50 50 30.7% 30.5%
Prior Treated None 58.5% <0.01 69.1% 0.12 67.4% 095
hospitalizations 1 23.8% 18.9% 19.8%
2 9.4% 6.3% 6.9%
3 or more 8.4% 5.7% 5.9%
Not treated None 75.9% 70.2% 67.4%
1 16.3% 19.5% 19.7%
2 4.6% 5.8% 6.9%
3 or more 3.3% 4.6% 6.0%
Dornase alfa Treated Yes 77.6% <0.01 687% 024 632%  0.88
Not treated 49.3% 67.4% 63.3%

Abbreviations: CF, cystic fibrosis; FEV, percentage predicted of forced expiratory volume in 1s; PS, propensity scove.
Calculations for standardized differences are described in Section 4.3.

Table 3.
Standardized difference (T-val) between Tobi treated and untreated patients.

Tobi. To check for propensity score balance, we compared the Tobi treated and not
treated patients on their baseline covariates, the standardized differences between
the treated and not treated groups are presented in Table 3. The results show that
there is a significant difference between the treated and not treated patients groups
according to their gender, baseline FEV;, CF-related diabetes, pancreatic insuffi-
ciency, insurance status, prior hospitalization and dornase alfa use. After matching
patients on their PS categories, as well as after adjusting by inverse propensity score
weighting, we are able to achieve balance between the Tobi treated and not treated
groups. Subsequently, we proceed with the propensity score analyses using the
inverse propensity score weighted approach. The results are presented in Table 4,
which can be contrasted with the results from the multivariable regression analyses
in Table 2. The results from these two approaches are very similar; both are
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Stage 1 (predicts patient
tobramycin use)”

Stage 2 (predicts change in lung

function)”

Covariates

Coefficient (SE), (P-value)

Coefficient (SE), (P-value)

Patient tobramycin
use

Treated

2.55 (1.22), (0.0366)

Not treated

0

Age

—0.013 (0.003), (0.0002)

—0.86 (0.04), (<0.0001)

Baseline FEV,

~0.010 (0.001), (<0.0001)

—0.27 (0.01), (<0.0001)

Sex = —
Female 0.112 (0.027), (<0.0001) —1.23 (0.30), (<0.0001)
Male 0 0

Weight-for-age
percentile

—0.000 (0.001), (0.74)

0.06 (0.01), (<0.0001)

CF-related diabetes

Yes 0.112 (1.27), (0.38) 1.93 (1.44), (0.18)

No 0 0
Pancreatic — —
insufficiency

Yes 0.064 (0.074), (0.39) 0.52 (0.83), (0.54)

No 0 0
Insurance — —

None or State/

—0.128 (0.030), (<0.0001)

—1.58 (0.34), (<0.0001)

Federal
Other 0 0
Baseline — —
hospitalizations®
None —0.598 (0.064), (<0.0001) 5.44 (0.69), (<0.0001)
1 —0.251 (0.068) 2.89 (0.74)
2 —0.148 (0.080) 0.48 (0.87)
3 or more 0 0

Dornase alfa use

Yes

0.224 (0.036), (<0.0001)

0.28 (0.40), (0.48)

No

0

0

Abbreviations: CF, cystic fibrosis; FEV, percentage predicted of forced expiratory volume in 1s.

*Each model is adjusted for measured confounders by including each listed variable as a covariate. For each categorical
variable, the coefficient is the diffevence in FEV; decline between the indicated category and the vefevence category
(labeled as coefficient = 0). For each continuous variable, it is the change in FEV; decline when the variable is
increased by 1 unit. A negative value implies greater FEV decline.

“Multivariable analysis with standard adjustment for confounding by including characteristics as covariates.
YMultivariable analysis weighted using propensity scoves.

Table 4.
Instrumental variable analysis to predict lung function decline™.

suggesting negative Tobi treatment effect on the improvement of FEV. The results
from randomized clinical trials, however, all suggest a positive Tobi treatment
effect. Such differences might be explained by unmeasured confounding that is
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related to treatment selection bias but not recorded in the registry. We further
proceed with IV analyses to examine the Tobi treatment effect.

4.4 Instrumental variables analysis

It is possible that the discrepancy between the previously described registry
analysis and clinical trial findings of the treatment effect are due to unmeasured
confounding. It is common in observational settings to encounter confounding by
indication bias that is not recorded in registries. In this application, we selected a
preference-based instrument, center-level prescribing patterns, to combat this bias.
The CFFPR includes more than 240 centers. For each center, we calculated the
tobramycin-prescribing rate during the time frame of the study. This rate was
calculated as the number of times the center prescribed tobramyecin to the patient
when eligible divided by the total number of times the center should have pre-
scribed tobramycin. We considered a patient to be eligible for the treatment once he
met the CFF guidelines for its use.

We had to determine whether the IV met the previously mentioned criteria to be
a valid instrument. We began by performing the first-stage analysis outlined in
Model (4). We include all potential confounders as explanatory variables, and we
include the IV. The response variable in this equation is the tobramycin use. The
first-stage results are presented in Table 4 and reflect what we found in the
exploratory analysis from Table 1. The IV included in this regression was a highly
significant predictor of tobramycin use. The corresponding ¢-statistic was 28.2,

P < 0.0001. These results indicate that we have met assumption (i) for center-level
prescribing to be a valid instrument. We also note that Table 4 shows that dornase
alfa use is strongly associated with tobramycin use. We will revisit this finding in
sensitivity analysis of our instrument. We performed the multiple linear regression
specified in Model (5) to determine the association between tobramycin and lung
function decline. This regression accounts for observed patient characteristics and
provides an instrumented version of tobramycin use. The last column in Table 4
shows that tobramycin was associated with less FEV; decline, suggesting the
existence of a positive treatment effect.

Assumption (ii) is not directly testable, but we examine it through sensitivity
analyses of heterogeneous treatment effects. These effects may be caused by
confounding from other medication use or differences in quality of care received
across centers. We performed three different types of sensitivity analyses. First, we
extracted quality of care markers through the CF Foundation Annual Report (1) and
calculated them for each center. We correlated each marker with our IV and found
no significant association. Second, we used subgroup analyses to determine the
impact of dornase alfa use on tobramycin effectiveness. We divided the cohort into
two distinct groups according to whether they reportedly used dornase alfa. We
performed the IV analysis separately on each group. The two sets of results were
similar with regard to first- and second-stage analyses. Third, we performed a
secondary analysis of patients with B. cepacia. Although these patients are tradi-
tionally excluded from clinical trials and other effectiveness assessments because of
their significantly poorer outcome, they often receive tobramyecin in clinical prac-
tice. The first-stage analysis of this cohort was similar to the primary results;
however, their second-stage analysis showed no significant treatment effect.

4.5 Concluding remarks

Registry data plays an increasingly important role in health care research.
Appropriate design and careful statistical approaches to the analyses of registry data
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are essential. In this chapter, we have described a step-by-step approach to formu-
lating and implementing a registry data analysis. Understanding the research ques-
tion, selecting the appropriate data source and identifying potential sources of bias
are necessary before beginning to construct an analytic plan. The statistical consid-
erations should include data quality assessments and descriptive analyses, and it is
critically important to address selection bias due to both measured and unmeasured
confounding. This is because selection bias is ubiquitous; failure to adequately
address selection bias will lead to biased conclusions. Multivariable regression has
been the primary means to combat selection bias. While this technique can help to
minimize differences between groups, it is limited to relatively fewer covariates in
the adjustment process. Propensity scores, which correspond to the probability of
treatment assignment given pre-treatment characteristics, provide a way to sum-
marize multiple covariates into a single score for each individual. Therefore, this
approach is capable of handling a large dimension of confounders, which is partic-
ularly useful in registry studies when confounders are measured. Another advan-
tage of PS is that it allows one to check between the treatment groups when
conditioning on propensity score whether the confounding factors is balanced out.
However, when important confounders are not measured, the PS method is limited.
One solution is to perform sensitivity analyses by evaluating how estimated treat-
ment effectiveness might change if there exists an unmeasured confounder with
varying levels of prevalence. Such practice will allow one to gauge the impact of
unmeasured confounders to the treatment effect.

In this example, the likelihood of tobramycin use depends on unmeasured char-
acteristics at the patient, family or care level. The adjustment of unmeasured
confounding that is possible through IV analysis may have led to more intuitive
conclusions regarding treatment effect. Since CF care is organized by care center, it
was reasonable to examine the validity of a preference-based instrument to combat
treatment-selection bias. Thorough sensitivity analyses are necessary to examine
the robustness of the IV. We limit our illustrative application to a single instrument.
It is possible to include multiple instruments and gain more formal properties to
testing assumption (ii).

5. Conclusions

When designing and analyzing registry data, it is critically important to address
biases and confounding that are inherent in this type of study. Although we have
focused, in this chapter, on describing methods for controlling selection biases,
registry data are often subject to other types of biases related to measurement and
miss-classification error, immortal time bias, loss to follow up, and missing data.
We encourage use of sensitivity analyses to understand the impacts of these poten-
tial biases to the study conclusions. There are rich literature sources and several
guidelines for design and analysis of registry data. In addition to the literature
referenced in this chapter, a very useful resource is the recent report on standards in
the conduct of registry studies for patient centered outcomes research and the
references therein [33].

In addressing selection bias, most often, treatment effects are examined using
multiple linear regression with measured confounders included as covariates [34].
Increasingly, PS methods are employed. However, existing statistical methods to
address unmeasured confounding may be underutilized in registry settings. The
models that we have presented are by no means exhaustive. There is room to
develop more methodology, particularly to combat time-varying treatment effects
and utilize time-varying instruments [12]. It is possible that preference-based
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instruments will provide a feasible approach to interrogating registries [14].
Admittedly, there are some situations, such as the IV regression specified in Model
(3), where the sample size/power analysis calculation is not straightforward.

There are approaches to simulate power for this model, but additional assumptions
are necessary. Furthermore, in most controlled studies, we can follow up with
subjects who drop out. We rarely have this capability in registry settings, which
turther limits our ability to diagnose the missing data mechanism.
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A. Appendix

Below, we present code from SAS 9.3 (SAS Institute, Cary, NC) to implement
the statistical analyses for the application in Section 5.4. See Leslie and Ghomrawi
[35] for additional details on the implementation of instrumental variables regres-
sion using the QLIM procedure in SAS.

/*For each implementation below, we begin with analysis_data, which is the
cleaned version of the registry data with all coded variables necessary for analyses.
The variable Tobi is the indicator variable for whether the subject received
tobramyecin; dfev1 refers to the outcome variable (change in FEV;% predicted).
First, we examine the initial difference between the treated and untreated groups.*/

title ‘Unadjusted Analysis’;

proc ttest data=analysis_data;

class Tobi;

var dfevl;

run;

/*The code below performs a multivariable linear regression to determine the
association between tobramycin and change in lung function, with adjustment for
the previously described measured confounders. The variables below correspond to
sex (gender), baseline measures of age (age), FEV,% predicted (base_fev1), weight-
for-age percentile (wtpct), insurance coverage (inscat), CF-related diabetes (cfrd),
dornase alfa (dnase), pancreatic insufficiency (pancr), and number of hospitaliza-
tions in year prior to baseline year (numhosp), categorized as 0, 1, 2, 3 or more*/

title ‘Model (1): Traditional Regression’;

proc glm data=analysis_data;

class Tobi inscat cfrd dnase pancr numhosp gender;

model dfev1=Tobi base_fev1l wtpct age inscat cfrd dnase pancr numhosp gender/
cl solution;

Ismeans Tobi/pdiff cl;

run;
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/*Next, we implement the propensity score regression model previously
described. First, we use logistic regression to estimate propensity scores for each
subject.”/

title ‘Model (2): Propensity Score Regression’;

proc logistic data=analysis_data;

class inscat cfrd dnase pancr numhosp gender;

model Tobi=base_fev1 wtpct age inscat cfrd dnase pancr numhosp gender/
link=logit;

output out=props pred=ps;

run;

/*We use the commands below to assign a subject-specific weight that corre-
sponds to his or her propensity score from the logistic regression above. Since the
propensity score, denoted ps below, corresponds to predicted probability of receiv-
ing the treatment, each subject who received the treatment will have weight 1/ps,
while each subject who did not receive the treatment will have weight 1/(Z-ps). The
resulting dataset, props2, will consist of the analysis_data, propensity scores that
were previously created and stored in props, and the ps_weight corresponding to
each subject’s weighting derived from the propensity score.*/

data props2;

set props;

if Tobi=1 then ps_weight=1/ps;

if Tobi=0 then ps_weight=1/(1-ps);

run;

/*We now implement the weighted multivariable regression. The commands are
similar to our previous regression, except for our use here of the weight statement.
By using this statement, we request computation of weighted means and variance
estimates that are inversely proportional to the corresponding sum of weights.*/

proc glm data=props2;

class Tobi inscat cfrd dnase pancr numhosp gender;

model dfev1=Tobi base_fev1l wtpct age inscat cfrd dnase pancr numhosp gender/
cl solution;

Ismeans Tobi/pdiff cl;

weight ps_weight;

run;

/*Finally, we present commands for the instrumental variables regression. The
first model statement performs the first-stage regression of the treatment indicator
Tobi on the instrument (cid_iv) and all measured confounders. The result is a probit
model with predicted probabilities of tobramycin use for each subject. The second
model statement performs multiple linear regression with the instrumented version
of the tobramycin variable from the first model statement.

title ‘Model (3): Instrumental Variables Regression’;

proc qlim data=analysis_data;

class inscat cfrd dnase pancr numhosp gender;

model Tobi=cid_iv base_fev1 wtpct age inscat cfrd dnase pancr numhosp gender
/discrete;

model dfevl=base_fev1l wtpct age inscat cfrd dnase pancr numhosp gender /
select(Tobi=1);

output out=Tobi prob proball predicted residual;

run;
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