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Abstract

In the current study, we suggest that phosphorylation reactions of specific proteins 
in mitochondria and the nucleus are a key step in the progression of age-related macu-
lar degeneration (AMD). To determine the molecular mechanism of AMD, we exam-
ined proteomic changes under oxidative stress to establish the protein interaction map 
using in vitro and in vivo models that mimic the complex and progressive characteris-
tics of AMD. We postulated that apoptosis can be initiated by phosphorylation reac-
tions under chronic oxidative stress in a region-specific and tissue-specific manner. 
The analysis of AMD interactome and oxidative biomarker network demonstrated 
that the presence of tissue- and region-dependent post-translational mechanisms may 
contribute toward AMD progression through the mitochondrial-nuclear communica-
tion. The AMD interactome suggests that new therapeutic targets, including pro-
hibitin, erythropoietin, vitronectin, crystalline, nitric oxide synthase, ubiquitin, and 
complement inhibition may exist as a proteome network. Further, immunocytochem-
istry demonstrated that mitochondria could enter the nucleus in the retinal pigment 
epithelium (RPE) under oxidative stress. The current interactome map implies that 
a positive correlation may exist between oxidative stress-mediated phosphorylation 
and AMD progression. The unbiased proteome network provides a basis for under-
standing oxidative stress-induced mitochondrial dysfunction in AMD and exploring 
effective therapeutic approaches to treat age-related neurodegeneration.

Keywords: protein interactome, mitochondria, phosphoproteomics,  
prohibitin, retrograde signaling, AMD target

1. Introduction

Age-related macular degeneration (AMD) is the leading cause of legal blindness in 
developed countries [1, 2]. Although the vision loss directly results from dysfunction 
and cell death of photoreceptors in the central retina, it has been demonstrated that 
the early stage of AMD involves the pathological changes in retinal pigment epithelium 
(RPE), the cell layer that plays pivotal roles in supporting photoreceptors. Due to the 
inevitable roles of RPE in supporting retinal function, it is critical to understand the 
physiological and pathological events in the RPE to prevent the development of AMD.



Visual Impairment and Blindness - What We Know and What We Have to Know

2

AMD symptoms include RPE atrophy, drusen accumulation, pigmentary changes, 
and choroidal neovascularization [1, 2]. Progressive cell death of post-mitotic RPE can 
lead to rod and cone apoptosis, resulting in AMD eventually. As AMD is a complex and 
multifactorial disease, AMD mechanisms could be discussed under environmental 
and genetic factors, including oxidative stress (smoking, light exposure, and hypoxia), 
RPE dysfunction (retinoid recycling, phagocytosis, aging, and apoptosis), accumula-
tion of visual cycle waste, chronic inflammation (involving CFH, CFB/C2, C3, CF1, 
C5, and C9), drusen formation (lipid metabolism involving APOE, LIPC, and CETP), 
geographic atrophy, and choroidal neovascularization (VEGF signaling) [3–8].

Recently, mitochondrial alterations have drawn great deal of attention in 
understanding AMD [3]. Mitochondrion is the main cell compartment for cell 
respiration and cell signaling. Many studies have shown that RPE mitochondria 
undergo severe structural and functional changes during aging and AMD [3, 4]. 
The mitochondrial dysfunction causes the excessive generation and leaking of 
reactive oxidative species (ROS) from the respiration chain and RPE is one of the 
most susceptible cells to ROS. RPE is also responsible for phagocytosis of rod outer 
segments, where polyunsaturated fatty acids abound. Phagocytosis and oxidation 
of unsaturated fatty acids generate additional ROS. Further, RPE cells are exposed 
to chronic oxidative stress, including constant exposure to intense light and 
oxidants from mitochondria due to high levels of oxygen demand and consump-
tion. The increased oxidative stress in RPE may in turn deteriorates mitochondria 
and causes RPE cell death. Our data suggested that mitochondrial morphology 
and functional integrity are closely related to apoptosis and cellular aging [9–11]. 
Insufficient bioenergetic processes may lead to drusen accumulation. A number 
of apoptotic regulators reside in mitochondria and various retrograde signaling 
mechanisms are also dependent on mitochondria.

Oxidative stress facilitates the formation of toxic lipids and protein peroxidation, 
resulting in drusen deposition. There are excessive generation and leaking of oxidants 
from the respiratory chain under oxidative stress. This explains why AMD is associ-
ated with the accumulation of advanced lipid peroxidation end products, leading to 
apoptosis of photoreceptors and RPE cells. In addition, phosphorylation of crystalline 
and vimentin may participate in the pathogenesis of AMD by forming soft drusen with 
longer chain of phosphatidylcholine and cholesteryl esters. With aging, lipids and cho-
lesterol accumulate underneath the RPE and contribute toward drusen formation. The 
excessive drusen deposition may damage the RPE and lead to degeneration of collagen 
or elastin in Brook’s membrane, the outer retina, and the choroid vasculature.

We have studied the mechanism of RPE cell death under various stress condi-
tions [9–20]. Our data demonstrated that mitochondrial morphological changes 
and mitochondrial-nuclear shuttling of prohibitin are significant responses in the 
RPE under oxidative stress [9, 10, 18]. Herein, we discuss AMD mechanisms based 
on four distinctive subnetworks of protein interactome, including complement 
activation, transcriptional regulation, mitochondrial signaling, and apoptosis. We 
propose that altered retrograde mitochondrial-nuclear crosstalk may initiate the 
pathological reactions observed in aging and oxidative stress-mediated RPE cell 
death that can contribute to the pathogenesis of AMD.

2. Materials and methods

2.1 In vivo experimental design

All the animal procedures were performed in compliance with the Association for 
Research in Vision and Ophthalmology Statement for the humane use of laboratory 
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animals. Human postmortem donor eye tissues were used following the tenets of the 
Declaration of Helsinki. Diabetic retinopathy (DR) human retinal tissues (n = 9, 
biological triplicate × technical triplicate) were obtained from the Georgia Eye Bank 
(Atlanta, GA). AMD retina (8 mm macular and peripheral punches), RPE (8 mm 
central and peripheral punches), and age-matched control eyes (n = 9, biological trip-
licate × technical triplicate) were provided by the Lions Eye Bank (Moran Eye Center, 
University of Utah). Phosphoproteomes of macula (I), peripheral retina (II), central 
RPE (III), and peripheral RPE (IV) were compared to age-matched control donor 
eyes to determine region-specific, senescence-associated molecular mechanisms dur-
ing AMD progression. Phosphoproteins were enriched by charge-based spin column 
chromatography and resolved by 2D gel electrophoresis as previously reported 
[11, 16]. Trypsin-digested phosphopeptides from whole lysates were enriched using 
Ga3+/TiO2 immobilized metal ion chromatography. Eluted phosphopeptides were 
analyzed using MALDI-TOF-TOF and ESI MS/MS. Serine, threonine, and tyrosine 
phosphorylations were confirmed by phospho-Western blotting analysis.

2.2 ARPE-19 and HRP cells

For in vitro experiments, retinal pigment epithelial cells (ARPE-19) were pur-
chased from ATCC (Manassas, VA) and retinal progenitor cells (HRP) were kindly 
donated by Dr. Harold J. Sheeldo at the University of North Texas Health Science 
Center. ARPE-19 and HRP cells were cultured in a 5% CO2 incubator at 37°C in 100-
mm dishes (Nalge Nunc International, Naperville, IL) using Dulbecco’s modified 
Eagle’s medium (DMEM) with fetal bovine serum (10%) and penicillin/streptomy-
cin (1%). Confluent cells were trypsinized (5–7 min at 37°C) using a trypsin-EDTA 
buffer (0.1%, Sigma-Aldrich, St. Louis, MO), followed by centrifugation (300× g, 
7 min). Cells (eight to nine passages) were grown to confluence for 2–4 days and 
then were treated with H2O2 (200 μM), intense light (7000–10,000 lux, 1–24 h) or 
constant light (700 lux, 48 h). Then, cells were rinsed (Modified Dulbecco’s PBS) 
and lysed using IP lysis buffer containing Tris (25 mM), NaCl (150 mM), EDTA 
(1 mM), NP-40 (1%), glycerol (5%), and protease inhibitor cocktail at pH 7.4 
by incubating on ice for 5 min with periodic sonication (3 × 5 min), followed by 
centrifugation (13,000× g, 10 min). Proteins (1 mg/ml, 200–400 μl) were loaded 
for immunoprecipitation and nonspecific bindings were avoided using control 
agarose resin cross-linked by 4% bead agarose. Amino-linked protein-A beads were 
used to immobilize antiprohibitin antibody with a coupling buffer (1 mM sodium 
phosphate, 150 mM NaCl, pH 7.2), followed by incubation (room temperature, 2 h) 
with sodium cyanoborohydride (3 μl, 5 M). Columns were washed using a washing 
buffer (1 M NaCl), and protein lysate was incubated in the protein A-antibody col-
umn with gentle rocking overnight at 4°C. The unbound proteins were spun down 
as flow-through, and the columns were washed three times using washing buffer 
to remove nonspecific binding proteins. The interacting proteins were eluted by 
incubating with elution buffer for 5 min at RT. The eluted proteins were equilibrated 
with Laemmli sample buffer (5X, 5% β-mercaptoethanol). Eluted proteins were 
separated using SDS-PAGE and stained using Coomassie blue (Pierce, IL) or silver 
staining kit (Bio-Rad, Hercules, CA). Immunoprecipitated proteins were reported 
previously [10] and were used to establish interactome in the current study.

2.3 In vivo oxidative stress

Constant light experiment was conducted as previously reported [21]. Female 
C3HeB/FeJ mice (12 weeks of age) were purchased from the Jackson Laboratory 
(Bar Harbor, ME) and housed under a 12-h light/12-h dark cyclic lighting condition 
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(250–300 lux of full spectra fluorescent room light) for 2 weeks. The first group of 
mice (light/dark group) was housed in the 12-h light/12-h dark condition and the sec-
ond group (constant light group) was housed in constant room light (250–300 lux) 
for 7 days. After euthanasia, eyes were rapidly removed from animals and retinas 
were isolated by microscopic dissection. Retinas were then washed with a solution 
of 250 mM sucrose, 10 mM Tris–HCl, at pH 7.0 to remove contaminants before lysis 
in 30 mM Tris–HCl, 2 M thiourea, 7 M urea, 4% CHAPS, and protease inhibitors. 
Samples were then sonicated intermittently until cells were lysed. The crude lysate 
was centrifuged at 20817× g for 30 min at 4°C. Two-dimensional polyacrylamide gel 
electrophoresis (2D-PAGE) was performed using Ettan IPGphor system with 11 cm 
of immobilized pH gradient (IPG) strips (pH 5–8, ReadyStrip, Biorad) and 8–16% 
gradient Precast Gel (Criterion Precast Gel, Biorad). About 200 μg of retinal proteins 
were diluted to 200-μl solution with rehydration buffer (4% CHAPS, 8 M urea, 1% 
pharmalytes 3–10, 10 mM DTT). The mixture (200 μl) was incubated with IPG 
strip at room temperature for 30 min. IPG strips were rehydrated for 14 h at 30 V, 
followed by isoelectric focusing (IEF) performed at 500 V for 1 h, 500–8000 V for 
6 h, and 8000 V for 1 h. After IEF, IPG strips were equilibrated for 15 min in 10-ml 
equilibration buffer containing 50 mM Tris–HCl (1.5 M, pH 8.8), 6 M urea, 30% 
glycerol (v/v), 2% SDS (w/v), trace amount of Bromophenol Blue, and 0.05 g DTT, 
and then re-equilibrated for another 15 min in the same buffer containing 0.45 g of 
iodoacetamide. Equilibrated strips were then placed on top of precast gradient gels 
and embedded in 0.5% agarose. Proteins were electrophoresed at 100 volts for about 
2 h until the dye had reached the bottom of the gel. After electrophoresis, separated 
proteins were visualized using Coomassie blue staining. The Commassie blue-stained 
gels were scanned with a transmission scanner and differential protein expression 
was analyzed. Differentially expressed protein spots were excised from gels and 
analyzed by MALDI-TOF and the selected proteins were further analyzed by MALDI-
TOF-TOF mass spectrometry. All experiments were repeated in triplicate.

2.4 Protein identification by MALDI-TOF and TOF-TOF mass spectrometry

Protein spots, manually excised from the gel, were de-stained with 100 mM 
NH4HCO3/50% acetonitrile (MeCN) at 37°C for 45 min twice. Gel slices were then 
incubated with 100% MeCN at room temperature for 5 min. After dehydration and 
drying, gel slices were incubated with 250 ng of trypsin (20 μg/20 μl, Promega) in 
40 mM NH4HCO3/10% MeCN at 37°C overnight. Trypsin/digestion buffer (50 μl) 
was added so that the gel slices were completely covered. After trypsin treatment, 
peptides were collected and gel slices were washed for 1 h with extraction buffer 
(50% MeCN, 0.1% Trifluoroacetic acid (TFA)) with gentle agitation. Peptides were 
combined and concentrated in a speed vacuum. Ziptip has been used to purify pep-
tides. About 0.6 μl of purified peptides were mixed with 0.6 μl of alpha-Cyano-4-hy-
droxy-cinnamic acid matrix solution saturated in 50% MeCN/0.1% TFA solution (1:1 
vol/vol) onto a MALDI 100-well target plate. It was analyzed through matrix-assisted 
laser/desorption ionization time of flight mass spectrometry (Bruker Ultraflex 
MALDI-TOF-TOF Mass spectrometer) in a reflector mode. Mass spectra and tandem 
mass spectra were acquired manually with laser intensity at 2400 and 200 shots per 
spectrum in MS mode and laser intensity at 3800 and 400 shots in MS/MS mode. 
The spectra were analyzed using Flex analysis 2.0 and Biotools 2.2 software. Peptide 
mass was calibrated internally using two trypsin auto digest ions (m/z 842.509, 
m/z 2211.104). Protein identification was performed using Mascot software (www.
matrixscience.com) to search the National Center for Biotechnology Information 
(NCBI) database with mouse taxonomy. A missed trypsin cleavage was not allowed 
and 100 ppm of mass tolerance was applied for the search for the matching peptide. 
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For MALDI-TOF and peptide fingerprinting, the probability-based Mowse score is 
used −10*Log (P), where P is the probability that the observed peptide match is a 
random event. Protein scores greater than 55 are considered significant (p < 0.05).

2.5 Immunocytochemical analysis

Cells were grown on sterile glass cover slips using DMEM/F12 medium with 10% 
FBS and 1% penicillin/streptomycin (Hyclone) in 5% CO2 incubator at 37°C. Cells 
were treated under oxidative stress or intense light as previously reported [9–11, 
18–20]. Cells were washed with PBS and incubated with MitoTracker Orange 
CMTMRos (100 nM, Molecular Probes, Carlsbad, CA) in serum-free culture 
medium (30 min, 37°C), followed by washing (PBS) and fixing (10% formalde-
hyde, 30 min, room temperature). Next, cells were treated using Triton X-100 
(0.2%, Sigma-Aldrich, St. Louis, MO) in PBS (30 min) for permeabilization and 
blocked using complete medium (10% FBS, 0.05% Tween-20, 1 h). To stain cells, 
anti-actin, anti-tubulin, anti-vimentin antibody (1:100; Santa Cruz), and anti-
prohibitin antibody (1:500, Genemed Synthesis Inc., San Antonio, TX, overnight, 
4°C) were used; then, the cells were washed with PBS, followed by incubation with 
Alexa Fluor 488-conjugated anti-rabbit IgG secondary antibody (1:700; Molecular 
Probes, Carlsbad, CA, 1 h, room temperature). VECTASHIELD medium with DAPI 
(4,6-diamidino-2-phenylindole, the nucleus) was applied to mount the samples 
which were visualized using a Zeiss AxioVert fluorescent microscope (200 M Apo 
Tome, 63× magnification). Images were analyzed using ImageJ software (NIH).

2.6 AMD interactome map

Oxidative biomarker and AMD interactome were established using protein-pro-
tein interaction map software and databases, including STRING 10.0 (http://string-
db.org/), MIPS (http://mips.helmholtz-muenchen.de/proj/ppi/), and iHOP (http://
www.ihop-net.org/UniPub/iHOP/). Proteins found in AMD or oxidative stress 
conditions were added to establish the AMD interactome. Protein interactions were 
presented using eight categories, including neighborhood (green), gene fusion (red), 
co-occurrence (dark blue), co-expression (black), binding experiments (purple), 
databases (blue), text mining (lime), and homology (cyan). Protein interactions were 
determined and confirmed by genomic context, high-throughput experiments, co-
expression, and previous publications in Pubmed. Protein database analysis showed 
the region-specific phosphorylation of specific proteins in AMD eyes. The AMD 
interactome was compared to the retina/RPE proteome under stress conditions.

3. Results

First, we determined the phosphorylation reactions in AMD samples to 
understand mitochondrial signaling, immune response, energy metabolism, and 
apoptosis under oxidative stress. The molecular network of altered phosphoryla-
tion is essential for determining molecular targets to treat AMD in the early stage. 
We built a comprehensive interaction map by combining several independent 
sets of in vivo and in vitro data including immunoprecipitation, co-expression, 
and protein domain information. The analysis of a large-scale phosphorylation 
reaction demonstrated that multiple phosphorylation motifs were implicated in 
the progression of AMD. A combination of phosphopeptide enrichment, high-
performance liquid chromatography, and electrospray (ES)/time-of-flight (TOF) 
tandem mass spectrometry, followed by database search, provided an integrated 
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phosphoproteome showing that the apoptotic pathway, energy metabolism, 
inflammation, cytoskeletal rearrangement, and mitochondrial dysfunction were 
involved in AMD mechanism (Figure 1).

The AMD interactome was connected together using phosphoproteomics data 
from AMD tissues, in vivo murine model, and in vitro data from ARPE-19 cells. 
STRING 10.0 software was used to establish the protein interaction map to analyze 
the molecular mechanisms involved in AMD progression in terms of oxidative 
stress, inflammation switch, energy metabolism, and transcriptional regulation. 
The interactome map demonstrated that four distinguished subnetworks may exist 
in AMD: (A) complement activation by SERPING1, transferrin, albumin, and 
HFE, which are connected to vimentin/vitronectin/plasminogen/matrix metal-
lopeptidase 2 (MMP2); (B) transcriptional regulation by hypoxia signaling, which 
is connected to angiogenesis, vascularization switch as well as apoptosis involving 
ubiquitin downstream; (C) mitochondrial signaling through ATP synthase, PPA1, 
VDAC2, PRDX2, mitofilin (IMMT), and prohibitin; and (D) apoptosis/mitotic 
spindle checkpoint/NOTCH signaling by caspase, MAD, BUB 1/3, NOTCH/
ZWINT, and cyclin-dependent kinases (CDC).

The AMD interactome with oxidative biomarkers demonstrated that several 
proteins that were previously characterized as unrelated to AMD, including ubiqui-
tin, peroxiredoxin, MAP kinase, BUB 1/3, vimentin, and crystalline, were involved 

Figure 1. 
Mechanistic dissection of AMD using the AMD biomarker interactome from proteomics data. AMD 
biomarkers from in vivo experiments using postmortem AMD eyes are connected using STRING software, 
followed by adding proteomics data from murine model in vivo and ARPE19 cells in vitro. The whole map was 
divided into four subnetworks presenting complement activation (A); transcriptional regulation including 
angiogenesis, vascularization, apoptosis (B); mitochondrial network (C); and apoptosis/mitotic spindle 
checkpoint/NOTCH signaling (D).
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in AMD progression. Our interactome map suggests that mitochondrial protein 
trafficking, crystalline aggregation, and protein degradation may contribute to 
AMD pathway. To confirm oxidative stress biomarkers, specific cytoskeletal protein 
changes were determined in vivo using an animal model under constant light (C3H 
female mice, 7 weeks old, 7 days of light). Results from mass spectrometry analysis 
showed that neurofilament, vimentin, and β-tubulin were up-regulated under 24 h 
of constant light compared to 12-h dark/12-h light condition (Figure 2).

Based on our proteomics data showing altered signaling of apoptosis in the retina 
and RPE, new targets for anti-apoptotic and anti-angiogenic therapy can be deter-
mined. The current interactome suggests the new biomarkers and targets in AMD 
including: (1) mitochondrial dysfunction in the peripheral RPE (depleted prohibi-
tin, increased ATP synthase); (2) oxidative stress including intense and constant 
light (peroxiredoxin, thioredoxin, glutathione S-transferase); (3) cytoskeletal/
mitochondrial remodeling by microtubule, actin filament, and intermediate fila-
ment (tubulin, actin, vimentin); (4) high concentration of nitric oxide (nitric oxide 
synthase); (5) hypoxia responses (HIF1, erythropoietin, VEGF); (6) disrupted 
circadian clock (melatonin); (7) apoptotic downstream (pJAK2, pSTAT3, Bclxl, 
caspases); (8) altered lipid concentrations (cardiolipin, cholesterol); (9) altered 
visual cycle (CRABP, CRALBP, RPE65); (10) altered energy metabolism (S/T vs. Y 
kinases, carnitine, pyruvate, ATP synthase); (11) aggregation of heat shock proteins 
and crystallins; and (12) inflammation switch (CFH, C3, collagen, vitronectin).

Next, we examined light-induced protein regulation to determine oxidative 
stress biomarkers in vivo. Unbiased proteomic approaches, including 2D electropho-
resis and mass spectrometry analysis were used. Upregulated tubulin beta4/5 and 
vimentin were found under constant light (24 light) compared to 12-h light/12-h 
dark in vivo. Their up-regulation in constant light-exposed retina is possibly due 
to hyperphosphorylation of tubulin/vimentin and increased apoptosis. Melatonin 
mediated downregulation of PP2A, which may stabilize vimentin and negatively 
regulated apoptosis to protect retina from light-induced damages (data not shown).

To determine the interdependence of mitochondrial trafficking versus oxida-
tive stress, we examined β-tubulin and vimentin dynamics under stress conditions 
(Figure 3A). Constant or intense light accelerated β-tubulin aggregation as well as 
nuclear localization. Mitochondrial trafficking was colocalized with tubulin polym-
erization, whereas vimentin was more likely to determine mitochondrial morphol-
ogy in the dark. Intense light also led to actin filament aggregation in cytosol in 

Figure 2. 
Identification of β-tubulin (A) and vimentin (B) by MALDI-TOF-TOF spectrometry analysis. Proteins were 
separated from mouse retina using 2D electrophoresis under constant light (24 light) group compared to control 
group (12 h light/12 h dark). β-tubulin and vimentin were up-regulated under constant light in vivo.
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the RPE. Cytosolic β-actin in the dark entered the nucleus under stress conditions. 
Immunocytochemistry of tubulin and actin demonstrated oxidative stress-medi-
ated mitochondrial aggregation and size changes along with mitochondrial decay. 
Vimentin was shown as an extended filamentous structure in control; however, it 
was aggregated around the nucleus under stress conditions, that is oxidative stress 
and intense light (7000 lux). Mitochondrial proteins and cytoskeletal proteins, 
including prohibitin, actin, tubulin, and vimentin moved toward the nucleus under 
oxidative stresses (Figure 3B).

Translocalization of prohibitin might be related to post-transcriptional regula-
tion and mitochondrial membrane depolarization. Down- or up-regulation of pro-
hibitin in specific concentrations of H2O2 may imply one of several anti- apoptotic 
or pro-apoptotic responses depending on the intensity and temporal pattern of 

Figure 3. 
Immunocytochemistry of mitochondrial trafficking using tubulin, vimentin, and prohibitin. β-tubulin and 
vimentin dynamics under stress conditions were analyzed (panel A). Constant or intense light accelerated 
β-tubulin aggregation as well as nuclear localization. Mitochondrial trafficking was colocalized with tubulin 
polymerization, whereas vimentin determines mitochondrial morphology in the dark. Vimentin was shown as 
an extended filamentous structure in control; however, it was aggregated around the nucleus under intense light 
(7000 lux). Mitochondrial prohibitin moved into the nucleus under intense light or oxidative stress (panel B).
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the stress. In our previous experiment, NF-κB was translocated into the nucleus 
in  oxidative stress as a survival factor. It is important to note that prohibitin and 
NF-κB moved in parallel or opposite directions between the nucleus and mitochon-
dria under various conditions. This coordinated translocalization may determine 
cell viability and apoptotic population in the retina and RPE.

We also examined the nuclear function of prohibitin by immunoprecipitation. 
Prohibitin binds with many transcription factors and nucleotide-binding proteins, 
including TFIIIB, DNA mismatch repair protein, ski2-type helicase, Cyclin-D-binding 
Myb-like transcription factor 1, DNA ligase, elongation factor, and BRCA1-A complex 
subunit RAP80. Additional interacting proteins have been reported such as E2F, ret-
inoblastoma-associated protein, cellular tumor antigen p53, Heatshock 70: Stress-70 
protein, and histone deacetylase (HDAC1). We confirmed transcriptional regulation 
of prohibitin by immunoprecipitation and protein-nucleotide binding assay.

Next, we established the signaling network of AMD using the interactome 
results. Based on our proteomics and interactome data, the potential AMD mecha-
nisms were integrated as shown in Figure 4, suggesting altered energy metabolism, 
mitochondrial dysfunction, retinoid metabolism, circadian clock, inflammation, 
angiogenesis, lipid metabolism, and apoptosis.

Previous data demonstrated that Hsp70 (c-Jun N-terminal kinase), crystal-
lins (Akt), and the increased expression of VDAC might be involved in AMD 
progression [22–26]. Altered phosphorylations of mitochondrial heat shock 
protein mtHsp70, αA/aB crystalline, vimentin, and ATP synthase were observed 
in RPE cell death under oxidative stress [9, 22, 27–29]. Retinoid-binding proteins, 
including CRABP, RPE65, and RLBP1, could be involved in the advanced stages 
of AMD [30–32]. It was reported that accumulation of all-trans-retinal (atRAL), 
an important intermediate of the visual cycle, led to NADPH (reduced nicotin-
amide adenine dinucleotide phosphate) activation, resulting in ROS production 
and apoptosis of RPE cells [33–37]. Therefore, atRAL can play an important role 
in AMD pathogenesis, and its action can be underlined by oxidative stress, which 
can be potentiated by mitochondrial impairment; however, it is elusive whether 
dysfunctions in atRAL clearance belong to the initiation or consequence of AMD 
[35–37].

We observed altered lipid compositions that include increased carbon number 
of fatty acids, double bond saturation, higher cholesterol, and phosphatidylcholine, 
whereas cardiolipin levels decreased in RPE apoptosis [9, 10, 18]. Changes in lipid 
concentrations seem to diminish the membrane fluidity and accelerate protein 
aggregation in the RPE [38–44].

In vivo data demonstrated that PP2A and vimentin are modulated by constant 
light and are key elements involved in cytoskeletal signaling in rd1 mutation model 
[19, 45, 46]. The expression levels of vimentin and PP2A are significantly increased 
when C3HeB/FeJ mice (rd1 allele; 12 weeks; photoreceptors degenerated) are 
exposed under continuous light for 7 days compared to a condition of 12-h light/
dark cycling exposure. When melatonin is administered to animals while they are 
exposed to continuous light, the increased levels of vimentin and PP2A return to a 
normal level. Further, vimentin has been shown to be a target of PP2A that directly 
binds vimentin and dephosphorylates it. Vimentin is present in all mesenchymal 
cells, and often used as a differentiation marker. Like other intermediate filaments, 
vimentin acts to maintain cellular integrity; however, vimentin phosphorylation 
level determines RPE survival by the polymerization/depolymerization mechanism.

A positive correlation between the levels of PP2A and vimentin under light-induced 
stress suggests that cytoskeletal dynamics are regulated by vimentin phosphorylation. 
We postulate that light may induce post-translational modifications of vimentin. 
Stabilized vimentin may act as an anti-apoptotic agent when cells are under stress.
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The current interactome suggests that altered phosphoproteome interactions, 
including pyruvate kinase, tyrosine kinase, and vimentin, exist in the retina and 
RPE in AMD. Phospho-Western blotting analysis revealed that phosphorylations 
of intermediate filament vimentin (Ser38, Ser55) and mitochondrial heat shock 
protein mtHsp70 were modulated in the RPE in vitro [9, 19, 22, 28, 47]. Changes of 
vimentin phosphorylation are directed to reorganization of the intermediate fila-
ment network and altered function of RPE cells.

4. Discussion

We used bioinformatics approaches to integrate molecular events associated 
with the progression of AMD. Proteomics data obtained using the oxidative 
stress animal model as well as the in vitro model were combined with previous 
AMD interactome results. We highlighted the importance of mitochondrial and 
cytoskeletal proteins in the oxidative stress responses in AMD models, including 
prohibitin, tubulin, and vimentin. In addition, we used immunocytochemistry 

Figure 4. 
AMD interactome and mechanistic dissection of AMD interpreted by phosphorylation reactions. 
Phosphoproteome alterations in the retina and RPE may lead to the pathological pathway which would be 
suited as targets for anti-apoptotic and anti-angiogenic therapy in AMD: (1) mitochondrial dysfunction in 
the peripheral RPE; (2) oxidative stress including intense and constant light; (3) cytoskeletal remodeling 
by actin, tubulin, and vimentin; (4) high concentration of nitric oxide; (5) hypoxia; (6) disrupted 
circadian clock; (7) apoptotic pathway through pJAK2, pSTAT3, Bclxl; (8) altered lipid concentrations; 
(9) altered visual cycle; (10) altered energy metabolism (ATP synthase, carnitine kinase, pyruvate 
kinases); (11) aggregation of heat shock proteins and crystallins, and inflammation (CFH, C3, collagen, 
vitronectin). Based on our proteomics data, we tested the following anti-apoptotic or anti-angiogenic 
molecules: (1) prohibitin (anti-apoptotic mitochondrial-nuclear shuttle); (2) erythropoietin as an 
anti-apoptotic protein via JAK2/STAT3 pathway; (3) melatonin as an anti-apoptotic and anti-angiogenic 
molecule protecting cytoskeletal reorganization through PP2A/vimentin pathway; (4) okadaic acid, 
arginine, and SNAP to control nitric oxide concentration; (5) cardiolipin and cholesterol; (6) anthocyanin 
(anti-angiogenic via VEGFR2 pathway); (7) phospholipids, fatty acids, cyclodextrin to control lipids and 
cholesterol concentration.
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analysis to validate the AMD interactome data, showing that mitochondria moved 
to the nucleus under intense light or oxidative stress conditions possibly through the 
tubulin/vimentin filament reorganization mechanism.

The current interactome mapping also suggests that changes in phosphoprotein 
levels in response to oxidative stress may induce complement activation, transcrip-
tional regulation, mitochondrial dysfunction, and apoptosis. The phosphoryla-
tion signaling may explain why AMD is induced by oxidative stress and how the 
downstream of phosphorylations are associated with the changes of mitochondrial 
protein expressions, cytoskeleton reorganization, membrane remodeling, and lipid 
oxidation. For example, previous observations of vimentin derived from human 
choroidal neovascular membranes in AMD, as well as in drusen and melanolipofus-
cin, support the positive correlation between the biomarkers we characterized in 
RPE cells under stress and the AMD proteomics.

The AMD interactome map also elucidates the regulatory mechanism of apop-
totic cell death governed by phosphorylation. Changes in the global phosphopro-
teome could be one of indications of early signaling events, including an increase of 
longer chain fatty acids, especially phosphatidylcholine and cholesteryl esters. The 
phosphoprotein interactome also provides a connection between oxidative stress-
induced mitochondrial trafficking changes and AMD.

We also emphasize that mitochondria play a significant role in stress response in 
RPE cells, and this in turn influences the progression of AMD. The number of RPE 
mitochondria decreases with aging [48]. Through the observation by scanning elec-
tron microscope, mitochondrial shape becomes more oval in normal aged samples, 
while it is more bacillus-like in young eyes. The number of cristae decreases and cris-
tae structure is less organized in aged tissue. In addition, mitochondrial matrix shows 
less electron density along with aging. In AMD samples, loss of cristae structure and 
matrix density is more obvious. Bleb formation on mitochondrial membrane and loss 
of mitochondrial membrane integrity were also observed in AMD [32, 49, 50].

Previously, quantitative analysis of mitochondrial morphology reveals that 
mitochondrial structure and functionality are closely associated with aging and 
AMD [9, 22, 32, 51–57]. In both aging and AMD samples, mitochondrion number 
per cell, cristae per mitochondrion, and mean area of mitochondrion per cell are 
declined. A similar trend was also observed in oxidative stressed ARPE-19, where 
mitochondrial distribution also changed. It is important to note that a mitochon-
drion is a highly dynamic organelle in response to different environmental factors, 
and those responses may determine the cell fate. RPE mitochondria undergo loss of 
structural integrity under oxidative stress and aging, indicating that mitochondrial 
signaling could be interrupted in AMD.

The retrograde communication from mitochondria to the nucleus has been 
demonstrated by our previous data by tracking the chaperon protein prohibitin 
using fluorescent microscopy techniques [10, 18, 58]. Mitochondrial components 
may also determine cell signaling in the nucleus, including change of mitochondrial 
membrane potential, mitochondrial DNA (mtDNA), and mitochondrial protein 
expressions. When cumulative damages hit the threshold where mitochondria can-
not maintain their structural integrity, there is a decrease of mitochondrial mem-
brane potential, along with a number of mitochondrial components released into 
the cytosol, including cardiolipin, cytochrome c, and Ca2+. Release of cytochrome 
c initiates the caspase-dependent apoptosis and triggers more Ca2+ release from 
endoplasmic reticulum, whereas elevation of cytosolic Ca2+ level can cause more 
cytochrome c release and activation of caspase-9.

Mitochondrial DNA (mtDNA) is susceptible to oxidative stress damage. 
Compared to nuclear DNA (nDNA), mtDNA is located in mitochondrial matrix 
in close proximity to the ROS source in the cell. MtDNA is lack of histones and 
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contains no introns that also increases its susceptibility to oxidative damage. 
Meanwhile, mtDNA mainly encodes electron transport chain proteins, including 
ATP synthase, cytochrome b, cytochrome c oxidase, and NADH dehydrogenase. 
Damaged mtDNA will lead to impaired electron transport chain proteins, further 
deteriorating cell energy production, generating more ROS, and inducing extra 
damages to mtDNA. Previous studies have revealed that abnormal mtDNA leads to 
reduced energy production and initiation of apoptosis [59–62]. Loss of mtDNA in 
ARPE-19 cells led to the change of nuclear gene expression, especially the up-
regulation of genes related to glycolysis [63–65].

The mitochondrial-nuclear crosstalk could be a mechanism that the RPE cell 
uses to compensate the insufficient energy productions due to the mitochon-
drial dysfunction. Other changes in nuclear gene expressions caused by loss of 
mtDNA include up-regulation of proteins related to uptake of ROS and drusen, 
extracellular matrix and matrix enzymes, lipid transport-related proteins, 
and inflammation-related regulators. Therefore, damaged mtDNA has been 
considered as an important biomarker of oxidative stressed RPE and progres-
sion of AMD [50, 66, 67]. Fragments of mtDNA have been found to migrate to 
the nucleus and be inserted into the nuclear genome [68–71]. The entrance of 
mitochondria into the nucleus has been reported to promote both the attack of 
mitochondria by nuclear protein and the attack of nuclear DNA and protein by 
protein of the mitochondrial intermembrane space [65, 68–74]. Mitochondria 
move to the nucleus under stress to fulfill energy demand of the nucleus. 
Therefore, our observation that mitochondria entering the nucleus could be one 
of the mechanisms to explain mitochondrial diseases and the aging process.

Our AMD interactome map implies that a positive correlation exists between 
AMD mechanism and early oxidative stress biomarkers, as well as inflammation 
switch, apoptosis, transcriptional regulation, and mitochondrial dysfunction 
[26, 32, 52, 75–77]. The mechanistic dissection of our AMD interactome map is 
the initial delineation of the underlying physiology of oxidative stress-mediated 
phosphorylation signaling in RPE apoptosis which can lead to AMD progression. In 
addition, the phosphoprotein interactome provides a stimulus for understanding 
oxidative stress-induced mitochondrial changes and the mechanism of aggregate 
formation induced by protein phosphorylations. As a consequence, an effective 
therapeutic approach to treat AMD based on the modulation of phosphorylation 
reactions is expected to result.
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