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Chapter

Kinetostatic Nonlinear Stiffness
Characteristic Generation Using
the Kinematic Singularity of
Planar Linkages
Baokun Li and Guangbo Hao

Abstract

The theory of nonlinear stiffness characteristic by employing the kinematic
limb-singularity of planar mechanisms with attached springs is proposed. After
constructing the position formula with closed-loop form of the mechanism, the
kinematic limb-singularity can be identified. The kinetostatic model can be
obtained based on the principle of virtual work. The influences of spring stiffness
on the force-displacement or torque-angle curve are analysed. Different spring
stiffness results in one of four types of stiffness characteristic, which can be used to
design an expected stiffness characteristic. After replacing corresponding joints
with flexures, the pseudo-rigid-body model of the linkage with springs is obtained.
The compliant mechanisms with nonlinear stiffness characteristic can further be
synthesised based on the pseudo-rigid-body model.

Keywords: kinematic singularity, nonlinear stiffness, kinetostatic model,
planar linkage with springs, compliant mechanism

1. Introduction

A planar linkage always arrives at some several special positions, which may
decrease the stability, disable the motion ability or change the degree of freedom of
the linkage. These special positions are called kinematic singular configuration or
kinematic singularity. It is one of intrinsic properties of the linkage [1].

Kinematic singularity attracted many scholars’ attention since it affects the
performance of the linkage. Kinematic singularity classification, singularity identi-
fication and singularity property, with a particular emphasis on eliminating or
avoiding the singularities, are discussed [2–8].

However, everything has two sides. Kinematic singularity of linkages can also be
applied to create new useful devices, such as fixture based on the dead-point
singularity. In recent years, some compliant mechanisms with new performance are
constructed using the kinematic singularity [9–12].

For a generic planar linkage, kinematic limb-singularity and kinematic
actuation-singularity may often be exhibited. In this chapter, we mainly introduce
how to use the kinematic limb-singularity of the linkage with placing springs at
corresponding joints to generate the kinetostatic nonlinear stiffness, which can also
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be used to synthesise the nonlinear stiffness compliant mechanisms using the
pseudo-rigid-body model (PRBM) [13, 14].

2. Position analysis and kinematic singularity identification

Position analysis is the base of the kinematic singularity determination and
singularity classification. Many approaches can be used to carry out the position
analysis. Graphical methods often provide a fast and efficient means of analysing
mechanisms. Analytical methods are currently more common because of the ease in
which they are programmed. Here we mainly use the closed-form solution to
present the position analysis of the planar linkage followed by the kinematic singu-
larity identification.

By a generic planar double-slider linkage as an example, the position analysis
using the closed-form equation and the kinematic singularity identification are
introduced.

Consider a planar double-slider linkage with given structure parameters as
shown in Figure 1.

The right-hand rule fixed frame O-XYZ is attached on the base, where the
intersection point of two paths of points A and B is set as the origin O. We suppose
that the moving direction of the input slider is the negative of X-axis. The rotation
angle from the negative moving direction of point A to the initial moving direction
of point B is defined by α. Line AC is the vertical line from point A to line OB, where
point C is the foot. The position vectors of points A and B with respect to the fixed
frame O-XYZ are defined by rA and rB, respectively. The position vector from point
A to point B is defined by rAB. Thus the closed-loop vector equation of the linkage as
shown in Figure 1 can be obtained as

rA þ rAB ¼ rB (1)

The X-axis coordinate of point A is defined by rA, the rotation angle from vector
rA to vector rB is defined by θA, the distance between point B and origin O is defined
by scalar rB, and the length of the coupler AB is defined by scalar rAB. Thus, based
on Eq. (1), two algebraic equations can be transformed as follows:

rA þ rAB cos θA ¼ rB cos α

rAB sin θA ¼ rB sin α

�

(2)

Figure 1.
Double-slider linkage.
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Considering the symmetry, the case of α > 180° can be treated as the case of
α < 180°. Therefore, α is set to satisfy the following condition:

0< α< 180∘ (3)

The solution of Eq. (2) for rB with eliminating θA yields

rB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � r2A sin
2α

q

þ rA cos α (4)

or rB ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2A � r2A sin 2α

q

þ rA cos α (5)

where Eq. (5) exists when the output slider is located at the right side of point C
and moves right. With considering the symmetry, here we only discuss the case that
the output slider is located at the left side of point C and moves left, which is
described by Eq. (4).

The initial distance between origin O and point B corresponding to Eq. (4) is

rB0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � r2A0 sin
2α

q

þ rA0 cos α (6)

According to Eq. (4), we can further obtain

drB
drA

¼ �
rA sin 2

α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � r2A sin 2α
p þ cos α (7)

Eq. (7) shows that if

rA ¼ rAB= tan α (8)

then

drB
drA

¼ 0 (9)

It indicates that if AB⊥OA, then the linkage is in kinematic limb-singularity
which occurs when the instant velocity ratio between the output and the input is
equal to zero.

If rA = �rAB/sinα, which occurs when AB⊥OB, then

drB
drA

¼ ∞ (10)

It shows that the instant velocity ratio between the output and the input is equal
to infinity, which is the kinematic actuation-singularity. Here we are limited to use
the kinematic limb-singularity to design a mechanism with nonlinear stiffness by
placing appropriate springs at corresponding joints. Therefore, the coordinate of the
input slider should satisfy the kinematic constraint as follows:

�rAB= sin α< rA < rAB= sin α (11)

In order to pass the kinematic limb-singularity position, the initial coordinate/
position of the input slider, rA0, should satisfy

rA0 > rAB= tan α (12)
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3. Force equilibrium equation

We suppose that each of the two prismatic joints is attached a translational
spring and each of the two rotational joints is attached a torsional spring. The planar
double-slider linkage with springs is obtained as shown in Figure 2. The stiffnesses
of the translational springs placed at prismatic joints A and B are defined by kPA
and kPB, respectively, and the stiffnesses of the translational springs placed
at prismatic joints A and B are defined by kPA and kPB, respectively.

The potential energy of the whole mechanism as shown in Figure 2 can be
derived as

U ¼
1

2
kPA rA � rA0ð Þ2 þ

1

2
kRA þ kRBð Þ θA � θA0ð Þ2 þ

1

2
kPB rB � rB0ð Þ2 (13)

where θA0 is the initial angle between positive direction of X-axis and coupler
AB. After differentiating θA, θA0, rB and rB0, which can be derived from the
geometry of the linkage as shown in Figure 1, with respect to rA, and substituting
them into Eq. (13), the following can be further derived:

U ¼
1

2
kPA rA � rA0ð Þ2 þ

1

2
kRA þ kRBð Þ arccos

rA sin α

rAB
� arccos

rA0 sin α

rAB

� �2

þ
1

2
kPB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � r2A sin 2α

q

þ rA cos α�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � r2A0 sin
2α

q

� rA0 cos α

� �2

:

(14)

The principle of virtual work, which does not need to determine the inner forces
between two connected links, is a simplified useful method to construct the force
equilibrium equation. According to the principle of virtual work, the required
driving force, Fd, applied on the input slider can be obtained as

Fd ¼
dU

drA
¼ �kPA rA � rA0ð Þ þ kRA þ kRBð Þ arccos

rA sin α

rAB
� arccos

rA0 sin α

rAB

� �

sin α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � r2A sin
2α

p

þ kPB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � r2A sin 2α
p

þ rA cos α�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � r2A0 sin
2α

q

� rA0 cos α
� � rA sin 2

α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � r2A sin 2α
p � cos α

 !

:

(15)

Here the input slider displacement is denoted by S, which satisfies

S ¼ �rA þ rA0 ≥0 (16)

where S ≥ 0 means the input slider moves along the negative direction of X-axis.

Figure 2.
Planar double-slider linkage with springs.
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Substituting Eq. (16) into Eqs. (14) and (15), the potential energy, U, and the
driving force, Fd, with respect to S can be obtained as

U ¼
1

2
kPAS

2 þ
1

2
kRA þ kRBð Þ arccos

rA0 � Sð Þ sin α

rAB
� arccos

rA0 sin α

rAB

� �2

þ
1

2
kPB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � rA0 � Sð Þ2 sin 2α

q

þ rA0 � Sð Þ cos α�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � r2A0 sin
2α

q

� rA0 cos α

� �2

:

(17)

Fd ¼
dU

dS
¼ kPASþ kRA þ kRBð Þ arccos

rA0 � Sð Þ sin α

rAB
� arccos

rA0 sin α

rAB

� �

sin α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � rA0 � Sð Þ2 sin 2α

q

þ kPB rA0 � Sð Þ cos αþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � rA0 � Sð Þ2 sin 2α

q

� rA0 cos α�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � r2A0 sin
2α

q

� �

�
rA0 � Sð Þ sin 2

α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � rA0 � Sð Þ2 sin 2α

q � cos α

0

B

@

1

C

A
:

(18)

From Eq. (18), we can predict that the variation of driving force exerted on the
input slider versus input displacement, i.e., Fd-S curve, would present nonlinear
stiffness characteristic.

4. Cause of nonlinear stiffness characteristic generation

It is evident that the springs placed at joints are the cause of nonlinear stiffness
characteristic generation, so it is necessary to discuss the influence of spring stiff-
ness on the Fd-S curve characteristic. When the influence of one specific spring
stiffness is analysed, every other spring stiffness is set to zero.

4.1 Influences of translational spring stiffness placed at output slider

Substituting kPA = 0 and kRA = kRB = 0 into Eqs. (17) and (18), the following can
be obtained, respectively:

U ¼
1

2
kPB rA0 � Sð Þ cos αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � rA0 � Sð Þ2 sin 2α

q

� rA0 cos α�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � r2A0 sin
2α

q

� �2

(19)

Fd ¼
dU

dS
¼ kPB rA0 � Sð Þ cos αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � rA0 � Sð Þ2 sin 2α

q

� rA0 cos α�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � r2A0 sin
2α

q

� �

�
rA0 � Sð Þ sin 2

α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 � rA0 � Sð Þ2 sin 2α

q � cos α

0

B

@

1

C

A
:

(20)
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When Eq. (20) is zero, solving this equation with respect to S obtains

S1 ¼ 0, S2 ¼ �rAB= tan αþ rA0, S3 ¼ �2rA0 cos
2
α� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � r2A0 sin
2α

q

cos αþ 2rA0

(21)

where S2 is the kinematic limb-singularity position (based on Eqs. (8) and (16)).
From Eq. (19), we know that

UjS¼S1
¼ UjS¼S3

¼ 0 (22)

Substitution of Eq. (16) into the differentiation of Eq. (20) with respect to S leads to

dFd

dS

�

�

�

�

S¼S2

¼
d2U

dS2

�

�

�

�

S¼S2

¼ �kPB
rAB
sin α

� rB0
� �

�
1

rAB sin α
<0: (23)

Figure 3.
The bistable characteristic with different kPB when kPA = kRA = 0 and kRB = 0. (a) Driving force versus input
displacement. (b) Potential energy versus input displacement.
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Eq. (23) shows that when S = S2, the potential energy, U, reaches the local
maximum. Therefore, S = S2, the kinematic limb-singularity position, is also the
unstable equilibrium position [15].

Therefore, according to [15], when kPA = 0, kRA = kRB = 0 and kPB 6¼ 0, the
kinematic limb-singularity position, S2, is the mechanism’s unstable equilibrium
position and S1 and S3 are the stable equilibrium points.

If the coupler length, rAB, is 100 mm; intersection angle, α, is 100°; initial input
slider position, rA0, is 10 mm; and the unit of kPB is N/mm (here the unit of
translational spring stiffness is N/mm, and the unit of torsional spring stiffness is
N�mm/rad); the stiffness characteristic produced by the mechanism is shown in
Figure 3.

Figure 3 confirms that when the spring stiffness placed at output slider is
exclusively zero, the mechanism produces the bistable characteristic.

4.2 Influences of translational spring stiffness placed at input slider

Substitution of kPB = 0 and kRA = kRB = 0 into Eqs. (17) and (18) obtains the
expressions as follows:

U ¼
1

2
kPAS

2 (24)

Fd ¼ kPA S (25)

Figure 4.
Stiffness characteristic with different kPA when kRA = kRB = kPB = 0. (a) Driving force versus input
displacement. (b) Potential energy versus input displacement.
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Eqs. (24) and (25) show that the mechanism only generates positive-stiffness
characteristic when the mechanism has only one minimal potential energy point,
which can be confirmed by Figure 4, where specific parameters are given as
rAB = 100 mm, α = 100° and rA0 = 10 mm.

4.3 Influences of torsional spring stiffness placed at pin joints

When kPA = kPB = 0 and kRA = kRB 6¼ 0, from Eq. (18), we can obtain

Fd ¼ kRA þ kRBð Þ arccos
rA0 � Sð Þ sin α

rAB
� arccos

rA0 sin α

rAB

� �

sin α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2AB � rA0 � Sð Þ2 sin 2α

q

(26)

where only and only if S = S1 = 0, i.e., rA = rA0, then Fd = 0.
In other words, if and only if S = S1 = 0, the mechanism is in equilibrium position

without external force. When the mechanism is located in any other positions, it is
unstable except when applied by external force. Meanwhile, the potential energy,
U, has no local maximum but has only one minimum which is located at S = S1 = 0.

For kPA = kPB = 0, kRA = kRB 6¼ 0,when rAB = 100mm, α = 100° and rA0 = 10mm, the
force-displacement characteristic and the potential energy curve are shown inFigure 5.

Figure 5.
Behaviours with different kRA = kRB = kR when kPB = 0 and kPA = 0. (a) Driving force versus input
displacement. (b) Potential energy versus input displacement.
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Figure 5 demonstrates that when the torsional springs are placed at the pin
joints, the mechanism only produces positive-stiffness characteristic but does not
produce other stiffness characteristic.

5. Nonlinear stiffness characteristic construction

Section 4 showed that spring placed at the output slider causes the bistable
characteristic with the negative domain, while springs placed at other joints pro-
duce the corresponding positive-stiffness characteristic. It can be predicted that if
more than one spring are placed at joints, when the mechanism moves from non-
singular position (Figure 6(a)) to another non-singular position (Figure 6(c))
while passing through the limb-singularity position (Figure 6(b)), the stiffness
characteristic of the mechanism is the superposition of the corresponding stiffness
characteristic caused by the joints. For instance, if kPB = 1 N/mm, α = 100°,

Figure 6.
Positions of the mechanism. (a) Initial kinematic non-singular position. (b) Kinematic limb-singularity
position. (c) End kinematic non-singular position.
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rA0 = 10 mm and rAB = 100 mm, several nonlinear stiffness characteristics with
different spring stiffness are shown in Figure 7.

Figure 7 shows that after assigning appropriate spring stiffness placed at the
corresponding joints, the mechanism can generate one of four types of nonlinear

Figure 7.
Nonlinear stiffness characteristic when kPB = 1 N/mm. (a) Driving force versus input displacement for minor
change of kRA = kRB = kR when kPA = 0. (b) Driving force versus input displacement for large change of
kRA = kRB = kR when kPA = 0. (c) Driving force versus input displacement for different spring stiffness when
kRA = kRB = 0.

10

Kinematics - Analysis and Applications



stiffness characteristics including bistable characteristic, partial negative-stiffness
characteristic, partial zero-stiffness characteristic and positive-stiffness character-
istic which are shown in Figure 8, as it works around the kinematic limb-singularity
position.

The above-mentioned analysis illustrates the case that the mechanism moves
from a non-singular position. When the mechanism moves from the kinematic
limb-singularity position (Figure 6(b)) to a non-singular position (Figure 6(c)),
every spring transforms with zero potential energy to a position with a certain
amount of potential energy. The total potential energy of the mechanism starts from
zero to nonzero without local minimal energy point except the initial position.
Every spring force/torque increases in the process of the mechanism’s motion. From
Eqs. (18) or (20), the driving force is to overcome the resistance caused by every
spring, so the driving force increases when the mechanism moves from non-
singular position. In other words, when mechanism moves from non-singular posi-
tion with no deflected springs, the mechanism only generates the positive-stiffness
characteristic as shown in Figure 8(d). If kPA = kPB = 0, kRA = kRB 6¼ 0 and
rAB = 100 mm, α = 100° and rA0 = 10 mm, the stiffness characteristic is shown in
Figure 9.

Figure 9 demonstrates that when the mechanism starts from the kinematic
limb-singularity position with no deflected springs towards a non-singular position,
it only generates positive-stiffness characteristic.

As the final stiffness characteristic is determined by the superposition of stiff-
ness characteristic caused by each spring, an expected stiffness characteristic can be
constructed by assigning appropriate values to kPB, kRA, kRB and kPA on the condi-
tion of kRB 6¼ 0 when the mechanism moves from one non-singular position to
another non-singular position with passing through the kinematic limb-singularity
position. The method for designing an expected nonlinear stiffness design is
proposed in [16].

Figure 8.
Four types of nonlinear stiffness characteristic of the mechanism. (a) Bistable characteristic, (b) partial
negative-stiffness characteristic, (c) partial zero-stiffness characteristic, and (d) positive-stiffness characteristic.
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Figure 9.
Stiffness characteristic with initial non-singular position. (a) Stiffness characteristic for different kPB when
kRA = kRB = 0 and kPA = 0. (b) Stiffness characteristic for different kRA = kRB = kR when kPB = 1 N/mm and
kPA = 0. (c) Stiffness characteristic for kPA when kPB = 1 N/mm and kRA = kRB = 0.
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6. Further discussion

From Sections 2–5, it can be shown that if a planar linkage exhibits a kinematic
limb-singularity, it generates different nonlinear spring stiffness characteristics if
the linkage is added with springs at corresponding joints with the condition that the
spring stiffness corresponding to output slider is nonzero. Nonlinear stiffness char-
acteristic generation using the kinematic limb-singularity of a planar linkage can be
demonstrated by another planar linkage with springs as shown in Figure 10, which
represents a crank-slider linkage with springs.

The Cartesian coordinates system, O-xyz, is constructed as shown in Figure 10,
where crank AB rotates about joint A in an anticlockwise direction, the slider moves
along the x-axis, and coupler BC connects link AB and slider by two rotation joints B
and C. The three rotation joints are added with torsional springs with spring stiff-
nesses denoted by KRA, KRB and KRC, respectively. An extension spring is placed at
the output slider and its stiffness is denoted by KPC.

The position formula with closed-loop form, whose derivation process is similar
to one of the double-slider four-bar linkages, can be established easily (not shown
here).

Based on the position analysis, the kinetostatic model of the mechanism by using
the principle of virtual work can be constructed as

Td ¼ KRA θA � θA0ð Þ þ KRB �θA � arcsin
r1 sin θA � e

r2
þ θA0 þ arcsin

r1 sin θA0 � e

r2

� �

� �1� r1 cos θA=að Þ

þ KRC arcsin
r1 sin θA � e

r2
� arcsin

r1 sin θA0 � e

r2

� �

�
r1 cos θA

a

þ KPC r1 cos θA þ a� r1 cos θA0 � a0ð Þ � �r1 sin θA � b=að Þ

(27)

where r1 and r2 are crank length and coupler length, respectively, r3 is the X-axis
coordinate of output slider and e is the offset.

Moreover, a and a0 are defined by

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r22 � r1 sin θA � eð Þ2
q

, a0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r22 � r1 sin θA0 � eð Þ2
q

According to Eq. (27), the Td-θA (driving torque versus input position angle)
curve can be described.

Figure 10.
Crank-slider with springs.
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Figure 11.
Different positions of the crank-slider mechanism with springs. (a) Non-singular initial position. (b) Kinematic
limb-singularity position. (c) Non-singular end position.

Figure 12.
Case that the mechanism moves from non-singular position. (a) Input torque variation when KRA = KRB = KR is
small. (b) Input torque variation when KRA = KRB = KR is large.
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Figure 13.
Case that the mechanism moves from kinematic limb-singularity position. (a) Case of different KPC when
KRA = KRB = KRC = 0. (b) Case of different KRA when KRB = KRC = 0 and KPC = 0. (c) Case of different KRB

when KRA = KRC = 0 and KPC = 0. (d) Case of different KRC when KRA = KRB = 0 and KPC = 0.
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When the mechanism with springs moves from one non-singular position to the
kinematic limb-singularity position and then stops at another non-singular position
as shown in Figure 11, it may produce one of four types of nonlinear stiffness
characteristics including the bistable characteristic, partial negative-stiffness char-
acteristic, partial zero-stiffness characteristic and positive-stiffness characteristic.
For illustration, in Figure 12, crank length, r1, is 10 cm; coupler length, r2, is 50 cm;
offset e is 3 cm; input initial position angle, θA0, is �5°; and KPC = 1 N/cm.

It can also be shown that, similarly to the double-slider four-bar mechanism with
springs, when the crank-slider mechanism with springs moves from the kinematic
limb-singularity position, it only generates the positive-stiffness characteristic,
which is shown in Figure 13, where the geometry parameters are given as the same
as shown in Figure 12.

Therefore, we can conclude that after placing springs at different pair combina-
tions, a planar linkage which has the kinematic limb-singularity can generate
corresponding nonlinear stiffness characteristic in condition that the mechanism
moves from initial non-singular position with no deflected springs to the kinematic
limb-singularity position and then stops at another non-singular position. If the
mechanism moves from the kinematic limb-singularity position with no deflected
springs, it only generates the positive-stiffness characteristic.

It is worth to point out that the nonlinear stiffness characteristic generation
method can also be applied to design the nonlinear stiffness characteristic compliant
mechanism by using the PRBM as shown in Figure 14.

In Figure 14, the equivalent stiffness of compliant rotational joint and compliant
translational joint can be calculated by referring to previous work [17, 18].

7. Conclusions

The kinematic limb-singularity positions of planar linkages with attached
springs can be used to generate nonlinear characteristics. After assigning different
spring stiffness, the mechanism may exhibit one of four types of nonlinear stiffness
characteristics. These are the bistable characteristic, partial negative-stiffness char-
acteristic, partial zero-stiffness characteristic and positive-stiffness characteristic.
The type of stiffness characteristic is determined by the motion model and the value
of spring stiffness. On the condition that the mechanism moves from the initial
non-singular position to another non-singular position with passing though the

Figure 14.
Nonlinear stiffness characteristic compliant mechanisms based on the PRBM. (a) Compliant double-slider
mechanism and (b) compliant crank-slider mechanism.
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kinematic limb-singularity position, spring stiffness determines one of four types
of stiffness characteristics. On the other hand, when the mechanism moves from
the kinematic limb-singularity position, it only produces the positive-stiffness
characteristic.
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