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Chapter

Estimation of Targeted- 
Reaching-Positions by Around-
Shoulder Muscle Activities and 
Images from an Action Camera for 
Trans-Humeral Prosthesis Control
Yohei Muraguchi and Wenwei Yu

Abstract

For trans-humeral amputation, daily living tasks requiring bimanual coor-
dination, such as lifting up a box, are most difficult, hence most urgent for a 
trans-humeral prosthesis to fulfill. However, in studies reported on trans-humeral 
prosthetic control, the states of the target objects, such as their size, relative pose 
and position, which are important for any real reaching and manipulation  
tasks, have not been taken into account. In our previous study, for a box lifting-up 
task, we investigated the possibility of using around-shoulder EMG (electro-
myogram), for identifying target-reaching-positions for the boxes with different 
configurations (relative pose and position). However, with only the around-
shoulder EMG, it is impossible for the system to guide the prosthesis to hold or 
grasp target objects precisely and fast sufficiently. The purpose of this study is to 
explore the possibility of using both the image information from an action camera 
and around-shoulder EMG, to identify targeted-reaching-positions for various box 
configurations more accurately and more rapidly. Multinomial logistic regression 
was employed to realize both information integration of, and the target-reaching-
position identification. A set of experiments were conducted. As a result, an average 
classification rate of 75.1% could be achieved for various box configurations.

Keywords: trans-humeral prosthesis, bimanual coordination, reaching motion, 
target objects information, logistic regression

1. Introduction

Fore-arm prostheses [1, 2] controlled by users’ bio-signals have been the focus 
so far, while only fewer studies have been reported on prostheses for higher level 
amputees [3], due to the fact that there are fewer residual upper limb functions but 
higher DoFs (degree-of-freedoms) have to be controlled.

To solve this problem, several different approaches have been proposed. The 
iEEG (intracranial electroencephalogram), obtained from the intracranial elec-
trodes embedded in the brain was used to control trans-humeral prostheses [4]. In 
[5], Kuiken et al. reported their research efforts to control trans-humeral prostheses 



Prosthesis

2

using EMG by TMR (targeted muscle reinnervation) technology. By the above-
mentioned methods, an intuitive user-prosthesis interface could be achieved using 
the bio-signals with more direct information of intended motions, however, the 
problems are clear: they are invasive and need surgery, which costs high, and may 
cause physical and mental burden to patients.

In [6, 7], the EMG (electromyogram) signals from the around-shoulder area (ASA), 
and in [8], the EMG from the ASA, together with additional motion-related EEG were 
used, and machine learning methods were employed to explore the limited information.

Bimanual coordination between one’s healthy arm and its prosthetic counter-
part, in bimanual tasks such as holding a bottle with one hand while opening its 
lid with another hand, operating a car handle, and lifting up a box, was proposed 
as one solution [9–15]. This is because at first, the needs of trans-humeral pros-
theses might mostly come from the bimanual coordination, since in daily living, 
there are many tasks that need the coordination of the limbs of both sides [16], 
while most amputees can use their healthy (normal) side to complete most tasks 
that do not need bimanual coordination. Secondly, more information for control-
ling trans-humeral prostheses can be acquired from both coordinating sides, since 
the required behavior of the prostheses could be estimated from not only the 
residual stumps, but also the motion and motor behavior of the normal side, too.

However, in the studies of bimanual coordination mentioned before, the states 
of target objects, such as their relative position, size, and pose, which are important 
for any real manipulation and reaching tasks, has not been taken into consideration. 
In a typical bimanual coordination task: lifting up a box by two hands, the target-
reaching-position for a trans-humeral prosthesis to reach varies depending on the 
state of the box. For this reason, it is necessary to take into consideration the states 
of target objects when identifying the target-reaching-position of the healthy arm 
for realizing the bimanual coordination for the users of trans-humeral prostheses.

Similarly, bimanual coordination has been addressed in robotics [17]. In a study 
on bimanual box grasping by a humanoid robot, the concept of grasping stability 
was used to deal with the different states of the box [18].

In our previous study, we explored the possibility of identifying target-reaching-
positions with respect to various box configurations (box size and relative pose) and 
investigated the features highly generalized for unknown data: i.e., those that could 
enable the classifiers to be trained by fewer box configurations. However, it was made 
clear that, with only the ASA EMG, it is impossible for the system to guide the prosthesis 
to hold or grasp target objects precisely and fast sufficiently for the daily living activities.

This study has two relevant purposes, throughout the experiments and analyses 
for the bimanual box lifting task. The first is to explore the possibility of identify-
ing the target-reaching-positions with respect to various box configurations, using 
two signal sources: bio-signals detected from the around-shoulder area and images 
from an action camera. Here a box configuration specifies the pose and the position 
of a box relative to the user. The reason for using the bio-signal only from around-
shoulder area is that the sensors at the distal sites are more likely to be affected by 
external perturbation, moreover, around shoulder sensors configuration could be 
also applied to the amputated side. On the other hand, the reason for attaching the 
camera near the shoulder is that the camera there does not limit the use of both 
arms in practical use even in a wearable setting, and its positional relation with the 
trans-humeral prosthesis is straightforward. Classifiers are trained to identify the 
intended target-reaching-positions for different box configurations.

The second is to explore the optimal way to integrate the information from the 
two signal sources, to realize fast and accurate target-reaching-position. Since only 
with the fast and accurate estimation, there could be sufficient time for controlling 
the trans-humeral prosthesis to match the healthy upper limb.
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2. Feature selection and classification for target-reaching-positions

2.1 Feature selection

Three hundred and ninety eight features (i.e., 8 EMG sensors × 10-time 
steps + 28 ratio of WL × 10-time steps + 8 total sums of WL + 28 ratio of total 
sum of WL + box pose + box position) were calculated from the measured data. 
Apparently, using all the features for classification may cause training problems, 
such as flattening or over-fitting. In this study, the Akaike information criterion 
(AIC) [19] was used for feature selection.

  AIC = 2k − 2 ln  (L)   (1)

Here, k is the number of parameters in the statistical model, and L is the maxi-
mized value of the likelihood function for it.

Method of incrementally increasing and decreasing representative variables in 
[20] was used to select features. That is, if the AIC does not decrease when the next 
feature is added, the feature selection ends. To decide the initial values for the selec-
tion, the ratio between interclass variance and in-class variance in [21] was used. 
The feature with the largest ratio is adopted as the initial value.

2.2  Evaluation of the features and classification of the target- 
reaching-positions in the multinomial logistic regression

Multinomial logistic regression analysis was employed as the classifier. The 
method is called a multinomial logit model, which is one of several natural exten-
sions of the binary logit origin. This multinomial logit model counts the relative 
probability of being in one category versus being in a reference category, k, using 
a linear combination of predictor variables. Consequently, the probability of each 
outcome is expressed as a nonlinear function of p predictor variables [22].

The multinomial logit model can be expressed as the following equations:

  ln  (   π  1   ___  π  k    )  =  α  1   +  β  11    X  1   +  β  12    X  2   + ⋯ + β  1p    X  p  ,  

  ln  (   π  2   ___  π  k    )  =  α  2   +  β  21    X  1   +  β  22    X  2   + ⋯+ β  2p    X  p  ,  

  ⋮  

  ln  (   𝝅  k−1   ____  𝝅  k    )  =  𝜶   (k−1)    +  𝜷   (k−1) 1    X  1   +  𝜷   (k−1) 2    X  2   + ⋯ + 𝜷   (k−1) p    (2)

where πj = P (y = j)(j = 1, 2, …, k) is the probability of an outcome being in 
category j, k is the number of response categories, πj = P (y = j), and p is the number 
of predictor variables. A total of j-1 equations was solved simultaneously to estimate 
the coefficients. The coefficients in the model express the effects of the predictor 
variables on the relative risk or the log odds of being in category j versus the refer-
ence category, here k, [22]. When used in classification, the probability of each label 
can be obtained from the above equations and the feature obtained by measure-
ment. The label with the highest probability is the classification result.

In the feature selection by AIC, a feature is selected by its compatibility with the 
previously selected features. Therefore, in essence, the features selected earlier are 
not guaranteed to the best. On the other hand, coefficient, and the p value of the 



Prosthesis

4

coefficient of the feature by the logistic regression (coefficient, p value of the coef-
ficient) can represent how the feature affects the classification. The feature with 
the smallest p value affects the classification the most. The reason for using AIC as 
feature selection is that the logistic regression equation could not deal with directly 
a large number of predictor variables, i.e., features. For the above reasons, we per-
formed the feature selection using AIC, and feature evaluation logistic regression.

Regarding classification methods, SVM [23] and neural networks [1, 2] are well 
used for bio-signals. However, in this research, not only the classification but also 
the information integration based on feature selection and evaluation is required, 
which is difficult for both SVM and neural networks. Contrarily, the multinomial 
logistic regression can perform a dual role of classification and feature evaluation. 
In addition, since classification results of the multinomial logistic regression come 
with the probability, it is also possible to evaluate the ambiguity of the classifica-
tion. Furthermore, the multinomial logistic regression uses only j-1 (j: number of 
categories) weighted sum for classification, its computational cost shall be lower 
than that of SVM and neural networks.

The difficulty of this research lies in the fact that, the reaching motion to the 
same relative position of the box with different box configuration (relative pose 
and position) should be classified as the same class, and in some cases, as the box 
position changes, even though the actual target-reaching-position is almost the 
same, the label of the target-reaching-position that should be classified shall be 
completely different. For example, the back of one box placed at a certain position, 
and the front of another box placed at a displacement of the box width are the 
planes with same position. If with only EMG, the reaching motion to both planes 
would be identified as the same, though they should be classified as the different 
ones. Therefore, it is necessary to introduce in some forms the box configuration 
information, and investigate how to integrate the two types of signals.

We compared between two datasets. Dataset 1 used EMG only; dataset used 
EMG and the box configuration (relative pose and position). Also, the classification 
was performed in two steps. In step 1, the upper side of the box (RP1, 2, 3) and the 
bottom side of the box (RP4, 5, 6) were classified. In step 2, in the case where it was 
classified as the upper side of the box in step 1, classification of RP1, RP2, RP3 was 
performed. If it was classified as the bottom side of the box, RP4, RP5, RP6 were 
classified. When the classification result is correct in both steps, the classification 
rate was increased. In that case, the classification rate was calculated by leave-one-
out cross validation.

Feature extraction and feature selection were performed every 0.1 s from the 
start of motions. Feature selection was performed for each subject and classifier (for 
the upper side of the box and the bottom side of the box, for RP1, RP2 and RP3, for 
RP4, RP5 and RP6), and the feature was not unified among subjects. After that, the 
multinomial logistic regression was constructed using the selected features from 
the data until a specified elapsed time step, and the change of classification rate was 
investigated each dataset.

3. Measurement experiment

3.1 Subjects

Three male healthy subjects, of age 23, with no known history of neurological 
abnormalities or musculo-skeletal disorders, participated in the experiments. They 
were informed about the experimental procedures and asked to provide a signed 
consent.
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3.2 Experiment procedure

The subjects were required to stand comfortably in front of a table. Before 
starting a new trial, they were asked to rest the palm of their dominant hand 
naturally open. They were instructed to move their dominant hand towards one of 
the six target-reaching-positions on the side of a box, for the purpose of lifting it up 
(Figure 1), after pushing a button to denote a new trial.

The size of the box used during the experiment was 260 × 310 × 165 mm 
(Length × Width × Height). The box was placed in one of four different poses, 
and three different positions relative to the subject, as denoted in Figures 2 and 3, 
respectively. The subjects were asked to reach a total of five times for each box con-
figuration, giving a total of 360 (6 positions × 4 poses of box × 3 position of box × 5 
times) trials. The subjects were required to do the reaching motion with 1.0 s, fol-
lowing the tempo of a metronome. They could rest for a few seconds between each 
trial. Muscle activity, skin surface undulation during the motions were recorded 
with the sensors and devices described in the next subsection.

3.3 Devices

In the experiment, eight EMG sensors (Trigno, DELSYS), were used to mea-
sure the muscle activity. The sensor signals were recorded using Powelab 16/35 
(AD instruments), at a sampling frequency of 400 Hz. Generally, the sampling 
frequency used for muscle activity recording is 1 kHz or more, but because no 
frequency-domain features are to be used in the classification, as shown in the next 
subsection, the sampling frequency was decreased.

The eight EMG sensors were placed on the skin surface of eight different 
muscles around the shoulder: Latissimus dorsi, Deltoid middle strand, Deltoid front 
strand, Deltoid rear strand, Triceps branchii, Middle part of trapezius, Descending 
part of trapezius, Pectoralis major, as shown in Figure 4, were selected according to 
the shoulder anatomy [24].

The action camera was attached to the shoulder mouth. Then, the image during 
the reaching motion measurement was acquired. However, this study no informa-
tion was acquired using image processing. Although the action camera and the 
algorithms to process the images have been determined, in this study, because it is 
the integration of information from different signal sources that is to be investi-
gated, the information of relative pose and position the of box was directly used.

3.4 Feature extraction

The EMG signals were processed by a 1 Hz high-pass filter.
The features were based on the waveform length (WL) of filtered raw sig-

nals. WL is a measure of complexity of the EMG signal, which is defined as the 

Figure 1. 
Reaching position (RP: reaching position).
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Figure 4. 
The position of the sensors.

cumulative length of the waveform over the time segment [25]. The following 
features calculated.

1. WL in the segmentation delimited by every time step (0.1 s) and the ratio of 
WL of each two EMG channels in that interval

2. The total sum of WL until a specified elapsed time and Ratio of WL of each 
two channels in that interval

Regarding the relative pose and position information of the box, the angle of the 
reaching side (as shown in Figure 2), and the distance between the subject and the 
box (as shown in Figure 3) were used, respectively. To simulate the error possibly 
caused by image processing, and investigate the tolerance of the classification to con-
figuration deviation, a simulated error was added to the configuration information.

Figure 2. 
Box pose (P: pose).

Figure 3. 
Box position (L: position).
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In the analysis for classification rate (Sections 4.1 and 4.2), evaluation of 
features (Section 4.3), random values (−0.5 to +0.5) created using MATLAB were 
added to the box pose and box position. Here, 0.5 mean 50% of the angular interval 
between different poses (45° × 0.5 = 22.5°) (see Figure 2), or distance interval 
between different relative positions (15 cm/2 = 7.5 cm) (see Figure 3). In the analy-
sis of the effect of simulated error (Section 4.4), four levels of simulated errors:  
0, ±0.5, ±0.75, ±1.0 were added. That is, the maximal actual distance (position) 
error is ±15 cm (±1.0) and, the maximal actual angle (pose) error is ±45° (±1.0). 
That is, the maximum error given is same as the angular interval between box poses.

The box pose and box position information were introduced as categorical 
variables. The box pose information P1 and P2 are set to 1, P3 and P4 are set to 2 in 
Figure 2. The box position information L1, L2 and L3, as shown in Figure 3, were 
set to 1, 2, and 3, respectively. Also, all features were standardized using the Z 
score for evaluation of selected features. For a random variable X with mean μ and 
standard deviation σ, the z-score of a value x is

  z =   
 (x − 𝝁) 

 _____ 
𝜹
    (3)

4. Results and discussion

4.1 Comparison using classification rates

Figures 5–7 show the classification rate at each elapsed time step of the reaching 
motion for each subject. RPi (i = 1–6) in each figure represents a reaching posi-
tions, the meaning of the digit i can be found in Figure 1. At the end of the reaching 
motion, the classification rate achieved by classification with only EMG and that 
of EMG + box configuration information was 60.0 and 75.1%, on average for all 
subjects, respectively. It is clear that the classification rate was greatly improved by 
integrating the box configuration information and ASA muscle activities.

In Figures 5–7, the legend markers RP 123, RP 456, RP upper_and_bottom 
represent the result of classifying relative position 1, 2, 3, relative position 4, 5, 6, 
and relative position upper row and bottom row, respectively.

As seen from Figures 5(a), 6(a), and 7(a), when using only EMG as the features, 
at the elapsed time step of 0.5 seconds, the classification rate of RP 123, RP 456 and RP 
upper and bottom was 55.4, 59.6, and 84.3% on average for all subjects, respectively. At 
the end of the reaching motion, the classification rate of RP 123, RP 456 and RP upper 
and bottom was 68.9, 62.2 and 91.5% on average for all subjects, respectively.

In contrast, when using the EMG and the box configuration (relative pose and 
position) information as the features, at the elapsed time step of 0.5 s, the classifica-
tion rate of RP 123, RP 456 and RP upper and bottom was 76.9, 74.4 and 84.5% on 
average for all subjects, respectively. At the end of the reaching motion was 83.5, 
82.2 and 90.9% on average for all subjects, respectively.

It can be seen from these results that, no clear classification rate increase was 
observed even if the state of the box was introduced in classification of the box top 
and bottom. On the other hand, it is found that the box configuration is effective for 
identifying the depth of the reaching motion, since an increase of about 20% was 
observed.

Although the classification rates are not as high as those in the studies for rec-
ognizing the motions of hands and fingers [1, 2, 4], considering the disadvantages 
brought by the boxes with different configurations, and limited EMG measurement 
sites, the results are acceptable. Moreover, the results are comparable to those in 
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the research on complex motions [26, 27], in which the classification rate reported 
was around 70% too. So in the following analysis, 70% is used as the threshold for 
investigating the real-time characteristics.

Figure 6. 
Classification rate at each elapsed time step of reaching motion (subject B, (a) uses only EMG for the feature, 
(b) uses EMG and box configurations (pose, position) for the feature, RP: reaching position, see Figure 1).

Figure 5. 
Classification rate at each elapsed time step of reaching motion (subject A, (a) uses only EMG for the feature, 
(b) uses EMG and box configurations (pose, position) for the feature, RP: reaching position, see Figure 1).

Figure 7. 
Classification rate at each elapsed time step of reaching motion (subject C, (a) uses only EMG for the feature, 
(b) uses EMG and box configurations (pose, position) for the feature, RP: reaching position, see Figure 1).
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Table 1 shows the timing when the classification rate exceeded 70%, and the 
classification rate at 0.5 seconds for each subject. As seen from the table, when 
using only EMG as the features, the classification rate did not exceed 70% for any 
subjects. When using the EMG and box configuration as the features, subject A, B, 
C achieved 70% at the timing of 0.4 0.9 and 0.8 s, respectively. Also, when using 
only EMG as the features, the classification rate at 0.5 seconds was 51.7, 46.4, and 
46.1%, for subject A, B, and C, respectively. In contrast, when using the EMG and 
box configuration as the features, subject A, B and C achieved 71.7, 53.6, and 65.8%, 
respectively. By introducing the box configuration information as the features, the 
classification rate of subject A, B, and C increased by 20.2, 7.2, and 19.7%, respec-
tively. From these results, it is clear that, the information of box configuration 
enables more accurate and faster classification.

4.2 Comparison using classification probabilities

Figure 8 shows the probabilities obtained by the logistic regression at the end 
of the reaching motion of the subject A. In the figure, (a) shows the case using only 
EMG as the features, (b) shows the case using both EMG and box configuration 
(pose, position) information as the features. A reaching position with the highest 
resultant probability was counted as the classification result.

From Figure 8(1, 2), it can be seen that in the classification of box upper and 
bottom, high probabilities were achieved even when only EMG was used as the 
features. From Figure 8(3–8), when only the EMG was used as the features, the 
probabilities were low even if the classification results were correct (a), but when 
both EMG and box configuration were used, the probabilities showed a clear dif-
ference for classification, which means that ambiguity decreases by introducing the 
box configuration information as features.

4.3 Evaluation of selected features

Tables 2 and 3 show the features selected using AIC, the coefficients of each fea-
ture in the logistic regression, p value in the classification of upper and bottom side 
reaching position. Table 3 have the similar layout, showing the features selected 
using AIC, coefficients of each feature in the logistic regression, and p value for 
classification of RP1/2/3, and RP4/5/6, respectively. In Tables 2 and 3, the selected 
features were arranged in the selected order.

From Table 2, it is clear that, for the classification of RP upper and bottom side, 
the box configuration information (both the pose and position), was not selected 
by the AIC selection process. As can be seen from Table 3, for the classification 
of RP1/2/3 and RP4/5/6, the box pose and position were selected. Moreover, the p 
value of the box position is the smallest, which means the box position is the most 
contributing feature for the classification.

The timing exceeding the classification 

rate of 70% [s]

The classification rate at 0.5 s [%]

Subject Only EMG EMG and box 

configuration

Only EMG EMG and box 

configuration

A Not exceeded 0.4 51.7 71.7

B Not exceeded 0.8 46.4 53.6

C Not exceeded 0.9 46.1 65.8

Table 1. 
The timing exceeding the classification rate of 70% and the classification rate at 0.5 s each dataset.
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4.4 Influence of the simulated errors for box configuration information

If the box configuration information is calculated from the image processing 
from the action camera, errors occur due to the influence of noise, measure-
ment error and the other system errors. Therefore, in this research, the tolerable 
range of the error was investigated by adding simulated error to the true box 
configuration.

Figure 9 shows the influence of the simulated error level of the box configura-
tion information on the classification rate of each subject. As seen from the figure, 
the classification rate decreased when the error level was increased in all subjects. 
In the case of subject A, even if the highest level error, 1.0 was given, a classification 
rate exceeding 70% was obtained. In the case of subject B, when the simulated error 
level 0.75 or more was given, the classification rate was lower than 70%. For subject 
C, when simulated error level 1.0 was given, the classification rate fell below 70%. 
From these results, it can be said that the error level should be controlled to 0.5 or 
less (position: 7.5 cm or less, posture: 22.5° or less).

Figure 8. 
The probability obtained by the logistic regression equation (subject A, at the end of the reaching motion, 
(a) uses only EMG for the feature, (b) uses EMG and box configurations (pose, position) for the feature, the 
reaching position with the highest probability is the identification result).
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Selected feature Coefficient p value Selected feature Coefficient p value

Intercept 0.03 0.874 34, rdWL 1.76 3.85E-5

137, vdWL 1.23 0.001 127, vdWL 1.55 0.003

89, rdWL −0.88 0.024 93, rdWL −2.91 1.23E-7

99, rdWL 2.21 1.90E-8 53, rdWL −0.84 0.004

152, rtWL 1.15 0.001 87, rdWL 1.12 0.001

117, vdWL 1.38 9.48E-6 180, vtWL 1.78 4.16E-4

84, rdWL 1.10 0.001 176, vtWL −1.26 2.69E-4

32, rdWL −1.55 5.64E-7 21, rdWL 0.89 0.006

65, rdWL −1.58 6.11E-5 61, rdWL 0.70 0.002

85, rdWL −2.11 2.70E-6 111, rdWL 0.99 0.18

102, rdWL −1.80 1.79E-4

The meaning of the symbols: r, the ratio of WL; the value of WL; t, total sum for the whole period of the reaching 
motion; d, segmentation delimited by every time step (0.1 s). The ID number and type of features are expressed as 
follows. rdWL(1–112): the ratio of WL in the segmentation delimited by every time step (0.1 s); vdWL(113–144): 
WL in the segmentation delimited by every time step (0.1 s); rtWL(145–172): the ratio of the total sum of WL until a 
specified elapsed time; vtWL(173–180): the total sum of WL until a specified elapsed time; BP(181): the box pose and 
BL(182): the box position; p value represents statistical significance of coefficient.

Table 2. 
In classification of RP upper and bottom side, feature selected using AIC, coefficients of the logistic regression 
equation, p value (dataset: EMG and box configuration).

Selected feature Coefficient p value Coefficient p value

π4 versus π6 π5 versus π6

(a) In classification of RP1/2/3

Intercept −2.69 0.011 3.29 1.05E-6

154, rtWL 10.94 2.30E-10 2.24 0.046

182, BL 14.50 3.34E-17 6.20 6.49E-8

175, vtWL 7.94 0.002 4.78 0.017

181, BP 7.50 1.67E-14 2.74 2.02E-6

177, vtWL 7.72 2.69E-8 2.29 0.017

169, rtWL −1.69 0.005 −1.12 0.006

115, vdWL −6.98 8.06E-6 −1.07 0.287

152, rtWL −14.31 4.23E-10 −2.48 2.81E-4

π4 versus π6 π5 versus π6

(b) In classification of RP4/5/6

Intercept 1.65 0.134 3.56 4.61E-4

145, vdWL −2.89 0.009 −1.04 0.161

182, BL 8.17 1.98E-9 5.43 3.83E-6

131, vdWL 3.88 0.004 3.24 0.009

181, BP 5.17 1.33E-8 3.37 1.56E-5

174, vtWL 8.61 4.88E-5 5.82 0.003

8, rdWL −3.36 8.58E-4 −2.21 0.007
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Figure 9. 
Influence of box configuration information on classification rate due to error (±1.0: Corresponding to 15 cm for 
position, and 45° for pose). (a) Subject A, (b) subject B, and (c) subject C.

Selected feature Coefficient p value Coefficient p value

π4 versus π6 π5 versus π6

17, rdWL −2.15 0.087 −0.96 0.420

The meaning of the symbols: r, the ratio of WL; the value of WL; t, total sum for the whole period of the reaching 
motion; d, segmentation delimited by every time step (0.1 s). The ID number and type of features are expressed as 
follows. rdWL(1–112): the ratio of WL in the segmentation delimited by every time step (0.1 s); vdWL(113–144): 
WL in the segmentation delimited by every time step (0.1 s); rtWL(145–172): the ratio of the total sum of WL until a 
specified elapsed time; vtWL(173–180): the total sum of WL until a specified elapsed time; BP(181): the box pose and 
BL(182): the box position; p value represents statistical significance of coefficient.

Table 3. 
Feature selected using AIC, coefficients of the logistic regression equation, p value (dataset: EMG and box 
configuration).
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5. Conclusion

In this research, we employed multinomial logistic regression to realize both 
information integration of two signal sources: images and around-shoulder EMG, 
and the target-reaching-position identification for 12 box configuration (pose 
4 × position 3).

A high classification rate was achieved using both information sources. It was 
found that the box configuration information contributes to the classification of the 
depth of the reaching motion. Moreover, since the timing at which the classification 
rate exceeds 70% greatly differs from each subject, it is considered that the optimal 
classification timing might be individual dependent. Furthermore, the classification 
rate decreased when the error level was increased in all subjects.

In the experiment, we only changed the box position in the depth direction rela-
tive to the subject. Lateral changes of the box position relative to the subject shall 
be investigated, in the near future. Moreover, the effect of the box configuration 
information calculated from the real images captured by the active camera should 
be studied and compared with the results of this study. Since the error caused by the 
image acquisition and processing, as well as the real computational cost shall affect 
the information integration. Finally, the system should be finally validated with the 
data from amputee subjects.
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