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Republic of Korea 

1. Introduction 

Nanotechnology can be defined as the research, development and processing of materials, 
devices and systems in which structure on a dimension of less than several hundreds of 
nanometer is essential to obtain the required functional performance. There are currently 
two different approaches to nanotechnology. The first approach is called engineering 
nanotechnology. This approach involves using classical mechanical and electrical 
engineering principles to build structures with tolerances at levels approaching a 
nanometer. The other approach is called molecular nanotechnology. This approach is 
concerned with self-assembled machines. Due to the startling progress of nanotechnology, 
we can make high density memories and flat panel display panels with the help of nano-
positioning systems. Furthermore, it allows us to manipulate a molecule with scanning 
probe microscopes. 
One of the largest challenges in the field of nanotechnology is precision motion control of 
macroscopic stages. Especially, precision motion control on the nanometer level that 
delivers precision position stability with high bandwidth is a very important issue for 
industrial and scientific applications that especially include the lithography and inspection 
of integrated circuit patterns (Lee & Kim, 1997; Kwon et al., 2001; Pahk et al., 2001) and the 
fabrication and operation of high-density magnetic data storage devices (Chung et al., 2000; 
Kim & Lee, 2004; Lee & Kim, 2004; Du et al., 2005). 
In general, traditional stages are designed to operate with respect to a number of kinematic 
constraints, which are assemblages of mechanical parts and need to be compounded in 
order to perform multiple degrees-of-freedom (DOF) motion (Shan et al., 2002). These 
kinematic constraints provide contact friction and error accumulation (Awabdy et al., 1998), 
and thus, it is very difficult to implement a high-performance motion control system with 
high bandwidth as well as a precision multiple DOF stage that is capable of large travel with 
nanometer position stability. 
For stages only using coarse actuators such as linear motor or hydraulic actuator, there are 
nonlinear friction in low-speed motion and resonance mode in high-frequency motion. 
Thus, it is very difficult to achieve precision motion control performance with only coarse 
actuators although they provide large travel. One of the methods to overcome their 
limitation is adopting fine actuators such as piezoelectric actuator or voice coil motor 
(VCM). But, the travel of fine actuators is about several hundreds of micron meters to 
several millimeters, which is the limitation of them. Thus, if we design a hybrid actuation 
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system with coarse and fine actuators, we can utilise their advantages and mutually 
compensate their drawbacks. So far, there have been several studies for the design of hybrid 
actuation systems. For instance, ultraprecision dual-servo systems have been proposed by 
Lee & Kim, 1997, Kwon et al., 2001, and Pahk et al., 2001 for lithography steppers. Dual-
stage actuation systems consisting of a VCM and a microactuator have been developed by 
Fan et al., 1995 and Li & Horowitz, 2001 to obtain high servo bandwidth and perform the 
disturbance rejection. A novel control design that aims to achieve a low-hump sensitivity 
function for a dual-stage system in hard disk drives has been studied by Du et al., 2005. 
Note that, according to Du et al., 2005, a servo control system with low-hump sensitivity 
function is able to reduce the contribution from disturbance to a system. Fundamental 
control designs of dual-stage hard disk drive systems have been presented by Chung et al., 
2000, Kim & Lee, 2004 and Lee & Kim, 2004, and performance enhancement methods of 
dual-stage servo systems have been proposed by Wu et al., 2002 and Li et al., 2003. 
This chapter presents a three DOF precision hybrid stage that can move and align an object 
on it for the measurement of its three-dimensional image using the confocal scanning 
microscope (CSM). The CSM can observe a sub-micron meter-sized material due to its fine 
resolution and has a three-dimensional surface profiling capability. The hybrid stage 
consists of two individually operating x-y-θ stages, called the coarse stage and the fine stage. 
The coarse stage is driven by the three linear motors, and the fine stage is driven by the four 
VCMs. The coarse and fine stages are not mechanically interconnected and can be controlled 
independently. 
For control of the hybrid stage, the author proposes a precision motion controller in this 
chapter. The precision motion controller consists of a position and velocity control loop, an 
anti-windup compensator to eliminate the windup problem that occurs in the controller, a 
generator of optimal force to optimally control the fine stage, a precision position 
determiner to determine the exact position of the fine stage and a perturbation observer that 
can observe the perturbation of the fine stage and compensate it. Note that, in this chapter, 
the exact position of the fine stage means the centre of the fine stage that is precisely 
determined by considering the orientation angle of the fine stage. The performances of the 
precision motion controller are evaluated by experiment. 
The remainder of this chapter is organized as follows. In Section 2, the system overview of 
the hybrid stage is described. In Section 3, the hybrid stage control method is presented. In 
Section 4, the experimental results of the hybrid stage motion control are given. Finally, 
some concluding remarks are given in Section 5. 

2. Hybrid stage with dual actuators 

2.1 Overview 
Fig. 1 shows the schematic of the hybrid stage presented in this paper. The objective of the 
hybrid stage is to move and align an object on it for the measurement of its three-
dimensional image using the CSM. The CSM has a capability of the optical sectioning and 
can generate three-dimensional surface profile. The measurement principle of the CSM is 
based on the fact that only light reflected from the focal point of the objective lens 
contributes to the image, whereas all diffusely scattered light beams are filtered out by a 
pinhole. This creates a focused two-dimensional image of all object points that are located 
during the scanning process in the focal plane, similar to the contour lines of a map. 
Scanning the whole samples with an automatically varying focal plane results in a highly 
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resolved and enlarged image of the corresponding surface section. The vertical and 
horizontal resolutions of the CSM are 30 and 140 nm, respectively. 
 

 

Fig. 1. Schematic of the hybrid stage 

The hybrid stage consists of two individually operating x-y-θ stages, called the coarse stage 
and the fine stage. The coarse stage produces the initial movement of an object, and the fine 
stage provides the final alignment of the object. Since the laser interferometer with 0.31 nm 
resolution is used as position sensor in the fine stage, the precision control for the final 
alignment of an object can be possible. The moving parts of the hybrid stage are sustained 
by air bearings so that they can float on the base plate without mechanical contact. The 
material of the base plate is granite, and the base plate is connected with an isolator that can 
suppress internal and external vibrations. 

2.2 Coarse stage 
The schematic of the coarse stage is shown in Fig. 2. The coarse stage is driven by the three 
linear motors, and uses the 14 air bearings as guide and the three linear encoders as position 
sensor. The linear motor can be moved by the following Lorentz force  

 = ×∫¶( ) ( )LM LM LM LMF t i t dl B  (1) 

where ( )LMF t , ( )LMi t , ( )LMl t  and LMB  are force, current, coil length and flux density of the 

linear motor, respectively. A three-phase linear motor with the force of 233 N is used. The 
three linear motors are mechanically linked in an H-shaped rigid frame and can generate the 
x-y-θ motion of the coarse stage. Specifically, the stators of the two linear motors LM1 and 
LM2 are fixed to the base plate and parallel to each other. And the sliders of the two linear 
motors LM1 and LM2 are connected by the stator of the linear motor LM3 that floats on the 
base plate. Thus, the movements of the three linear motors LM1, LM2, and LM3 determine 
the x-y-θ motion of the coarse stage. The mass of each individual linear motor is 15 kg. The 
position sensor of the coarse stage is a linear encoder with the resolution of 5 nm. The coarse 

stage offers a large workspace of 500 × 500 mm2. 
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Fig. 2. Configuration of the coarse stage 

Next, the kinematics of the coarse stage is derived. For the coarse stage shown in Fig. 2, let 

the vector ( )cp t  be given by 

 [ ]( ) ( ) ( ) ( )
T

c c c cp t x t y t tθ=  (2) 

where ( )cx t  and ( )cy t  are the cX  and cY  positions of the coarse stage, respectively, and 

θ ( )c t  is the orientation angle of the coarse stage. Let the vector ( )LMp t  be given by 

 ⎡ ⎤= ⎣ ⎦3 1 2
( ) ( ) ( ) ( )

T

LM LM LM LMp t x t y t y t  (3) 

where 
3
( )LMx t , 

1
( )LMy t  and 

2
( )LMy t  are the displacements of the three linear motors LM3, 

LM1 and LM2, respectively. In (3), 
3
( )LMx t , 

1
( )LMy t  and 

2
( )LMy t  are measured by the linear 

encoder. Under the assumption that the orientation angle θ ( )c t  in (2) is very small, the 

vector ( )cp t  in (2) can be determined by the following equation 

 =( ) ( ) ( )T
c c LMp t H t p t  (4) 

where 

 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− +

= ⎢ ⎥
+ +⎢ ⎥

⎢ ⎥
⎢ ⎥−
⎢ ⎥+ +⎣ ⎦

3 32 1

1 2 1 2

1 2 1 2

1 0 0

( ) ( )
( ) 0

1 1
0

LM LM

c

L x t L x t
H t

L L L L

L L L L

 (5) 

In (5), 1L  and 2L  are the distances from the centers of the linear motors LM1 and LM2 to the 

center of the coarse stage, respectively. In the sequel, the position and orientation angle of 

the coarse stage are represented as in (4). 
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Fig. 3. Configuration of the fine stage 

2.3 Fine stage 
The configuration of the fine stage is shown in Fig. 3. The fine stage is driven by the four 
VCMs, and uses the four air bearings as guide and a laser interferometer as position sensor.  
The four VCMs lie on the same plane so that the tilting forces that cause the roll and pitch 
motions of the fine stage are negligible. The VCM can be moved by the following Lorentz 
force 

 = ×∫¶( ) ( )VCM VCM VCM VCMF t i t dl B  (6) 

where ( )VCMF t , ( )VCMi t , VCMl  and VCMB  are force, current, coil length and flux density of 

VCM, respectively. The four VCMs generate the x-y-θ motion of the fine stage by the 

following equation 

 =( ) ( )VCM fAF t u t  (7) 

where 

 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥⎣ ⎦

1 1 0 0

0 0 1 1

2 2 2 2

A

b b a a

 (8) 

 ⎡ ⎤= ⎣ ⎦1 2 3 4
( ) ( ) ( ) ( ) ( )

T

VCM VCM VCM VCM VCMF t F t F t F t F t  (9) 

and 

 
θ

⎡ ⎤= − −⎣ ⎦( ) ( ) ( ) ( )
x y

T

f f f fu t F t F t T t  (10) 

In (8)–(10), a is the distance from the centre of VCM1 to the center of VCM3 (or from the 
center of VCM2 to the center of VCM4), b is the distance from the center of VCM1 to the 
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center of VCM4 (or from the centre of VCM2 to the center of VCM3), ( )
iVCMF t , = A1, ,4i  are 

the forces of VCMi, = A1, ,4i , respectively, ( )
xf

F t  and ( )
yf

F t  are the X-axis and Y-axis 

control forces for the fine stage, respectively, and 
θ
( )fT t  is the control torque for the fine 

stage.  
If we apply the current to coils of VCM1 and VCM2, the fine stage is driven in the X-axis 

direction. Similarly, we apply the current to coils of VCM3 and VCM4 for a driving in the Y-

axis direction. In addition, the fine stage is driven in the θ direction if we make proper 

current and apply it to each coil. The VCM has the force of 220 N, and the mass of the fine 

stage is 36.5 kg. The position sensor of the fine stage is a laser interferometer with the 

resolution of 0.31 nm. The laser interferometer measures the x-y-θ motion of the fine stage 

by projecting laser beams onto the L-shaped plane mirror attached on top of the fine stage. 

The workspace of the fine stage is 5 × 5 mm2, and the range of the orientation angle of the 

fine stage is 0.05 deg.  

Now, the kinematics of the fine stage is derived. Let the vector ( )fp t  be given by 

 ( ) ( ) ( ) ( )
T

f f f fp t x t y t tθ⎡ ⎤= ⎣ ⎦  (11) 

where ( )fx t  and ( )fy t  are the fX  and fY  positions of the fine stage, respectively, and ( )fu t  

is the orientation angle of the fine stage. Let the vector ( )VCMp t  be given by 

 [ ]( ) ( ) ( ) ( )
T

VCM VCM VCM VCMp t x t y t tθ=  (12) 

where ( )VCMx t  and ( )VCMy t  are the X-axis and Y-axis displacements of VCM, respectively, 

and ( )VCMu t  is the orientation angle of VCM, which is equal to ( )fu t . In (12), ( )VCMx t , 

( )VCMy t  and ( )VCM tθ  are measured by the laser interferometer. Since the orientation angle 

( )VCM tθ  in (12) is not very small compared with ( )c tθ  in (2), we should consider ( )VCM tθ  to 

determine ( )fx t  and ( )fy t  in (11) and obtain the following equations by lengthy calculation. 

 
( ) [( ( ) )cos ( ) ]cos ( )

[( ( ) )cos ( ) ]sin ( )

f VCM VCM VCM

VCM VCM VCM

x t x t r t r t

y t r t r t

θ θ

θ θ

= + −

− − +
 (13) 

 
( ) [( ( ) )cos ( ) ]sin ( )

[( ( ) )cos ( ) ]cos ( )

f VCM VCM VCM

VCM VCM VCM

y t x t r t r t

y t r t r t

θ θ

θ θ

= + −

+ − +
 (14) 

where r is the distance from the centre of the fine stage to the L-shaped plane mirror 

attached on top of the fine stage. Consequently, the position of the fine stage can be 

precisely determined by (13) and (14). 

Note that, as shown in Fig. 4, the VCM consists of magnet, yokes and coil. The magnet and 

yoke of VCM are fixed on the fine stage. On the other hand, the coil of VCM is fixed on the 

coarse stage. In addition, the magnet sticks to the yokes and does not come into contact with 

the coil. Thus, the coarse and fine stages are not mechanically interconnected and can be 

controlled independently. 
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Fig. 4. Configuration of the voice coil motor 

3. Precision motion control of hybrid stage with dual actuators 

3.1 Overview 
This section presents a precision motion control method of the x-y-θ motion of the hybrid 
stage. The motion control performance of the hybrid stage mainly depends on the motion 
control performance of the fine stage because the fine stage accomplishes the final alignment 
of an object. Therefore in this section the attention is focused on the precision motion control 
of the fine stage. 
The block diagram of the hybrid stage control system is shown in Fig. 5. The coarse and fine 
stages are independently controlled under the common reference command. Let the 
reference command of the hybrid stage be given by  

 ( ) ( ) ( ) ( )
T

ref ref ref refp t x t y t tθ⎡ ⎤= ⎣ ⎦  (15) 

where ( )refx t , ( )refy t  and ( )ref tθ  are the X-axis position reference command, the Y-axis 

position reference command and the orientation angle reference command of the hybrid 

stage, respectively. 
 

 

Fig. 5. Block diagram of the hybrid stage control system 
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3.2 Coarse stage control system 

The error vector ( )ce t  for the coarse stage is defined as 

 ( ) ( ) ( )c ref ce t p t p t= −  (16) 

where ( )refp t  and ( )cp t  are defined in (15) and (2). Now the author explains each 

component of the coarse stage control system. First, the coarse stage controller consists of a 

position control loop, a velocity control loop and an antiwindup compensator. Specifically, 

as shown in Fig. 6, the position control loop has a proportional controller, and the velocity 

control loop has a proportional and integral controller. In addition, the velocity control loop 

is combined with an anti-windup compensator based on Bohn & Atherton, 1995 in order to 

eliminate the windup problem caused by the integral controller. In Fig. 6, ( )ik t , 1, ,4i = A  

are positive scalars and s is the Laplace operator. The coarse stage controller generates the 

three control  inputs 
1
( )LMF t , 

2
( )LMF t  and 

3
( )LMF t  for control of the x-y-θ motion of the coarse 

stage where 
1
( )LMF t , 

2
( )LMF t  and 

3
( )LMF t  are the control forces for the three linear motors 

LM1, LM2 and LM3, respectively. 

Second, the coarse stage kinematics implies the transformation of ( )LMp t  in (3) into ( )cp t  in 

(2) by (4). Finally, the coarse stage inverse kinematics represents the transformation of ( )ce t  

in (16) into the error vector ( )LMe t , given by 

 1 1 1( ) ( ) ( ( ) ( )) ( ) ( )LM c c c ref c c ref LMe t H e t H p t p t H p t p t− − −= = − = −  (17) 

where ( )cH t  is defined in (5) and its inverse matrix is given by 

 
3

3

1
1

2

1 0 0

( ) 0 1 ( )

0 1 ( )
c LM

LM

H t L x t

L x t

−

⎡ ⎤
⎢ ⎥

= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

 (18) 

3.3 Fine stage control system 

The error vector ( )fe t  for the fine stage is defined as 

 ( ) ( )f ref fe t p t p= −  (19) 

where ( )refp t  and ( )fp t  are defined in (15) and (11). The author describes each component of 

the fine stage control system. First, as shown in Fig. 6, the fine stage controller has the same 

structure that the coarse stage controller has. The fine stage controller produces the three 

control inputs ( )
xf

F t , ( )
yf

F t  and ( )fT t
θ

 for control of the x-y-θ motion of the fine stage. 

Second, the precision position determiner means the equations of (13) and (14). Third, the 

generator of optimal force is proposed to make the optimal forces of the four VCMs. As 

shown in (7), after designing the three control inputs ( )
xf

F t , ( )
yf

F t  and ( )fT t
θ

, we should 

determine the four forces ( )
iVCMF t , 1, , 4i = A  of the four VCMs. In this case, (7) has infinitely 

many solutions for the four forces ( )
iVCMF t , 1, ,4i = A  because it is underdetermined with 

three equations in four unknowns. Among many solutions to the above problem, the author 

presents a meaningful solution to (7) by considering a least squares problem. Before 

deriving a meaningful solution to (7), the following definition is given. 
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Fig. 6. Block diagram of the coarse stage and fine stage controllers 

Definition 1 (Leon, 1995): Let m nA R ×∈  have the rank of q < n. Then the singular value 

decomposition of A is given by 

 [ ] 1 ( ) 1
1 2 1 1 1

( ) ( ) ( ) 2

0

0 0

T
T q n qT T

T
m q q m q n q

V
A U V U U U V

V

× −

− × − × −

Σ ⎡ ⎤⎡ ⎤
= Σ = = Σ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (20) 

where [ ]1 2
m mU U U R ×= ∈  and [ ]1 2

n nV V V R ×= ∈  are orthogonal matrices with 1
m qU R ×∈ , 

( )
2

m m qU R × −∈ , 1
n qV R ×∈  and ( )

2
n n qV R × −∈ . Moreover, 0m n×  denotes the m ×  n zero matrix and 

1
q qR ×Σ ∈  is a diagonal matrix given by 

 

1

2

31

0 0 0

0 0 0

0 0 0

0 0 0 q

σ
σ

σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Σ =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

A
A
A

B B B D B
A

 (21) 

with the entries satisfying 

 1 1 0qσ σ σ≥ ≥ ≥ >A  (22) 

Then the following theorem shows that the singular value decomposition provides the key 

to solve the least squares problem for design of the optimal forces of the four VCMs. 

Theorem 1: Consider the equation (7). Let the singular value decomposition of A be TU VΣ  

and define 

 TA V U+ += Σ  (23) 
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where A+  denotes the pseudo-inverse of A. Then the following is a solution to (7): 

 

2 2

2 2

2 2

2 2

1
0

2
1 ( )0
2

( ) ( ) ( )
1

0 ( )2
1

0
2

x

y

f

VCM f f

f

b

a b
b F t

a b
F t A u t F t

a
T ta b

a

a b

θ

+

⎡ ⎤
⎢ ⎥+⎢ ⎥

⎡ ⎤⎢ ⎥ −− ⎢ ⎥⎢ ⎥+= = −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦+

⎢ ⎥
⎢ ⎥−

+⎣ ⎦

 (24) 

Moreover, if ( )h t  is any other solution to (7), then we can guarantee 

 
2 2

( ) ( )VCMF t h t<  (25) 

where 
2

  ⋅  denotes the Euclidean norm. 

Proof: Let 4( )VCMF t R∈  and define 

 
1

2

( )
( ) ( )

( )
T

f

j t
j t U u t

j t

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
 (26) 

 
1

2

( )
( ) ( )

( )
T

VCM

k t
k t V F t

k t

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
 (27) 

From the definition of singular value decomposition and (26) and (27), we can obtain 

 

2 2 22

22 2 2

2 2 2

222

2 2

11 1 1 1 1

2 2 22 2

1 1 1

( ) ( ) ( ) ( ) ( ) ( ( ))

( ) ( ) ( ) ( ) ( ) ( )

0( ) ( ) ( ) ( )

0 0( ) ( ) ( )

( )

T T T T
f VCM f VCM f VCM

T T T
f VCM VCM

u t AF t U u t AF t U u t U U V F t

U u t V F t j t V F t j t k t

j t k t j t k t

j t k t j t

j t k

− = − = − Σ

= − Σ = − Σ = − Σ

Σ − Σ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= − Σ
2 2

22 2
( ) ( )t j t+

 (28) 

Since 2( )j t  is independent of ( )VCMF t , it follows that 
2

2
( ) ( )f VCMu t AF t−  will be minimal if 

and only if 1 1 1 2
( ) ( ) 0j t k t− Σ = . Furthermore, 

2

2
( ) ( )f VCMu t AF t−  will be zero if and only if 

1 1 1 2
( ) ( ) 0j t k t− Σ =  and 2 2

( ) 0j t = . Thus, ( )VCMF t  becomes a solution to (7) if and only if 

( ) ( )VCMF t Vk t=  and 2( ) 0j t =  where ( )k t  is a vector of the form 

 
1

1 1 1

2 2

( ) ( )
( )

( ) ( )

k t j t
k t

k t k t

−⎡ ⎤Σ⎡ ⎤
= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (29) 

Especially, ( ) ( )VCM fF t A u t+=  is a solution to (7) because 
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1 1
11 1 1

2

2 2

2 2

2 2

2 2

( )( ) 0
( ) ( ) ( ) ( )

( )0 0 0

1
0

2
1 ( )0
2

( ) ( )
1

0 ( )2
1

0
2

x

y

T
VCM f

f

f f

f

j tj t
F t Vk t V V V j t V U u t

j t

b

a b
b F t

a b
A u t F t

a
T ta b

a

a b

θ

− −
+ +

+

⎡ ⎤ ⎡ ⎤Σ Σ ⎡ ⎤
= = = = Σ = Σ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥+⎢ ⎥

⎡ ⎤⎢ ⎥ −− ⎢ ⎥⎢ ⎥+= = −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦+

⎢ ⎥
⎢ ⎥−

+⎣ ⎦

 (30) 

Next, if ( )h t  is any other solution to (7), ( )h t  must be of the form 

 
1

1 1

2

( )
( ) ( )

( )

j t
h t Vk t V

k t

−⎡ ⎤Σ
= = ⎢ ⎥

⎣ ⎦
 (31) 

where 2( ) 0k t ≠ . Then, for ( )h t  of (31), we can obtain the following result: 

 

22 2 2 21
1 1 22 2 2 22

2 21
1 1 22

( ) ( ) ( ) ( ) ( )

( ) ( )VCM

h t Vk t k t j t k t

j t F t

−

−

= = = Σ +

> Σ =
 (32) 

This completes the proof.                                                                                                                    □ 
 

Physically, ( )VCMF t  in (24) is the minimal norm solution to (7) such that the condition of (25) 

holds for any other solution to (7). Therefore, if we use ( )VCMF t  in (24), we can achieve the 

optimal performance in the sense of the control effort. 
Finally, the author presents the feedforward and feedback perturbation observers by 
extending the study of Kwon et al., 2001. Specifically, the perturbation applied to the 
nominal dynamics of the fine stage can be expressed by  

 ( ) ( ) ( ) ( )
n nf f f f f ft H p t B p t u tψ = + −$$ $  (33) 

where 
nf

H  and 
nf

B  are the nominal inertia matrix and the nominal viscous damping 

coefficient of the fine stage, respectively, ( )fu t  is the control input of the fine stage defined 

in (10). Since one-step delay in signals is inevitable for the causality between input and 

output in practice, the perturbation observer is presented as follows 

 { }ˆ ( ) ( ) ( ) ( )
n nf f f f c f f c f ct D H p t t B p t t u t tψ = − + − − −$$ $  (34) 

where fD  is a diagonal matrix with scalar elements that plays the role of approximating 
ˆ ( )f tψ  to the real perturbation of ( )f tψ , and ct  is the control interval. If we apply ˆ ( )f tψ  in 

(34) to the nominal dynamics of the fine stage in order to compensate the perturbation, the 

nominal dynamic equation of the fine stage can be changed to 

 ( ) ( ) ( ) ( )
n nf f f f f fH p t B p t t tη ψ+ = +$$ $ #  (35) 
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where ˆ( ) ( ) ( )f f ft u t tη ψ= +  is the tracking control input and ˆ( ) ( ) ( )f f ft t tψ ψ ψ= −#  is the 

perturbation compensation error. Since the reference command can be utilized in tracking 

control, the author presents the feedforward perturbation observer as follows 

 { }ˆ ( ) ( ) ( ) ( )
ff ff n nf f f ref c f ref c f ct D H p t t B p t t u t tψ = − + − − −$$ $  (36) 

where 
fffD  is a diagonal matrix with scalar elements. Also, the residue of the perturbation, 

given by  ˆ( ) ( ) ( )
fff f ft t tψ ψ ψΔ = −# , is compensated by the following feedback perturbation 

observer 

 { } { }
ˆ ( ) ( )

( ) ( ) ( 2 ) ( 2 )

( ) ( 2 )

fb

fb n n ff n n

f f c

f f f c f f c f f ref c f ref c

f c f c

t t t

D H p t t B p t t D H p t t B p t t

u t t u t t

ψ ψ= Δ −

= − + − − − + −

− − + −

#

$$ $ $$ $  (37) 

where 
fbfD  is a diagonal matrix with scalar elements.  

It is remarkable that the perturbation observers presented in this section are the 
generalization of the perturbation observers developed by Kwon et al., 2001 because their 

study can be regarded as a special case of the proposed method with [ ]diag 1 1 1
fffD =  

and [ ]diag 1 1 1
fbfD =  where diag means the diagonal matrix. Because of 

fffD  and 
fbfD , 

we have the extra freedom of designing the perturbation observers in real application. The 
perturbation observers presented in this section cannot help using delayed information 
because the current perturbation is monitored in discrete time with one-step delay. Using 
delayed information may result in bandwidth degradation and it is inevitable.  
With a similar manner presented by Kwon et al., 2001, if we assume that the fine stage is 
time invariant during a control interval, the full state is available, the change of external 
disturbances during the control intervals is bounded, and the nominal inertia matrix of the 

fine stage 
nf

H  satisfies the following condition for the real inertia matrix of the fine stage 

( )fH k  for all samples k 

 0 2 ( )
nf fH H k< <  (38) 

then the perturbation compensation error ( )f tψ#  in (35) is well bounded in a sufficiently 

small value. 

4. Experimental results 

As the hybrid stage control platform, the author uses the dSPACE system that features a 

power PC processor and is directly connected to all dSPACE I/O boards. The dSPACE 

system is an efficient and reliable engineering tool to develop and test control systems, and 

is in widespread use in many automotive industries. The graphical user interface software is 

programmed in order to control the hybrid stage by using the dSPACE system. By the 

graphical user interface software, we can give the target position command and target 

orientation angle command to the hybrid stage and can set all control parameters of the 

precision motion controller. 
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Then the performances of the precision motion controller of the hybrid stage are evaluated 
by experiment. The update rate of the dSPACE system is set to be 1 kHz. The author initially 
decides the gains k1, k2 and k3 of the coarse stage and fine stage controllers by adopting the 
Ziegler–Nichols method (Ogata, 1996), which is very useful to select the control gains of a 
proportional, integral and derivative-type controller for complex dynamic systems in 
practice, and then further tunes these gains in order to obtain a desired control performance 
in terms of the step response. Also, the author designs the gain k4 of the anti-windup 
compensator by an experimental method such that we make the overshot appearing in the 
step response, caused by windup, as small as possible. In the sequel, the undamped natural 
frequencies of the X-axis and Y-axis motions are decided to lie approximately at 117.909 and 
118.448 rad/s, respectively. Also, the damping ratios of the X-axis and Y-axis motions are 
decided to lie approximately at 0.590 and 0.595, respectively. 
 

 

(a) 

 

(b) 

Fig. 7. Step responses of the hybrid stage by a step input of 1000 nm magnitude: (a) X-axis 
step response, (b) Y-axis step response 
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Fig. 7 shows the experimental result of the X-axis and Y-axis step responses of the hybrid 

stage by a step input of 1000 nm magnitude. From Fig. 7, we see that the maximum 

overshoots of the X-axis and Y-axis motions are 10.07% and 9.76%, respectively, the delay 

times of the X-axis and Y-axis motions are 0.014 and 0.014 s, respectively, the rise times of 

the X-axis and Y-axis motions are 0.026 and 0.025 s, respectively, the peak times of the X-axis 

and Y-axis motions are 0.033 and 0.033 s, respectively, and the 5% settling times of the X-axis 

and Y-axis motions are 0.071 and 0.072 s, respectively. Also, Fig. 7 demonstrates that the 

hybrid stage effectively responds to a step input of 1000 nm magnitude in the X-axis and Y-

axis motions. Specifically, when the coarse and fine stages are operated for a step input of 

1000 nm magnitude, the X-axis and Y-axis steady-state errors of the fine stage after 0.071 

and 0.072 s rising periods remain within 50 nm, respectively. On the other hand, the X-axis 

and Y-axis steady-state errors of the coarse stage reach more than 100 and 80 nm although 

the time elapses 0.08 and 0.12 s after the step input, respectively. Therefore it is concluded 

that the hybrid stage has remarkable advantages in terms of the response time and 

positioning accuracy. Although there is no direct contact between the coarse and fine stages, 

the motion errors or vibrations of the coarse stage may lead to variations of the interaction 

force between the two stages. These variations present themselves as disturbances to the fine 

stage, and the resolution of the fine stage degrades unless the bandwidth of the fine stage is 

substantially higher than that of the coarse stage. This observation explains the fluctuation 

of the fine stage at steady state in Fig. 7. 

Note that ( )VCMF t  in (24) is the minimal norm solution to (7). In order to demonstrate the 

result, the Euclidean norm histories of current inputs of the four VCMs is shown in Fig. 8. 

As shown in Fig. 8, the generator of optimal force yields the control effort of about 0.05 A. 

On the other hand, we need the control effort of about 2.8 A if we do not use the generator 

of optimal force. In this case, we can save the control effort significantly for the operation of 

the four VCMs by adopting the generator of optimal force. 

 
 

 
 

Fig. 8. Euclidean norm histories of current inputs of the four VCMs 
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Since the perturbation gives rise to a vibration of the hybrid stage in practice, the author 

determines the gains of the perturbation observers by the experimental method such that we 

make the position stability of the hybrid stage as small as possible. Then Fig. 9 shows the 

experimental result for the X-axis and Y-axis position stabilities of the hybrid stage. From 

Fig. 9, the X-axis and Y-axis position stabilities by the perturbation observers are about ±10 

nm, respectively. On the other hand, the X-axis and Y-axis position stabilities are about ±30 

nm, respectively, if we do not use the perturbation observers. Consequently, we see that the 

perturbation observers have the function of observing the perturbation and compensating it 

effectively about 66%. 

 

 
(a) 

 
(b) 

Fig. 9. Position stabilities of the hybrid stage: (a) X-axis position stability, (b) Y-axis position 
stability 

Now the X-axis and Y-axis incremental step responses and orientation angle responses of 

the hybrid stage are evaluated by applying some step input to the hybrid stage. Specifically, 
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the X-axis and Y-axis target positions are increased by 10 nm from 0 to 50 nm, and then 

decreased by 10 nm from 50 to 10 nm, respectively. Note that the coarse stage is on 

operation when the author conducts the X-axis and Y-axis incremental step responses and 

orientation angle responses.  

 

 

(a) 

 

(b) 

Fig. 10. X-axis incremental step response and orientation angle response of the hybrid stage: 
(a) X-axis incremental step response, (b) Orientation angle response during the X-axis 
incremental step motion 

Then Fig. 10 shows the experimental results of the X-axis incremental step response and the 

orientation angle response during the X-axis incremental step motion, and Fig. 11 shows the 

experimental results of the Y-axis incremental step response and the orientation angle 

response during the Y-axis incremental step motion. From Figs. 10 and 11, we see that the 
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resolutions of the X-axis and Y-axis motions are about ±10 nm, respectively, and the 

fluctuations of the orientation angle during the X-axis and Y-axis incremental step motions 

are about ±0.02 and ±0.04 arcsec, respectively. Note that 1 arcsec is equal to 1/3600 deg. 

Finally, the X-axis and Y-axis bidirectional repeatabilities of the hybrid stage are tested. Note 

that the repeatability is the error between a number of successive attempts to move the 

machine to the same position (Slocum, 1992). And the bidirectional repeatability is the 

repeatability achieved when the target position is approached from two different directions  

 

 
 

(a) 
 

 
 

(b) 

 

Fig. 11. Y-axis incremental step response and orientation angle response of the hybrid stage: 
(a) Y-axis incremental step response, (b) Orientation angle response during the Y-axis 
incremental step motion 
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(Slocum, 1992). In order to evaluate the X-axis bidirectional repeatability, the X-axis target 
position is increased by 40 mm from 0 to 400 mm, and then decreased by 40 mm from 400 to 
0 mm. Also, in order to evaluate the Y-axis bidirectional repeatability, the Y-axis target 
position is increased by 30 mm from 0 to 300 mm, and then decreased by 30 mm from 300 to 
0 mm. Then Fig. 12 shows the experimental results of the X-axis and Y-axis bidirectional 
repeatabilities. As shown in Fig. 12, the X-axis and Y-axis bidirectional repeatabilities are 

about 48.9 and 40.7 nm(6σ), respectively. 
 
 

 
 

(a) 

 

 
 

(b) 

 

Fig. 12. Bidirectional repeatabilities of the hybrid stage: (a) X-axis bidirectional repeatability, 
(b) Y-axis bidirectional repeatability 
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5. Conclusion 

In this chapter, the author presented a three degrees-of-freedom precision hybrid stage that 
can move and align an object on it for the measurement of its three-dimensional image using 
the confocal scanning microscope. Since the hybrid stage consists of two individually 
operating x-y-θ stages, it has not only a long operation travel but also a fine position 
stability. In order to control the hybrid stage, the author proposed a precision motion 
controller. The author evaluated the performances of the precision motion controller by 
experiment with a hardware setup. The experimental results showed that the precision 
motion controller provided the hybrid stage with desirable advantages in terms of the 
response time, positioning accuracy, control effort and perturbation compensation.  
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