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Chapter

Reliability Analysis Based on
Surrogate Modeling Methods
Qian Wang

Abstract

Various surrogate modeling methods have been developed to generate approxi-
mate functions of expensive numerical simulations. They can be used in reliability
analysis when integrated with a numerical reliability analysis method such as a
first-order or second-order reliability analysis method (FORM/SORM), or Monte
Carlo simulations (MCS). In this chapter, a few surrogate modeling methods are
briefly reviewed. A reliability analysis approach using surrogate models based on
radial basis functions (RBFs) and successive RBFs is presented. The RBF surrogate
modeling method is a special type of interpolation method, as the model passes
through all available sample points. Augmented RBFs are adopted to create approx-
imate models of a limit state/performance function, before the failure probability
can be computed using MCS. To improve model efficiency, a successive RBF
(SRBF) surrogate modeling method is investigated. Several mathematical and
practical engineering examples are solved. The failure probabilities computed using
the SRBF surrogate modeling method are fairly accurate, when a reasonable sample
size is used to create the surrogate models. The method based on augmented RBF
surrogate models is useful for probabilistic analysis of practical problems, such as
civil and mechanical engineering applications.

Keywords: reliability analysis, surrogate models, successive radial basis function
(SRBF), failure probability, Monte Carlo simulations (MCS)

1. Introduction

The probabilistic analysis of practical engineering problems has been a tradi-
tional research field [1–3]. The first category of engineering reliability analysis
methods are the most probable point (MPP) methods [4–7]. In this category of
methods, a design point, or the so-called most probable point in the design space is
sought. The limit state function is often transformed into a standard Gaussian space
and approximated using Taylor series expansions. Depending on the order of
approximation used, FORM/SORM are available [4–7]. These methods require the
derivatives of system responses, i.e., sensitivity analysis. For complex engineering
systems that require expensive response simulations such as nonlinear explicit finite
element (FE) analysis, the integration of the MPP-based methods and a commercial
FE code is not straightforward. An alternative category of methods are the direct
sampling-based methods, including MCS and some other simulation methods
[8–12]. These methods can be integrated fairly easily with an existing simulation
program because they do not require the derivation or calculation of gradient
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information. However the direct application of MCS can be computationally pro-
hibitive in complex engineering problems that require expensive response
simulations.

To reduce the complexity of implementation and improve the computational
efficiency, various approximate modeling techniques have been applied to the
reliability analysis of practical engineering systems [13, 14]. These approximate
models are referred to as surrogate models. There are abundant literature that
presented surrogate models and their applications to numerical optimization and
reliability-based design optimization. However, the focus of this chapter and the
review of literature here is primarily on the applications of surrogate models to
engineering reliability analysis. In surrogate modeling methods, the analysis soft-
ware is replaced by approximate surrogate models, which have explicit functions
and are very efficient to evaluate. FORM/SORM or a sampling method can then be
applied using the explicit surrogate model instead of the original implicit numerical
model. In all the surrogate models developed, the most basic and popular surrogate
model is the conventional polynomial-based response surface method (RSM). The
RSM has been shown to be useful for different engineering reliability analyses and
applications [15–25]. The entire response space is approximated using a single
quadratic polynomial function in a global RSM model. To improve model accuracy
for reliability analysis using a global RSM model, different techniques were pro-
posed such as efficient sampling methods [26, 27] and inclusion of higher order
effects [28, 29]. When combined with gradient-based search methods, it is more
efficient to use RSM in an iterative manner or a local window of the response space
[30]. Local RSMmethods such as the moving least square technique were developed
to handle highly nonlinear limit state functions [31]. Other commonly used surro-
gate modeling methods have also been developed over the years, such as artificial
neural networks (ANN) [32–37], Kriging [38–46], high-dimensional or factorized
high-dimensional model representation [47–51], support vector machine [52–57],
radial basis functions (RBFs) [58], and even ensemble of surrogates [59–62].

An RBF surrogate model is a multidimensional interpolation approach using
available scattered data. Due to their characteristics in global approximation, RBFs
could create accurate surrogate models of various responses [63, 64]. An RBF model
provides exact fit at the sample points. In the studies by Fang and coauthors
[65, 66], various basis functions were investigated including Gaussian,
multiquadric, inverse multiquadric, and spline functions. Some compactly
supported (CS) basis functions developed by Wu [67] were also studied. Mathe-
matical functions and practical engineering responses were tested and their surro-
gate models were created using different basis functions. Augmented compactly
supported functions worked well and were found to create more accurate surrogate
models than non-augmented models.

2. Aims and objectives

It can be seen from literature review that accurate and efficient surrogate models
are useful tools when integrated with expensive response simulations for practical
reliability analysis and design problems. The objective of this research is to study
efficient and accurate RBF models, such as adaptive or successive RBF models based
on the augmented basis functions, and their application in engineering reliability
analysis. Note that the accuracy of RBF surrogate models depends on the sample
size used. If the sample size is too small, the model may not be accurate. On the
other hand, a large number of sample points will improve the model accuracy, but
some sample points and associated response simulations may not be necessary.
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Since the most appropriate sample size is not known before the creation of the
surrogate models, it remains a challenge to determine the appropriate sample size to
use. One viable approach is to create and test a few different sample sizes, and the
best sample size for the problem can be determined. To improve this process, the
concept of SRBF surrogate models is developed and it is intended to automate this
process and find the proper sample size iteratively and automatically for the aug-
mented RBF surrogate models that can be used for reliability analysis of practical
engineering systems.

This chapter presents an engineering reliability analysis method based on a SRBF
surrogate modeling technique. In each iteration of the new method, augmented
RBFs can be used to generate surrogate models of a limit state function. Three
accurate augmented RBFs surrogate models, which were identified from a previous
study, are adopted. The failure probability can be calculated using the SRBF surro-
gate models combined with MCS. Section 3 describes the general concept of engi-
neering reliability analysis. Section 4 briefly reviews some surrogate modeling
methods, and explains the augmented SRBF surrogate modeling technique. Sections
5 and 6 presents the MCS method and the overall reliability analysis procedures. In
Section 7, the proposed approach is applied to the probability analysis of several
mathematical and practical engineering problems. The failure probabilities are
compared with those computed based on the direct implementation of MCS with-
out surrogate models. The numerical accuracy and efficiency of the proposed
approach using MCS and SRBF surrogate models is studied.

3. Engineering reliability analysis

A time-invariant reliability analysis of an engineering problem is to compute the
failure probability, PF, using the following integral [1–3]:

PF � P g xð Þ≤0ð Þ ¼
ð

g xð Þ≤0

pX xð Þdx (1)

where x is an s-dimensional real-valued vector of random variables, g xð Þ is the
limit state function, and pX xð Þ is the joint probability density function. Eq. (1) is
difficult to obtain for practical engineering applications, since pX xð Þ is unknown
and g xð Þ is usually an implicit and nonlinearity function. A detailed response anal-
ysis model, such as the FE analysis of the engineering system is often required to
evaluate function values of g xð Þ.

4. Surrogate modeling methods

4.1 Design of experiments

An implicit function g xð Þ is considered, where x = x1 ⋯ xs½ �T is an input variable
vector and s is the number of input variables. Before a surrogate model of function
g xð Þ can be created, some sample points shall be generated using design of experi-
ments (DOE). Some routinely used DOE approaches include factorial design, Latin
hypercube sampling (LHS) [68], central composite design, and Taguchi orthogonal
array design [69]. Assume xi is the input variable vector at the ith (i = 1,…n) sample
point, the limit state function g xð Þ needs to be evaluated at all the sample points to

obtain the function values, i.e., g ¼ g1 ⋯ gn
� �T

= g x1ð Þ ⋯ g xnð Þ½ �T.
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4.2 Response surface method using quadratic polynomials

Using linear or quadratic polynomials, a response surface model can be devel-
oped. The most commonly used quadratic polynomial response surface model is
expressed as [63]:

eg xð Þ ¼ β0 þ ∑
s

i¼1
βixi þ ∑

s

i¼1
βiix

2
i þ ∑

s�1

i¼1
∑
s

j¼iþ1
βijxixj (2)

where the β’s are the unknown coefficients. Using the function values at n
sample points, a total of n linear equations can be written in a matrix form, as:

g ¼ Xeβ (3)

where eβ k� 1ð Þ is the least-square estimation of the unknown coefficients in
Eq. (2), and X n� kð Þ is a matrix of input variables at sample points. Apply the least

squares method to solve for eβ, as:

eβ ¼ XTX
� ��1

XTg
� �

(4)

4.3 Least squares support vector machine

The support vector machine (SVM) uses a nonlinear mapping technique and
solves for a nonlinear input-output relationship. For n sample points, a commonly
used least squares SVM model is given as [52, 53]:

eg xð Þ ¼ ∑
n

i¼1
αiK x; xið Þ þ b (5)

where αi (i = 1,… n) are Lagrange multipliers, b is the scalar threshold, and
K x; xið Þ is a kernel function. Available kernel functions include polynomial, radial,
and sigmoid kernels [53]. A system of (n + 1) equations can be written as:

0 1T

1 Ωþ γ�1I

 !
b

α

� �
¼

0

g

� �
(6)

where γ is a tolerance error, 1 ¼ 1 ⋯ 1½ �T, α ¼ α1 ⋯ αn½ �T, and Ω n� nð Þ
is a matrix of kernels based on the sample points. α and b can be calculated from:

b

α

� �
¼ 0 1T

1 Ωþ γ�1I

 !�1
0

g

� �
(7)

4.4 Kriging

The Kriging model is an interpolation technique that combines two parts, i.e., a
linear regression part and a stochastic error, as [38, 39]:

eg xð Þ ¼ BT xð Þβ þ z xð Þ ¼ ∑
p

i¼1
Bi xð Þβi þ z xð Þ (8)

where B xð Þ ¼ B1 xð Þ ⋯ Bp xð Þ
� �T

are the p basis functions, and

β ¼ β1 ⋯ βp
� �T

are the corresponding regression coefficients. The first part of

Eq. (8) approximates the global trend of the original function, in which β can be
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estimated using the least squares method. The second part, z xð Þ, represents a
stochastic process with zero mean and covariance

Cov z xið Þ; z xj
� �� �

¼ σ2R R xi; xj
� �� �

(9)

where σ2 is the process variance, and R is a correlation matrix. If Gaussian

function is used as the correlation function, R xi; xj
� �

is written as:

R xi; xj
� �

¼ exp � ∑
s

k¼1

θk xki � xkj

���
���
2

	 
∗
(10)

where xki and xki are the kth (k = 1,… s) component of sample points xi and xj,
respectively, and θk are unknown correlation parameters to fit the model.

4.5 Augmented radial basis functions

Developed for fitting topographic contours, an RBF surrogate model eg xð Þ is
written as:

eg xð Þ ¼ ∑
n

i¼1
λiϕ x� xik kð Þ (11)

whereϕ is the basis function, x� xik k is the Euclidean norm, and λi is the unknown
weighted coefficient that need to be determined.Table 1 lists commonly used RBFs.

Using the n available sample points and function values, a total of n equations
can be written, as:

g1 ¼ eg x1ð Þ ¼ ∑
n

i¼1
λiϕ x1 � xik kð Þ (12)

…

gn ¼ eg xnð Þ ¼ ∑
n

i¼1
λiϕ xn � xik kð Þ (13)

Write all the n equations in a matrix form, as:

g ¼ Aλ (14)

Function name Radial basis function

Linear function ϕ rð Þ ¼ r

Cubic function ϕ rð Þ ¼ r3

Gaussian function ϕ rð Þ ¼ exp �cr2ð Þ; 0 < c≤ 1

Multiquadric function ϕ rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
; 0 < c≤ 1

CS function ϕ2,0 ϕ2,0 zð Þ ¼ 1� zð Þ5 1þ 5zþ 9z2 þ 5z3 þ z4ð Þ; z ¼ r=r0

CS function ϕ2,1 ϕ2,1 zð Þ ¼ 1� zð Þ4 4þ 16zþ 12z2 þ 3z3ð Þ

CS function ϕ3,0 ϕ3,0 zð Þ ¼ 1� zð Þ7 5þ 35zþ 101z2 þ 147z3 þ 101z4 þ 35z5 þ 5z6
� �

CS function ϕ3,1 ϕ3,1 zð Þ ¼ 1� zð Þ6 6þ 36zþ 82z2 þ 72z3 þ 30z4 þ 5z5ð Þ

Table 1.
Some commonly used RBFs [65].
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where λ ¼ λ1 ⋯ λn½ �T, and A is given as:

A ¼
ϕ x1 � x1k kð Þ ⋯ ϕ x1 � xnk kð Þ

⋮ ⋱ ⋮

ϕ xn � x1k kð Þ ⋯ ϕ xn � xnk kð Þ

2
64

3
75
n�n

(15)

Solve the linear system of Eq. (14) to calculate coefficients λ, as:

λ ¼ A�1g (16)

Since highly nonlinear basis functions are used, the RBF surrogate models in
Eq. (11) can approximate nonlinear responses very well. However, they were found
to have more errors for linear responses [58]. In order to overcome this drawback,
the RBF model in Eq. (11) can be augmented by polynomial functions, as:

eg xð Þ ¼ ∑n
i¼1λiϕ x� xik kð Þ þ∑

p
j¼1cj f j xð Þ (17)

where the second part represents p terms of polynomial functions, and cj ( j = 1,… p)
are the unknown coefficients to be determined. There are more unknowns than
available equations; therefore the following orthogonality condition is required to
solve for all unknowns, as:

∑n
i¼1λif j xið Þ ¼ 0, for j ¼ 1,…p (18)

Eqs. (17) and (18) consist of (nþ p) equations in total, and they can be rewritten, as:

A F

FT 0

� �
λ

c

� �
¼

g

0

� �
(19)

where c ¼ c1 ⋯ cp
� �T

, and F is given as:

F ¼
f 1 x1ð Þ ⋯ f p x1ð Þ
⋮ ⋱ ⋮

f 1 xnð Þ ⋯ f p xnð Þ

2
64

3
75

n�p

(20)

Solve the linear system of Eq. (19) to get λ and c, as:

λ

c

� �
¼

A F

FT 0

� ��1 g

0

� �
(21)

For augmented RBFs, either linear or quadratic polynomial functions can be
used. In this study, only linear polynomial functions were added to Eq. (17). For the
rest of the paper, a suffix “-LP” is used to represent linear polynomials added to
RBFs. The following RBF models were studied:

SRBF-MQ-LP: sequential multiquadric function with linear polynomials.
SRBF-CS20-LP: sequential compactly supported function ϕ2,0 with linear

polynomials.
SRBF-CS30-LP: sequential compactly supported function ϕ3,0 with linear

polynomials.

5. Estimation of failure probability

Eqs. (11) and (17) are the RBF and augmented RBF surrogate model functions of
g xð Þ. The surrogate models have explicit expressions; therefore their function values
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can be efficiently calculated in each iteration of the SRBF approach. Based on the
surrogate model eg xð Þ, the failure probability PF can be computed using a sampling
method, such as MCS, as:

PF � P g xð Þ≤0ð Þ ¼ 1

N
∑
N

i¼1
Γ eg xi

� �
≤0�

�
(22)

where N is the total number of MCS samples, xi is the ith realization of x, and Γ

is a deciding function, as:

Γ ¼
1 if  eg xi

� �
≤0

0 if  eg xi
� �

>0

(
(23)

The reliability index β can be further determined, as [49]:

β ¼ �Φ�1 PFð Þ (24)

where Φ is the standard normal cumulative distribution function.

6. Reliability analysis based on successive RBF models

Figure 1 shows a flowchart of reliability analysis using SRBF-based surrogate
modeling technique and MCS. Once the explicit augmented RBF surrogate model is
generated in one iteration of the proposed method, MCS is applied to efficiently
estimate the failure probability for any sample size. If the convergence criterion is
not satisfied in the current iteration, more sample points will be added and another
iteration starts. As the sample size increases, the SRBF surrogate models in general
become more accurate, a reduction was observed in the failure probability estima-
tion errors. However this results in more function evaluations. Since the number of
response simulations is determined by the sample size used to create a surrogate
model, the majority of the computational cost is from the response simulations. The
detailed procedure is as follows:

1. Determine initial and additional sample sizes, n and m, and convergence
criterion. In this study, the initial sample size n is suggested be 5–10 times of
the number of random variables s. The additional sample size m in each
subsequent iteration can be typically taken as one third to one half of the initial
sample size, n.

2. Generate the initial sample set with n sample points; set the iteration number
k ¼ 1. A commonly used LHS was applied to generate samples for RBF
surrogate models.

3. Evaluate limit state function g xð Þ for the initial sample set n generated in Step 2.
Numerical analyses such as FE analyses may be required for practical problems.

4.Update sample set n to include all sample points, n ¼ nþm. For the first
iteration (k ¼ 1), m ¼ 0, and no additional sample points are added.

5. Construct augmented RBF surrogate models eg xð Þ of function g xð Þ based on
Eq. (17) using all available sample points.
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6.Calculate failure probability PF for iteration k using MCS.

7. Check the convergence criterion. If the convergence criterion is satisfied, stop;
otherwise go to Step 8. In this study the convergence criterion is that the
relative error of the failure probability PF between two successive iterations is
less than the tolerance. A tolerance value of 1% was applied in this study. For
practical applications, another convergence criterion may be defined, e.g., the
maximum number of response simulations has been reached. This will help
control the total number of iterations performed in the reliability analysis.

8.Generate additional sample set with m sample points; set the iteration number
k ¼ kþ 1.

9.Evaluate limit state function g xð Þ for the additional sample set m generated in
Step 8, then go to Step 4.

Figure 1.
Flowchart of reliability analysis using a SRBF surrogate technique.
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7. Numerical examples

Four numerical examples were solved using the proposed reliability analysis
method. These include both mathematical and engineering problems found in liter-
ature. In this study, the proposed method based on three SRBFs, i.e., SRBF-MQ-LP,
SRBF-CS20-LP, and SRBF-CS30-LP, is referred to as the SRBF-based MCS. The
Direct MCS refers to MCS without using surrogate models. In the Direct MCS, the
number of response simulations was determined by the MCS sample size. However,
in the SRBF-based MCS, the number of response simulations was based on the
surrogate modeling sample size. A total of N = 106 samples was adopted in MCS
when surrogate models were used.

7.1 Example 1: a nonlinear limit state function

A nonlinear limit state function was studied in literature, as [21, 49, 50]:

g xð Þ ¼ exp 0:2x1 þ 6:2ð Þ � exp 0:47x2 þ 5:0ð Þ (25)

where x1 and x2 are independent random variables following standard normal
distributions (mean = 0; standard deviation = 1). The failure probability PF =
0.009372 was obtained based on Direct MCS and used to compare with other
solutions. The RBF surrogate models were constructed using the two variables
sampled in the range of �3.0 to 3.0. All three surrogate models started with 10
sample points in the first iteration. With 10 sample points, the error of the esti-
mated failure probability was 7.0, 3.0, and 1.8% for SRBF-MQ-LP, SRBF-CS20-LP,
and SRBF-CS30-LP, respectively. In each subsequent iteration 10 more sample
points were added. At convergence, the accuracy of SRBF models was improved;
the error was reduced to 0.9, 0.8, and 1.3% for SRBF-MQ-LP, SRBF-CS20-LP, and
SRBF-CS30-LP, respectively. Adequate accuracy of reliability analysis was achieved
for all three SRBF surrogate models. The failure probability values obtained based
on three surrogate models and the associated errors as compared to the solution
obtained using Direct MCS are listed in Table 2. It took 4, 3, and 2 iterations for
SRBF-MQ-LP, SRBF-CS20-, and SRBF-CS30-LP methods to converge,
corresponding to 40, 30, and 20 sample points, respectively. A total of 40, 30, and
20 function evaluations (original limit state function) were required for the three
SRBF-based MCS, respectively.

7.2 Example 2: a cantilever beam

The reliability analysis of a cantilever beam with a concentrated load is
conducted in this example [50]. The beam has a rectangular cross section. The
performance requirement is the displacement at tip should be <0.15 in. Therefore,
the limit state function is.

Table 2.
Example 1: numerical results.
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g l; b; hð Þ ¼ 0:15� 4Pl3

Ebh3
(26)

where P is the concentrated load, l is the beam length, b and h are the width and
depth of the beam cross-section, and E = 107 psi is the Young’s modulus. In this
example P = 80 lb. was considered. Table 3 lists the three random variables in this
problem, i.e., l, b, and h.

All three SRBF surrogate models started with 20 sample points in the first
iteration, with 10 more samples generated in each following iteration. The reliabil-
ity analysis results and the corresponding sample sizes required for SRBF surrogate
models were examined, as listed in Table 4. The failure probability estimated based
on Direct MCS using Eq. (26) was 0.02823, which was regarded as the actual
solution. It took 4, 7, and 5 iterations for SRBF-MQ-LP, SRBF-CS20-LP, and SRBF-
CS30-LP to converge, respectively. With the initial 20 samples, the error of the
estimated failure probability was 35.9, 19.4, and 9.7% for SRBF-MQ-LP, SRBF-
CS20-LP, and SRBF-CS30-LP, respectively. With 50, 80, and 60 sample points, the
error was reduced to 9.7% for SRBF-MQ-LP, 0.3% for SRBF-CS20-LP, and 1.7% for
SRBF-CS30-LP. The errors in estimating the failure probability by SRBF surrogate
models decreased as the sample size increased. The SRBF-MQ-LP model did not
produce as accurate estimation of PF as SRBF-CS20-LP and SRBF-CS30-LP, when
the same sample size was used. In all three SRBF surrogate models, SRBF-CS20-LP
provided the most accurate estimate of PF, and the surrogate model SRBF-MQ-LP
did not converge close to the actual solution. In this example, 60–80 sample points
were required for SRBF-CS20-LP and SRBF-CS30-LP to achieve reasonably accu-
rate surrogate models and estimates of the failure probability.

7.3 Example 3: a reinforced concrete beam section

This example is the reliability analysis of a singly-reinforced concrete beam
section [51, 70]. Based on static equilibrium, the following nonlinear limit state
function can be developed, as:

Table 3.
Example 2: random variables [50].

Table 4.
Example 2: numerical results.
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g xð Þ ¼ x1x2x3 � x4
x21x

2
2

x5x6
�Mn (27)

Eq. (27) included six independent random variables: x1 is the total cross-
sectional area of rebars, x2 is the yield strength of rebars, x3 is the effective depth of
section, x4 is a dimensionless factor related to concrete stress-strain curve, x5 is the
compressive strength of concrete, and x6 is the width of the concrete section. The
limit state was for the ultimate bending moment strength of the section, and a

bending moment limitMn ¼ 211:20� 106 N-mmwas adopted in this study. Table 5
lists the six input random variables and their statistical properties.

To start the reliability analysis, 30 sample points were used in the first iteration
of all three SRBF surrogate models, and 10 additional samples were included in each
subsequent iteration. Table 6 lists the failure probability PF values obtained using
different methods, in addition to the required number of original function evalua-
tions, representing the associated computational effort. Compared with
PF = 0.01102 obtained by Direct MCS, the errors of SRBF-MQ-LP, SRBF-CS20-LP
and SRBF-CS30-LP were 0.8, 1.1, and 0.9%, respectively.

Figure 2 is the plot showing failure probability estimation versus sample size. All
three SRBF models worked well and smooth convergence histories can be observed.
The three SRBF models produced similar failure probabilities. The results by SRBF-
CS20-LP and SRBF-CS30-LP were shown to be better than that using SRBF-MQ-LP
when the sample size was small. Among the three SRBF models, SRBF-CS30-LP
generated the most accurate approximation with the same sample size. As expected,
more sample points resulted in reduced SRBF approximation errors. With the
increase of the number of sample points or function evaluations (i.e., computational
effort), a reduction in estimation error of the failure probability using the proposed
SRBF models was observed. For example, the estimation error of PF was reduced
from 10.7 to 0.8% for SRBF-MQ-LP, 4.9–1.1% for SRBF-CS20-LP, and 4.1–0.9% for

Table 5.
Example 3: random variables [70].

Table 6.
Example 3: numerical results.
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SRBF-CS30-LP, respectively. SRBF-CS20-LP and SRBF-CS30-LP created with 40
samples and SRBF-MQ-LP created with 50 samples could provide fairly accurate
reliability analysis results (<2% error of PF).

7.4 Example 4: burst margin of a rotating disk

This example is the reliability analysis of a disk with an angular velocity of ω, as
shown in Figure 3 [50, 51]. The inner and outer radii of disk are Ri and Ro,
respectively. The burst margin, Mb, of the disk refers to the safety margin before
overstressing the disk, which is expressed as:

Mb αm; Su; ρ;ω;Ro;Rið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αmSu
ρ 2ωπ

60ð Þ2 R3
o�R3

ið Þ
3 385:82ð Þ Ro�Rið Þ

� �
vuuut (28)

If a lower bound value of 0.37473 is used, the limit state function of Mb can be
written as:

g xð Þ ¼ Mb αm; Su; ρ;ω;Ro;Rið Þ � 0:37473 (29)

where Su is the ultimate material strength, αm is a dimensionless material utili-
zation factor, and ρ is the mass density of material. Table 7 lists the six random
variables used in the example.

Similar as Example 3, all three surrogate models started with 30 sample points.
In each subsequent iteration, 10 sample points were added. Table 8 lists the

Figure 2.
Example 3: failure probability iterations.

Figure 3.
Example 4: a rotating disk.
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estimated failure probability PF in this study based on different SRBF surrogate
models and the associated errors as compared to the solution obtained using Direct
MCS. The augmented SRBF-based methods required 60–70 original function eval-
uations to converge. Figure 4 illustrates the variation of the failure probability PF

versus number of sample points. In general with the increase of the sample size, a
reduction was observed in the estimation errors of the failure probability PF, from
67.1, 6.6, and 12.8% when 30 sample points were used, to 5.6, 0.8, and 0.5% at
convergence for SRBF-MQ-LP, SRBF-CS20-LP, and SRBF-CS30-LP, respectively.
The reliability analysis results based on surrogate models SRBF-CS20-LP and SRBF-
CS30-LP were shown to be better that using SRBF-MQ-LP. It showed that with
around 50 sample points very accurate SRBF-CS20-LP and SRBF-CS30-LP surro-
gate models could be created for reliability analysis.

Table 7.
Example 4: random variables [50, 51].

Table 8.
Example 4: numerical results.

Figure 4.
Example 4: failure probability iterations.
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8. Concluding remarks

Augmented RBFs are suitable for creating accurate surrogate models for linear
and nonlinear responses. When combined with a sampling method such as MCS,
they can be used in reliability analysis and provide accurate estimation of the failure
probability. In spite of their excellent model accuracy, the most appropriate number
of sample points is not known beforehand. To provide an improved and automated
approach using the RBF surrogate models in reliability analysis, a SRBF surrogate
modeling technique was developed and tested in this study, so that the RBF surro-
gate models could be used in an iterative yet efficient manner. In this chapter, three
augmented RBFs, including multiquadric function and two compactly supported
basis functions were considered. To evaluate the proposed SRBF surrogate model-
ing method for reliability analysis, its numerical accuracy and computational
efficiency was examined.

Numerical examples including existing mathematical and engineering problems
were studied using the proposed method. Accurate failure probability results were
achieved using a reasonable sample size within a few iterations. The required
number of response simulations or function evaluations was relatively small. All
three SRBF models produced similar accuracy, and the surrogate models based on
SRBF-CS20-LP and SRBF-CS30-LP produced more accurate reliability analysis
results, especially when a smaller sample size was adopted. This study shows that
the proposed reliability analysis method is efficient and has a promising potential
for application to complex engineering problems involving expensive simulations.
Further research includes efficient sequential sampling methods that can be com-
bined with the SRBF methods, and the optimal approach to determine the sample
sizes used in each iteration of the SRBF methods.
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