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Chapter

Investigation and Synthesis
of Robust Polynomials in
Uncertainty on the Basis
of the Root Locus Theory
Nesenchuk Alla

Abstract

The root locus method is proposed in the chapter for searching intervals of
uncertainty for coefficients of the given (source) polynomial with constant or
interval coefficients under perturbations, which ensures its robust stability regard-
less of whether the given polynomial is Hurwitz or not. The method is based on
introduction and application of the “extended root locus” notion. Polynomial
adjustment is performed by setting up each one of its coefficients separately and
sequentially and determining permissible values of coefficient variation intervals
(intervals of uncertainty). The effect of each coefficient variation upon the polyno-
mial root dynamics (behavior) is considered and analyzed separately, and this
influence could be observed in the root locus portraits. Root locus method is thus
generalized to the cases when the number of polynomial variable coefficients is
arbitrary. The root locus parameter distribution diagram along the asymptotic sta-
bility bound is introduced and applied for observing the roots behavior regularities.
On this basis, the stability conditions are derived, and analytical and graphic-ana-
lytical methods are worked out for calculating intervals of variation for the 4th
order polynomial family parameters ensuring its robust stability. It also allows to
extract Hurwitz subfamilies from the non-Hurwitz families of interval polynomials
and to determine whether there exists at least one stable polynomial in the unstable
polynomial family.

Keywords: polynomial, dynamic system, uncertainty, stability, robustness,
root locus portrait, extended root locus, root locus parameter function

1. Introduction

As it is emphasized in [1, 2], the tasks of analysis and synthesis of control
processes occurring in dynamic systems of different physical nature, operating in
conditions of substantial plant parametric uncertainty, including the engineering
ones, are currently the most urgent and challenging within the framework of the
control theory. Among these tasks, one could mention the problem of flux control
for the electric motor vector control systems operating in uncertainty because the
flux control quality strongly affects the electromagnetic torque and speed control
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quality, and thus the drive power efficiency. For this reason, of great importance
are the tasks of stability investigation and parametric synthesis of robust control
systems (their characteristic polynomials) for the plants which parameters vary
within the given or unknown intervals of values.

In the area of investigation and synthesis of dynamic system characteristic poly-
nomials, there exists a lot of approaches and methods. For the first time, the
necessary and sufficient conditions for systems up to the 3-rd order were formu-
lated by James Maxwell in 1868. Later appeared the stability criteria of Routh–
Hurwitz, Mikhajlov, Nyquist, and Bode, which made it possible to check stability of
the systems of order n. The frequency Nyquist criterion was the first one that could
be used for synthesis by estimation of the system degree of stability. Among the
modern methods of synthesis [1, 2] together with the frequency ones, the root locus
and state-space methods could be listed. In his book [1], Jurgen Ackermann gives, in
particular, the algebraic approach to uncertainty considering different, including
the nonlinear, types of the coefficient functions and generating stability regions in
the parameter space of real physical parameters of the system (polynomial). The
main results in the area of the frequency approach to analysis and synthesis of
robust dynamic (control) systems are given in [3], where the stability of uncertain
polynomials, including interval ones, is also considered.

The methods for analysis and synthesis of polynomial families represent a sepa-
rate group. One of the most effective solutions for the task of interval polynomial
family investigation within the algebraic approach has been proposed by
Kharitonov [4], where in the general case, the task of polynomial stability analysis is
reduced to consideration of only four specific polynomials of the whole family
with constant coefficients. In [3, 5], the frequency criteria of Hurwitz robust stabil-
ity are considered, which allow to define the coefficient perturbation sweep for the
nominally stable polynomial and various types of uncertainties. Hurwitz robust
stability is also investigated in [6–10]. In [6], the maximal deviation intervals of
perturbed Hurwitz polynomial coefficients assuring strict Hurwitz property are
determined on the basis of the algebraic method worked out using Kharitonov’s
polynomials [4]. The similar task is solved in [7] but using the Hermite-Biler
theorem, which allows to reduce twice the power of investigated polynomial. The
way for calculation of perturbed polynomial coefficients’ maximal limit values that
guarantee sector stability is given in [8]. The linear dependence of coefficient
perturbation is considered by Bartlett, et al. for a class of polynomial families
generated by convex polytopes in the coefficient space [9]. Here the so-called edge
theorem was proved assuring derivation of the stability analysis task to investiga-
tion of root location for the finite number of the parametric families. The edge
theorem allows to analyze both stability and quality characteristics of the family.
A combination of the stochastic and worst-case approaches to the problem of
uncertainty is proposed in [10]. It certainly widens the scope of types of treatable
uncertainties and reduces conservatism. However, it works properly only in the
cases permitting an arbitrarily small probability of specification violation. Thus,
to the specific extent, it still bears the drawbacks of the stochastic approach to
control, which guarantees only the “average” performance.

An analog of Kharitonov theorem [11] was formulated for the unstable interval
polynomials’ homogeneous classes of equivalence. Criteria of existence of such
classes of equivalence were obtained. Based on the new interval polynomial stability
criterion and Lyapunov theorem, a robust optimal proportional-integral-derivative
(PID) controller is proposed in paper [12] to carry out design for different plants
that contain perturbations of multiple parameters. A new stability criterion of the
interval polynomial is presented to determine whether the interval polynomial
belongs to Hurwitz polynomial or not. Time-delay systems involving multiple

2

Polynomials - Theory and Application



imaginary roots (MIRs) and their stability analysis, which becomes much more
complicated than that in the case with only simple imaginary roots, are treated in
[13]. For a class of time-delay systems, it was proved that the invariance between
the multiple imaginary roots and the simple imaginary roots holds for any multi-
plicity as well as for the degenerate cases. In paper [14], monic complex polyno-
mials are identified with the sets of their roots instead of being identified with the
vectors of their coefficients. A proof is given that the space of Hurwitz polynomials
of degree n with positive (resp. negative) coefficients is contractible and also that
the space of monic (Schur or Hurwitz) aperiodic polynomials is contractible. A
computational method to verify the stability of a convex combination of polyno-
mials is considered in [15] and aimed at the robust stability analysis of a linear
system. A simple algebraic test (a matrix inequality) for the stability of the segment
of polynomials determined by the given two Hurwitz stable polynomials is pro-
posed. Kučera gives a survey [16] where he navigates the area of the polynomial
approach in the control system design technique. Such areas as parameterization of
stabilizing controllers, called Youla–Kučera parameterization, are explained; the
results on reference tracking, disturbance elimination, pole placement, deadbeat
control, robust stabilization, and some others are described.

Of great interest are the problems of ensuring system stability and quality being
solved in the modern statements of the problem [2] as tasks of guaranteeing system
robustness, which could be solved by application of the root locus approach. The
basic benefit of this approach is that its application itself, by its nature, implies
parametric variations (i.e., uncertainty). The root locus approach is a powerful
method used for the system synthesis [2] and is notable for its descriptiveness
ensuring both calculation of the system robust parameters’ values and possibility of
detailed overview of the dynamic properties variation changes, the system response
to uncertainties that is particularly important when investigating systems with
uncertain and in particular interval parameters.

Root locus approach to the problem is considered in [17–23]. Paper [17] gives
a solution for a compensator synthesis on the basis of the root locus method
application. The task of a stable characteristic polynomial synthesis for the
interval dynamic system (IDS) by setting up coefficients of the given (initial)
unstable one for the case of location of its root locus initial point (where the
variable parameter is equal to zero) family within the left half-plane is solved in
[21], where the stability is attained via simple setting up the interval of the free
term variation.

The above analyzed literature covers various approaches to the uncertainty
treatment. However, most of the theoretical works are focused on the tasks of
robust stability analysis. The methods for synthesis are not that widely represented,
often suffer from complexity and in most cases are enough narrow, which means
that they certainly provide instruments for system synthesis, but they are mostly
“closed on themselves,” which means that they do not provide the complete picture
in the sense of showing up what is happening “under cover,” which is especially
important for the qualitative robust system (polynomials) synthesis. The root locus
approach is rarely applied even though it represents the dynamic picture of the
system response to uncertainties in the most comprehensive way and thus seems to
be the most suitable one to deal with uncertainties.

As for polynomial families, the root locus approach gives us the transparent
picture of root dynamics making it possible to see as if from the inside, for example,
what subfamilies constitute the whole family of uncertain polynomials in terms
of their configuration and stability or some other dynamic indicators bearing
significant information about the system behavior and thus leading the way for its
investigation and synthesis.
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In this work, the root locus methods are described for calculating intervals of
uncertainty for coefficients of the given (initial) stable or unstable polynomial with
coefficients subject to perturbations, which ensure its robust stability. The proposed
methods are based on introduction and application of the notions “extended root
locus,” “diagram of the root locus parameter function values distribution along the
stability bound” and can be used for both synthesis of interval stable polynomials by
setting up (adjusting) the unstable ones and analysis of the polynomial behavior
under coefficient perturbations. The influence of every coefficient upon the poly-
nomial behavior could be observed.

The work further develops results represented in the papers of Anderson [22]
and Kharitonov [4] where they consider the issues of analysis and synthesis of
robust interval polynomial families.

2. The problem formulation

Define a polynomial like

gn sð Þ ¼ sn þ a1s
n–1 þ…þ an–1sþ an, (1)

where aj are given (initial) values of real polynomial coefficients, j = 1, 2, …, n.
In the event of coefficient perturbations, a vector of coefficients of (1),

a = (a1,…, an-1, an), belongs to some connected set A ⊂ Rn, a ∈ A; n is a degree of the
polynomial (integer value); s is a complex variable, s = σ + iω.

Suppose that coefficients of (1) vary within the following intervals:

aj ≤ aj ≤ aj, j ¼ 1, n: (2)

where aj and aj are the minimal and maximal limit values of closed interval

(2) of coefficients aj variation correspondingly. Polynomial (1) can be both,
non-Hurwitz or Hurwitz one.

After substituting s = σ + iω, write the root locus and parameter equations [18]
correspondingly:

v σ;ωð Þ ¼ 0, and (3)

an ¼ u σ;ωð Þ, (4)

where u(σ,ω) and v(σ,ω) are the real functions of two independent variables
σ and ω.

The root locus method represents a powerful and effective tool for stable and
qualitative polynomial synthesis and analysis. However, as it is known, this
method allows to consider polynomials with only a single variable coefficient
(parameter) and cannot be applied in the cases when all coefficients are uncertain.
Therefore, the task is to generalize the root locus method for the cases when the
number of variable coefficients is arbitrary and thus to solve the problem of inves-
tigation of the uncertain polynomial dynamics and working out methods for
synthesis of the robustly stable uncertain (interval) polynomial by setting up the
given polynomial (non-Hurwitz or Hurwitz) with constant/variable coefficients
and determining intervals of all its coefficients (stability intervals) assuring its
robust stability.
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3. Root locus portraits of uncertain polynomials

Definition 1. The algebraic equation coefficient or the parameter of the dynamic
system, described by this algebraic equation, which is being varied in a definite way
for generating the root locus, when it is assumed that all the rest coefficients
(parameters) are constant, is called the root locus parameter or free parameter.

If the root locus parameter is aj, it is named the root locus relative to parameter
(coefficient) aj.

Definition 2. The root locus relative to the algebraic equation free term is called
the free root locus.

Definition 3. Points, where the root locus branches begin and where the root
locus parameter is equal to zero are called the root locus initial points.

Definition 4. The family P of root loci of interval polynomial (1) with coeffi-
cients varying within (2) name as the interval polynomial root locus portrait (interval
polynomial root locus) or interval dynamic system root locus portrait (interval dynamic
system root locus).

Let us along with the parameter an vary also parameter an-1 of (1). Thus, we
generate a (free) root locus field Fk (k = 1. 2, …) in the plane s of system roots, which
could also be named a two-parameter root locus field or a (interval) root locus subfamily.
Parameter an-1 used for the field generation is named a root locus field parameter.

It is evident that the root locus Eq. (3) represents also the equation of level lines
of the free root locus field Fk. Root locus portrait P is then represented by the family
of root locus fields,

P ¼ Fk j k ¼ 1; 2;…f g (5)

that represents the infinite set of root locus fields and therefore possesses their
properties, and from the mathematical point of view, all root locus fields of P
feature the same qualities. Therefore, the portrait P can be investigated as a single
root locus field Fk.

Hereinafter the term “root locus” is used in the sense of “Teodorchik – Ewans
free root locus” [18].

4. Polynomial analysis and synthesis based on the extended root locus

4.1 Extended root locus

Introduce the following system of polynomials:

En ¼

sþ a1 ¼ g1 sð Þ 6:1ð Þ
s2 þ a1sþ a2 ¼ g2 sð Þ 6:2ð Þ
…

si þ a1s
i�1 þ…þ ai�1sþ ai ¼ gi sð Þ 6:ið Þ

…

sn�1 þ…þ an�2sþ an�1 ¼ gn�1 sð Þ 6: n� 1ð Þð Þ
sn þ a1s

n�1 þ…þ an�1sþ an ¼ gn sð Þ 6:nð Þ

;
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(6)

where

gi sð Þ ¼ si þ a1s
i�1 þ…þ ai1sþ ai, (7)
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gi�1 sð Þ ¼ gi sð Þ–ai
� �

=s; (8)

i–sequential number of the polynomial in (6), which is equal to its degree,

i ¼ 1, n; aj—coefficients, j ¼ 1, i.
Every polynomial (8) of (i�1) degree is generated from the i-degree polynomial

supposed that ai = 0. Polynomials of (6) have common coefficients, but not com-
mon roots.

Definition 5. System of polynomials (6) name as the extension of polynomial (1)
or extended polynomial.

Definition 6. Complete set of extension (6) root loci name as the extended root
loci of (1).

Extension En of polynomial gn(s) could be represented by the finite set of poly-
nomials,

En ¼ gi sð Þ
� �

: (9)

Statement 1. In case of variation of any coefficient aj,j ¼ 1, i� 1ð Þ, of polyno-
mial gi(s) (7) within the specific interval, aj ≤ aj ≤ aj, every initial point of its free

root locus (excluding the point located at the origin) moves along its unique trajec-
tory, representing itself one of the branches of polynomial gi�1(s) (8) root locus,
generated relative to this coefficient, and its current position is determined at a
point corresponding to the current value of aj.

Proof. As at initial points of polynomial (6) free root locus the free term aj is
equal to zero, it is evident that (8) represents the equation of initial points of the

free root locus of (6), that is, when varying aj j ¼ 1, i� 1ð Þ
� �

, the root locus of (8)

relative to aj represents the geometric place of initial points of the root locus of (7).
Therefore, every initial point of the free root locus of (7) at fixed aj coincides in the
complex plane s with one of the polynomial (8) roots at the given value of aj. It is
evident, that while varying aj, this root (and hence, this initial point) moves in the
complex plane s, generating one of the (i – 1) branches (trajectories) of the root loci
of (8) relative to aj. Thus, the statement has been proved.

Definition 7. Name gi�1(s) (8) as the originative polynomial relative to gi(s) (7)
and the root locus of (8)—the originative root locus of polynomial (7) free root loci.

Every (i�1)-th polynomial of (6) is the originative one relative to i-th polyno-
mial (6).

Consequence 1. In case of continuous variation of the polynomial gi(s)

coefficient aj, j ¼ 1, n� 1ð Þ, every branch of this polynomial root locus, initiated at
the specific initial point, migrates continuously along the corresponding branch of
the originative root locus relative to aj-1, being the trajectory of this initial point,
correspondingly in direction of increase or decrease of the originative root loci
parameter aj.

Consequence 2. If polynomial gi-1(s) being the originative one for the polyno-
mial gi(s) is asymptotically stable, all initial points of polynomial gi(s) free root
locus, excluding zero one, are located in the left half-plane s:

∀si�1
μ

Re si�1
μ

<0 ! Re pi
μ
<0

h i

, (10)

si�1
μ

¼ pi
μ
, (11)

where si
μ
—roots of gi(s); p

i
μ
—initial points of polynomial gi(s) free root locus; μ—

root (initial point) sequential number, μ ¼ 1, i� 1.

6

Polynomials - Theory and Application



Further in the text, polynomial gi-1(s) free root locus is referred to as the origi-
native one relative to that of gi(s) and gi(s) free root locus—as the originated one
relative to that of gi-1(s).

Statement 1 is illustrated by Figures 1 and 2. Initial points here are designated by
signs “x” (crosses) and letters “p” with the lower indexes, designating the point
sequential numbers, and upper indexes, designating the sequential numbers of the
corresponding root locus. The root locus sequential number is indicated by a digit
next to its corresponding branch.

Figure 1.
Polynomial (1) root locus portrait (field) at n = 3, 5 ≤ а2 ≤ 45: (a) originated portrait and (b) originated
portrait combined with its originative root locus (n = 2).

Figure 2.
Free root locus portrait (field) for polynomial g4(s) = s

4 + 10 s
3 + 35 s

2 + a3s + a4, 100 ≤ а3 ≤ 5 combined with
its originative root locus (n = 3).
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4.2 Synthesis of stable interval polynomials based on the extended root locus

Consider Eq. (3) in the sense of four following possible cases: n is uneven,
(n – 1)/2 is even/uneven, n is even, and n/2 is even/uneven. The root locus param-
eter equations (as it is in the general form see (4)) are composed in the same way.

Specify the set Aþ
i of ai values at the cross points of polynomial (7) root locus

positive branches with axis ω:

Aþ
i ¼ aþi l; l ¼ 1, nþi

n o

, (12)

where nþi is a number of cross points.
Statement 2. If all initial points of polynomial (7) root locus, excluding a single

one at the origin, are located in the left half-plane s, and this polynomial is asymp-
totically stabile, when the following condition holds:

0 < ai < infA
þ
i : (13)

Proof. Based on the root locus properties [2, 18] and expressions (10) and (11),
it can be stated, that provided all initial points of polynomial (7) root locus are
located in the left half-plane s (excluding the initial point at the origin), the specific
number ni of root locus branches (ni = i � 2 when i is even and ni = i � 1 when i is
uneven), initiating at these points, cross the stability bound iω striving along the
asymptotes directed to the right half-plane. As the rest of the root locus branches
does not cross the stability bound, they are completely stable. For positive branches,
crossing the stability bound, specify the set

Si ¼ Silf g ¼ 0; aþi l
� �� �

(14)

of intervals Sil of values ai within the segments from the initial point pil (where
ai = 0) of every branch up to its cross point with axis iω. Thus, the maximal possible
interval of ai values, ensuring stability of (6), is equal to

Simax ¼ ∩
Sil ⊂ Si

Sil ¼ infSi ¼ 0; infAþ
i

� �

, (15)

that proofs the statement being considered.
For the 4-th degree polynomial represented in Figure 2, the interval

Simax ¼ 0; a4 tð Þð Þ.
Theorem 1. For ensuring asymptotic stability of regular or interval polynomial

(1), it is enough to.

a. find among polynomials of extension (6), the stable polynomial of degree i = k
being the closest one to n;

b.set up sequentially every coefficient aj of (1), beginning with aj = ak + 1, within
interval (k + 1) < j ≤ n by setting up the free term ai of the corresponding i-th
polynomial of extension (5) as per condition (13) assuming i = j.

Proof. If polynomial gi(s) = gk(s) is stable, then on the basis of Consequence 2 of
Statement 1 (expressions (10) and (11)), the stability of gi+1(s) can be ensured by
simple application of condition (13). Thus, stability of all polynomials gi(s) is
sequentially ensured beginning with the polynomial of degree i = k + 1 up to the

polynomial of degree i = n inclusive, that is, for i ¼ kþ 1ð Þ, n. Thus, Theorem 1 has
been proved.

8
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An algorithm for the robustly stable regular or interval polynomial synthesis is
given below.

Step 1. Composing the extension En (6) of the given initial nominal polynomial
gn(s) (1).

Step 2. Sequential check for stability of the extension polynomials, beginning
with the polynomial of degree n, until finding the stable polynomial of degree i = k.

In case of synthesis of the whole interval polynomial, begin the procedure with
the 1-st degree polynomial, i = k = 1, specifying interval of a1 according to the
appropriate requirements or arbitrarily.

Step 3. Transfer to the polynomial of the next higher degree, i = k + 1.
Step 4. Calculating coordinates ωþ

il
of cross points of the polynomial gi(s) free

root locus positive branches with the axis iω by solving its appropriate root locus
Eq. (3).

Cross points ωþ
il
generate on the axis iω a so-called “crossing domain” Wþ

i :

ω
þ
il
∈Wþ

i (16)

Properties of this domain and behavior of the interval root locus portrait at the
stability bound iω have been investigated in [18]. On the basis of the fact, that every
function of (3) represents continuous differentiable function (steadily increasing/
decreasing function), it has been found in [18] that for ensuring stability of the
whole interval family, it is required to calculate the parameter ai ¼ aþil (13) values at

only two extreme “dominating points”:

ω
þ
imin ∈ infWþ

i ,ω
þ
imin ∈ supWþ

i , (17)

by solving the corresponding Eq. (3) after substituting preliminarily into
this equation, the appropriate combination [18] of the limit values of each
coefficient, from a1 to ai�1, which have been calculated already in this algorithm
when generating the originative polynomial gi�1(s). For finding two coordinates
(17), two different combinations of coefficients should be substituted into the
root locus equation and thus two different equations should be solved.

Step 5. Determining the value of infAþ
i (12) for polynomial gi(s) by calculating

minimal values a
0 ¼ a

00
imin ω

þ
i min

� �

and a
00 ¼ aþi min ω

þ
i max

� �

of coefficient ai
correspondingly at points ωþ

i min and ω
þ
i max solving twice Eq. (4) for polynomial

gi(s) at the stability bound:

ai ¼ u ωð Þ, (18)

after substituting previously into (18) the corresponding combinations of
coefficients (from a1 to ai�1) [18]. Thus,

infAþ
i ¼ min a0a″ð Þ ¼ ai, (19)

where ai is the upper limit of ai variation interval. The required interval (13) is:
0 < ai < ai:

Step 6. If the last polynomial of extension (6), that is, that of degree n, has
been already processed (i = n), the calculation is considered finished. Otherwise
proceed to step 3.

4.3 Example

Synthesis of the interval polynomial of the 3-rd degree.
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Consider polynomial family

g03 sð Þ ¼ s3 þ a1s
2 þ a2sþ a3, (20)

where аj ∈ [aj, aj], j ∈ {1,2,3}; а1 ∈ [10, 15], а2 ∈ [25, 35], а3 ∈ [350, 450].

Step 1. Compose the extended polynomial (6) for (20):

sþ a1 ¼ 0 21:1ð Þ
s2 þ a1sþ a2 ¼ 0 21:2ð Þ
s3 þ a1s

2 þ a2sþ a3 ¼ 0 21:3ð Þ
:

8

>

<

>

:

(21)

Step 2. As coefficients of polynomials (21.1) and (21.2) are positive, then both
families of these polynomials are asymptotically stable (i = k = 2), and therefore, on
the basis of Consequence 2 of Statement 1, the root loci family of (21.3) initial points
is located in the left half-pane. Thus, for making stable, the polynomial (21.3) uses
Statement 2 and Theorem 1.

Step 3. Transfer to the polynomial of the next higher degree, i = 2 + 1 = 3.
Step 4. Calculating coordinates (16) of the “dominating points” for polynomial

g3(s). For this purpose, consider the appropriate root locus (3) and parameter (18)
equations:

ω
3
–a2ω ¼ 0, (22)

and parameter function (18) at the stability bound:

a1ω
2 ¼ a3 ¼ f p ωð Þ: (23)

Find the 1-st order derivative of (23) and equate it zero:

f p
0
ωð Þ ¼ 2a1ω ¼ 0: (24)

On the basis of (23) and (24), it can be stated that the character of parameter
(23) distribution along the axis σ is steadily increasing and the single extreme point
is located at the origin. Thus, there exists the only one extreme point:

ω
þ
3 min ¼ � ffiffiffiffiffi

a2
p ¼ �5, (25)

where function (23) gets the minimal value of the set Aþ
3 (see Eq. (12)).

Step 5. Determine infAþ
3 (12) for g3(s) using (23), (25):

infAþ
3 ¼ aþ3 min ω

þ
3 min

� �

¼ a1 � ω
þ
3 min

� �2 ¼ 10 � 52 ¼ 250: Thus,0 < a3 < 250:
Step 6. As i = 3 = n, the algorithm is considered finished.
Thus, coefficient intervals for the resulting robustly stable polynomial ĝ3 sð Þ are

as follows:
а1 ∈ [10, 15], а2 ∈ [25, 35], а3 ∈ (0, 250).

5. Investigation of behavior at the stability bound and synthesis
of interval polynomial families: root locus parameter function
distribution diagram

Consider a dynamic system described by the family of interval characteristic
polynomials [4, 18, 20, 22] like.
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g4 sð Þ ¼ s4 þ a1s
3 þ a2s

2 þ a3sþ a4: (26)

Coefficients of Eq. (26) to be real, positive, and variable within the intervals

aj ≤ aj ≤ aj, j ¼ 1, …, 4, a0 ¼ 1: (27)

Substitute s ¼ σ þ iω ¼ iω (σ ¼ 0) into (26) and rewrite:

ω
4 � a1ω

3i� a2ω
2 þ a3ω iþ a4 ¼ 0 (28)

and on the base of (28), write the root locus equation [18, 20] at the stability
boundary:

�a1ω
3 þ a3ω ¼ 0 (29)

and the parameter equation (parameter function) [18, 20] at the stability
boundary:

f ωð Þ ¼ �ω
4 þ a2ω

2 ¼ a4: (30)

5.1 Crossing region of the polynomial root locus portrait

Functions (29) and (30) imply properties of analyticity and continuity and,
thus, the points where axis iω is crossed by the branches of the root locus family P
(5), given the condition.

0 < аj < þ∞, (31)

constitute on the stability boundary, axis iω, a specific crossing region, DP
ω
.

Definition 8. The region at the asymptotic stability boundary iω of the interval
system root locus portrait P, described by characteristic polynomial (26), where the
given portrait parameter function (30) values family is located, name the crossing

region DP
ω
of the root locus portrait P.

The region DP
ω
is a continuous one and, thus, each root locus field Fk (5) and each

branch bki, i ¼ 1, 2,… of the field root loci generate specific subregions, corre-

spondingly subregion DF
ω
k and continuous subregion Db

ω
i, within the above speci-

fied region DP
ω
.

Over the symmetry of the portrait hereinafter, the only upper half-plane s is
considered.

5.2 Majorant and minorant of the extremum region

Obtain the extremum parameter function values within DF
ω
k⊂DP

ω
. To do so, it is

necessary to carry out investigation of this function for extremum. It is evident that
the majorant parameter function (majorant) can be obtained through rewriting
Eq. (30):

a4max ¼ �ω
4 þ a2ω

2: (32)

Take the first-order derivative of (32) and set it to zero:

�4ω3 þ 2a2ω ¼ 0: (33)
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After solving Eq. (33), obtain three points of extremum for the majorant
parameter function for the field when a2 ¼ a2:

ωemax ¼ 0, a4emax ¼ 0; ωemax ¼ �
ffiffiffiffiffi

a2
2

r

, a4emax ¼ �ω
4
emax

þ a2 � ω2
emax

: (34)

Rewrite (30) for determination of a minorant parameter function (or a
minorant):

a4min ¼ �ω
4 þ a2ω

2: (35)

In the same way obtain three points of extremum for the minorant, when
a2 ¼ a2:

ωemin ¼ 0, a4emin ¼ 0; ωemin ¼ �
ffiffiffiffiffi

a2
2

r

, a4emin ¼ �ω
4
emin

þ a2 � ω2
emin

: (36)

Evidently, for n = 4, Eqs. (32) and (35) are the majorant and the minorant for the
whole portrait.

Definition 9. Extremum region De
ω
of the interval system root locus portrait

described by the characteristic polynomial (26) is a region [0, ωemax] at the system
asymptotic stability boundary iω where the given portrait parameter function (30)
extremum values, a4emax (34) and a4emin (36), family is located provided all coeffi-
cients аj vary within limits (31).

5.3 Diagram of the parameter function distribution along the stability
boundary

Figure 3 represents the character (diagram) of the parameter function (30)
distribution along the boundary of stability by its majorant (32) and minorant (35).
For better understanding and descriptiveness, the diagram in Figure 3 is shown by

strait lines, although it constitutes curves. Region DP
ω
constitutes three subregions

(see Figure 3):

Figure 3.
A diagram for distribution of the interval system root locus portrait parameter function along the asymptotic
stability boundary.
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• Dω

+ where the parameter function is getting increased (increase region);

• Dω
� where the parameter function is getting decreased (decrease region);

• Dω
с where increase and decrease regions combine (mixed region).

Analyze the region Zω with the interval z
0
; z

00	 


⊆ Zω where the initial points of
the root locus portrait migrate through the stability boundary to the right half-
plane. In the diagram, zero points z’, z” are mapped by points z1, z2.

Within interval [0, z’], covering completely region Dω

+ and partly region Dω

c

(Dω
þ ⊂ 0; z

0	 


, 0; z
0	 


∩ Dω
c), only the positive branches cross the stability bound-

ary, and here the whole family Z of initial points is located in the left half-plane L,

Z ⊂L: (37)

But specific pieces of the positive branches are situated within the right
half-plane. For this reason, in some cases, the unstable polynomials could have been
found within the whole family (26). However, there certainly could always be
found the intervals (27) of stability where the whole family is stable. Name the
interval [0, z’] the system stability region.

The interval [z’, z”] covers some piece of the region Dω

с and some of the region

Dω

�, z
0
; z

00	 


∩ Dω
c, z

0
; z

00	 


∩ Dω
�. In this case, axis iω is crossed by combination of

both positive and negative branches, and the root locus portrait certainly includes
a series of initial points, and thus the whole branches, that have migrated over the
boundary to the right half-plane. Therefore, this case always gives us the family
(26) that includes combination of stable and unstable polynomials. Name the inter-
val [z’, z”] the system instability region.

If the interval [z”, ∞] completely belongs to the region Dω

�,

z″∞½ �⊂Dω
�, (38)

only the negative branches cross the stability boundary iω, and the family Z
together with the corresponding positive branches are located in the right half-pane,

Z ⊂R: (39)

No stable polynomial could be found in (26). This region name the system
complete instability region.

5.4 Real crossing region of the portrait

Specify the region DR
ω
where the branches of the given real root locus portrait

cross the stability boundary. To find its limits, consider Eq. (29) and determine the
values of its roots. When ω>0.

ωmax ¼
ffiffiffiffiffiffiffi

a3
a1

s

,ωmin ¼
ffiffiffiffiffiffiffi

a3
a1

r

, (40)

where ωmax, ωmin represent the real crossing region.
Definition 10. The region [ωmin,ωmax] at the stability boundary iω, where

the polynomial (26) root locus portrait branches migrate through to the right

half-plane, name the real crossing region DR
ω
of the system root locus portrait:

ωmin;ωmax½ �⊆ DR
ω
: (41)
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5.5 Graphic-analytical stability conditions for interval polynomials

Define below three possible ways of the real crossing region location and the
corresponding stability conditions.

5.5.1 Real crossing region belongs to the increase region Dω

+

DR
ω
⊂Dω

þ: (42)

In this case ωmax <ωemin .
Statement 3. When the dynamic system root locus portrait, described by

polynomial (26), satisfies relationship (42), the whole family Z of the portrait initial
points is located in the left half-plane L,

Z ⊂L: (43)

Then, define the set S of the root locus portrait Р branches’ intervals si:

S ¼ si ¼ 0; a4 ωið Þ½ �; i ¼ 1; 2;…f g: (44)

a4(ωi) represents the parameter function (30) at points with the coordinates ωi;
S ⊂ Р and S ⊂ L (40). Thus, from (42) and (43) obtain:

∩
∞

i¼1
si ¼ inf S ¼ 0; a4 ωminð Þ

	 


, (45)

where a4 ωminð Þ—function (30) minimal value at point ωmin (40). Hence,

∀ a4 ∈ a4; a4
	 


a4 ∈ 0; a4 ωminð Þ
	 


! a4 ∈ S&P⊂L
	 


, (46)

∀ a4 ∈ a4; a4
	 


a4 ∉ 0; a4 ωminð Þ
	 


! a4 ∉ S&P⊄L
	 


: (47)

The following statement can be formulated on the basis of expressions
(42) and (47).

Statement 4. The dynamic system, described by the interval characteristic
polynomial family (26) and satisfying expression (42), is asymptotically stable if

a4 < a4 ωminð Þ: (48)

Definition 11. One or more stable polynomials with constant coefficients within
the family (26) that guarantee stability of the whole family name the dominating
polynomials.

From Statement 4 and the previous conclusions, the following stability condition
goes.

Stability condition 1. The asymptotic stability of the interval system family,
described by the root locus portrait Р (5) satisfying expression (42), is guaranteed if
polynomial

s4 þ a1s
3 þ a2s

2 þ a3sþ a4 ¼ 0 (49)

of the family is stable. Polynomial (49) represents the dominating one.
Stability is verified using the Stability condition 1. The polynomial parameters

are calculated with application of the Statement 4.
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5.5.2 Real crossing region belongs to the decrease region Dω

�

DR
ω
⊂Dω

�: (50)

It happens in case if ωmin ≥ωemax .
The above made conclusions allow to formulate the following statement.
Statement 5. If the interval system root locus portrait P satisfies condition (50),

the whole family Z of its initial points satisfies Eq. (39), and the system is
asymptotically unstable.

5.5.3 Real crossing region completely or partially belongs to the mixed region Dω

с

DR
ω
⊂Dω

c
∨ DR

ω
∩ Dω

c: (51)

We have this when the following conditions are not satisfied: ωmax <ωemin ,
ωmin ≥ωemax.

For this case

P ¼ Pþ þ P�, (52)

We have already discussed the increase part of (52), when P� = ∅. Hence, this
section considers the decrease part, P�. Consider first the family Z of the root locus
portrait P�.

Statement 6. If condition (51) holds, family Z of initial points of the dynamic
system root locus portrait, described by characteristic polynomial (26), can be
located in both left half-plane L and right half-plane R, that is, the following options
of Z location may take place:

Z ⊂L, (53)

Z ⊂ Lþ Rð Þ, (54)

Z ⊂R: (55)

Evidently, options (54) and (55) take place when

DR
ω
⊂Dω

� (56)

or DR
ω
∩Dω

�: (57)

As options (54)–(57) deliberately indicate instability of the system in whole,
consider below only option (53) of the system poles location,

ωmax <ω z0ð Þ, (58)

where ω(z0) is coordinate ω at point z0 (Figure 3).
In this case proceed just as in (44)–(47) but only substituting ωmax instead

of ωmin.
Statement 7. The asymptotic stability of the dynamic system, described by

polynomial family (26) and satisfying expression (51), is ensured when the
following condition holds:

a4 <min a4 ωminð Þ; a4 ωmaxð Þ
� �

: (59)

From condition (59) follows that the system asymptotic stability for part Р� of
portrait (52), provided that condition (53) holds, is defined by the value of
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a4 ωmaxð Þ. Therefore, for checking stability of Р� (52), it is enough to check the
only one following dominating polynomial of (26):

s4 þ a1s
3 þ a2s

2 þ a3sþ a4 ¼ 0: (60)

Because in this case, the portrait represents the compound one (52), check the
stability by checking both polynomials, (49) and (60).

Stability condition 2. If the interval dynamic system root locus portrait Р (52),
describing the family of characteristic polynomials (26), satisfies expression (51),
the system asymptotic stability is ensured when the following dominating
polynomials

s4 þ a1s
3 þ a2s

2 þ a3sþ a4 ¼ 0, (61)

s4 þ a1s
3 þ a2s

2 þ a3sþ a4 ¼ 0 (62)

of family (26) are both stable.
From the results obtained above also goes that in case (51) the system asymp-

totic stability can be verified by only a single polynomial of (26) having constant
coefficients. The equation to choose depends of condition (49) verification results.
If the verification shows that min a4 ωminð Þ; a4 ωmaxð Þ

� �

¼ a4 ωminð Þ, then Eq. (61) is

applied for the stability check. If it shows that min a4 ωminð Þ; a4 ωmaxð Þ
� �

¼ a4 ωmaxð Þ,
then the stability is verified by (62).

To determine the coefficients of (26), ensuring satisfaction of expressions (53)
and (58), Eqs. (30) and (31) are applied. Thus, coefficients а1 and а3 must satisfy
the inequality:

ffiffiffiffiffiffiffi

a3
a1

s

<ω z
0

� �

, a3 < a1ω
2 z

0
� �

: (63)

To verify the system stability, the stability conditions 1 and 2 are used. For
calculation of the system (polynomial) parameters, expressions (48), (49) and (63)
are used.

Figure 4.
Dynamics of the interval system root locus portrait at the asymptotic stability boundary.
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Polynomial stability could be estimated graphically directly from the plots
(see Figures 3 and 4).

5.6 Example

Coefficients of the given polynomial (26): a1 ∈ 5; 10½ �, a2 ∈ 5; 10½ �,
a3 ∈ 5; 10½ �, a4 ∈ 5; 10½ �:

Extremum region: De
ω
: ωe min = 3,16; ωe max = 5,92; a4e min = 100,04;

a4e max = 1223,96.

Real region: DR
ω
: ωmin = 2; ωmax = 7,1; a4 ωminð Þ= 64; a4 ωmaxð Þ= � 1532,97.

[z’, z”]: ω(z’) = 4,47; ω(z”) = 8,37.
In Figure 4, the above indicated regions are shown. The points, corresponding

to the dominating polynomials (61), (62), are designated by r’ and r”. The real
crossing region in this case completely covers the extremum region,

De
ω
⊂DR

ω
, r

0
; r

00	 


⊆ DR
ω
.

It is evident that the given polynomial family in whole is unstable. Within region
Zω = [z’, z”], there exist poles that have migrated to the right half-plane (see (54)),
which is confirmed by the negative value of the parameter a4 ωmaxð ÞI.

Dominating polynomials of the family are the following:

s4 þ 10s3 þ 20s2 þ 40sþ 30 ¼ 0: (64)

s4 þ 5s3 þ 20s2 þ 250sþ 30 ¼ 0: (65)

Polynomials stability check shows that polynomial (6), which root loci crosses
the stability boundary at point a4 ωminð Þ, is stable, and polynomial (66), which root
loci crosses the stability boundary at point a4 ωmaxð Þ, has two roots with positive real
parts.

Extraction of the stable polynomial subfamily of the given unstable family:
The stable root locus family, satisfying conditions (58) and (59), should cross the

stability boundary within the region bounded by interval [r’, z’] as in this case all
initial points of the root locus family are located in the left half-plane (53) (see
Section 5.5).

To calculate the maximal value of а3 that defines the stable subfamily within the
given root locus portrait, apply formula (63):

a3 < a1 � 4,472, a3 < 99, 9: (66)

Based on (66), accept a3 ¼ 80.
Based on (59), accept: a4 < a4 ωminð Þ, a4 ¼ 60 and write the dominating poly-

nomials:

s4 þ 10s3 þ 20s2 þ 40sþ 60 ¼ 0,

s4 þ 5s3 þ 20s2 þ 80sþ 60 ¼ 0:

As per stability condition 2, the root locus portrait subfamily having new mod-
ified values of а3 and а4 (a3 ¼ 80,a4 ¼ 60) is asymptotically stable.

6. Conclusions and future developments

A method has been worked out for synthesis of asymptotically stable regular or
interval polynomial from the given Hurwitz or non-Hurwitz source polynomial
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with constant/interval coefficients by setting up coefficients of the given one. The
root locus approach is used. The task is solved by introduction of notions of the
“extended polynomial” (“generalized polynomial”) and the polynomial “extended
root locus,” which allows to obtain a descriptive picture of the polynomial root
dynamics under coefficient variations and to disclose on this basis the cause of
instability. The intervals of uncertainty for each coefficient being set up are speci-
fied along the root locus branches.

The above described method based on the “extended root locus” notion is new
and allows to extend the application sphere of the root locus method, which is
traditionally considered to be the method of system synthesis by only a single
parameter (coefficient) variation and with only one variable parameter (coeffi-
cient), in both directions: system synthesis by many parameter variations and
system synthesis with many parameter variations.

Investigation of the fourth power dynamic system behavior in conditions of the
interval parameter variations has also been carried out on the basis of root locus
portraits and introduction of the notion of the “diagram of the root locus parameter
function values distribution along the stability bound.” Behavior regularities for
interval system root locus portraits at the stability boundary have been formulated.
On this basis, the stability conditions have been derived, and graphic-analytical
method has been worked out for calculating intervals of parameter variation ensur-
ing the system robust stability.

In continuation of the results of Anderson [22] and Kharitonov [4] in this work,
it is proved that for the 4th power interval system family asymptotic stability
analysis, it is enough to use the only one polynomial of this kind. It is also shown,
how to find and extract the stable families from the unstable ones.

The above discussed topic is certainly worth further investigation in the light of
continuous progress of both theory and technology. When speaking of the practical
implementations, it could be noted that most of the control system synthesis tasks,
especially those in the area of robust control, are currently still being solved in a
somewhat “local domestic” way, when a designer each time tries to invent a
solution to be suitable for the specific application experiencing the lack of more
generalized methods. Besides this, a great deal of existing robust control methods
share and suffer complexity. In this connection, further in-depth investigation of
the uncertain polynomials’ root locus portraits seems helpful, especially the analysis
of its composition in terms of configurations variety, constituting subfamilies,
placement of various root domains within the prescribed regions in the complex
plane and, of course, dynamics. They also could be distinguished for their undoubted
descriptiveness.

Polynomial equation approach in the design technique [16], and root locus
technique in particular, is descriptive, clear, and easy to use and computerize and
thus could be helpful in many application areas including the areas of industry,
biology, medicine, etc. It can be used for proper parameterization of robust drive
controllers, for example, in the area of railway traffic control, in particular for the
cases of tackling the problems of breaking and skidding.
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