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Fuzzy Control Strategy for Cooperative  
Non-holonomic Motion of Cybercars with 

Passengers Vibration Analysis 

               Francesco Maria Raimondi and Maurizio Melluso 
Dipartimento di Ingegneria dell’Automazione e dei Sistemi, University of Palermo  

Italy 

1. Introduction      

The cybercars are electric road wheeled non-holonomic vehicles with fully automated 
driving capabilities. They contribute to sustainable mobility and are employed as passenger 
vehicles. Non-holonomic mechanics describes the motion of the cybercar constrained by 
non-integrable constraints, i.e. constraints on the system velocities that do not arise from 
constraints on the configuration alone. First of all there are thus with dynamic non-
holonomic constraints, i.e. constraints preserved by the basic Euler-Lagrange equations 
(Bloch, 2000; Melluso, 2007; Raimondi & Melluso, 2006-a). Of course, these constraints are 
not externally imposed on the system but rather are consequences of the equations of 
motion of the cybercar, and so it sometimes convenient to treat them as conservation laws 
rather than constraints per se. On the other hand, kinematic non-holonomic constraints are 
those imposed by kinematics, such as rolling constraints. The goal of the motion control of 
cybercars is to allow the automated vehicle to go from one terminal to another while staying 
on a defined trajectory and maintaining a set of performance criteria in terms of speeds, 
accelerations and jerks. There are many results concerning the issue of kinematic motion 
control for single car (Fierro & Lewis, 1997). The main idea behind the kinematic control 
algorithms is to define the velocity control inputs which stabilize the closed loop system. 
These works are based only on the steering kinematics and assume that there exists perfect 
velocity tracking, i.e. the control signal instantaneously affects the car velocities and this is 
not true. Other control researchers have target the problems of time varying trajectories 
tracking, regulating a single car to a desired position/orientation  and incorporating the 
effects of the dynamical model to enhance the overall performance of the closed loop 
system. The works above are based on a backstepping approach, where the merging of 
kinematic and dynamic effects leads to the control torques applied to the motors of the 
wheels. A Fuzzy dynamic closed loop motion control for a single non-holonomic car based 
on backstepping approach and oriented to stability analysis of the motion errors  has been 
developed by Raimondi & Melluso (2005). In Raimondi & Melluso (2006-b) and Raimondi & 
Melluso (2007-a) adaptive fuzzy motion control systems for single non-holonomic 
automated vehicles with unknown dynamic and kinematic parameters and Kalman’s filter 
to localize the car have been presented. With regards to the problems of cooperative control 
of multiple cybercars, a number of techniques have been developed for omni-directional 
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(holonomic) wheeled cars (see Gerkey & Mataric, 2002; La Valle & Hutchinson, 1998). 
Decentralized algorithms have been dealt with for holonomic cars by Lumelsky & 
Harinarayan (1997). With regards to the cooperation of multiple non-holonomic cybercars, 
few results have been published.  On this subject, an approach based on the definition of 
suitable functions of inverse kinematics to control the motion of a platoon of autonomous 
vehicles has been presented by Antonelli & Chiaverini (2006). The problem of controlling 
multiple non-holonomic vehicles by using fuzzy control so that they converge to a source 
has been studied by Driessen et al, (1999). However, since the cars do not have passengers 
on board, all the studies above do not consider the problem of the acceleration and jerk. For 
fully automated operation with passengers, a trajectory planning method that produces 
smooth trajectories with low acceleration is required. The jerk, i.e. the derivative of the 
acceleration, adversely affects the efficiency of the control algorithms and passengers 
comfort, so that it has to be reduced. Not many results have been published on this subject  
(Labakhua  et al., 2006; Panfeng et al., 2007).  
In this chapter a new closed loop fuzzy control system for non-holonomic motion of 
multiple cybercars in presence of passengers is proposed. The control strategy merges an 
innovative decentralized planning trajectory algorithm and a new fuzzy motion control law.  
About the cooperation, if the target position is fixed, then a number of cybercars has to reach 
the target one, without to come into collision with the other closest vehicles. The trajectories 
are planned as the desired time evolution for the position and orientation of some 
representative point of each cybercar. Forward trajectories are planned only, i.e. trajectories 
without manoeuvres. In other words all the cooperative cybercars should not stop, except, 
of course, at the initial and final position. Therefore circular trajectories with continuous 
curvature have been chosen. Since, for example, in airport the cybercars move in preferential 
roads without obstacles, the environment in which they move is considered free of obstacle. 
To ensure the trajectory tracking of all the cooperative cybercars, a new control strategy 
based on fuzzy inference system is proposed and developed. The fuzzy system generates 
the control torques for all the cybercars. The cybercars are still employed to transport 
passengers which are inevitable exposed to vibrations (Birlik & Sezgin, 2007). The 
acceleration is adopted as preferred measurement of the human vibration exposure. 
Therefore, with respect to other control theories, the parameters of the fuzzy controller 
developed in this chapter may be tuned with respect of the ISO 2631-1 standard, which 
proposes a comfort scale using a mean acceleration index.  
This chapter is organized as follows. Section 2 presents the dynamical model of multiple 
cybercars which has to be employed to project the dynamic fuzzy control system. Also the 
acceleration model is formulated to develop a control strategy where the passenger comfort 
is ensured. Section 3 presents a new decentralized cooperative trajectory planner, where the 
aim is that all the cybercars must reach a target position without collisions between them. 
Section 4 presents the closed loop fuzzy motion control system, where the asymptotical 
stability of the motion errors given by the difference between the reference trajectory 
planned in Section 3 and the actual trajectory of each cybercar is proved by using the 
Lyapunov’s theorem and the Barbalat’s Lemma (Slotine & Li, 1991). The parameters of the 
fuzzy control law are investigated to ensure a good level comfort of the passengers. In this 
sense, the adjustment of the saturation values of the fuzzy dynamic control surfaces 
guarantees low values of the longitudinal, lateral accelerations and jerks. In Section 5 
experimental tests in a Matlab environment are employed to confirm the effectiveness of the 
proposed motion control strategy. Some conclusions are drawn in Section 6. 
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2. Model formulation of multiple non-holonomic cybercars 

Consider a system made up of r non-holonomic  cybercars. A schematization of the system 

in open chain configuration is shown in Fig. 1. Now indicating with 
n

i Rt ∈)(q  the time 

varying coordinates of the position and orientation of the i-cybercar,  
 

 

Fig. 1. System of r vehicles in open chain configuration 

the complete system is subject to mr ×  non-holonomic constraints given by: 
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and nm

ii Rt ×∈))((qA  are the matrices of the non-holonomic constraints of the motion of 

each vehicle. Consider the following well known dynamic model (Fierro & Lewis , 1997) : 

 

, ...1

,))(()())(()())(),(()())((

ri

itii
titiitititiititii

=

−=+ λqAτqEqqqCqqM
T$$$$

 (3) 

where nn

ii Rt ×∈))((qM  is a positive definite inertial matrix, 
nn

iii Rtt ×∈))(),(( qqC $  is 

the centripetal Coriolis matrix, 
p

i Rt ∈)(τ  is a vector of the torques applied to the right 

and left wheels of each vehicle, pn

ii Rt ×∈))((qE  is a mapping between the torques above 

and the forces applied along the components of )(tiq , ))(( tii qA are the matrices given by 

(2), while m

i R∈λ  is a vector of Lagrange multipliers. Let 
)())(( mnn

ii Rt −×∈qS  be a full 

rank matrix made up of a set of smooth and linearly independent vectors spanning the null 

space of   ))(( tii qA , i.e.:  

 ....1,))(())(( ritt iiii == 0qSqA   (4) 

Due to the non-holonomic constraints (1), it is possible to find velocity vectors 
mn

i Rt −∈)(v , such that:  

 . ...1),()( )( rittt iiii == )v(qSq$   (5) 
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Referring to the i-vehicle shown in Fig. 2, let ),( 000 ii yxP  be the reference point  of the 

motion and indicate the orientation with iθ . Indicate with ),( YX  and with ),( cc YX  the 

ground and the body references respectively. Let ir  be the radius of the wheels. Indicate 

with ib  the distance from the center of the wheel to the longitudinal axis and with id the 

distance from the reference point to the mass center cP . For the later description indicate 

with im  and iI the mass and the inertia of the i-vehicle respectively. In view of the 

previous considerations, the following  model can be written: 
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  (6)               

where  )(tui  and )(tiω  are the linear and angular velocities of the i-cybercar of the 

cooperative system. 
 

 

Fig. 2. Cybercar with reference systems 

To design a control law which consider the ISO 2631-1, and, therefore, to analyze the 
vibration of the passengers during the motion, it is necessary to obtain the acceleration 
model. Let the acceleration vector of each cooperative vehicle be: 

                                                 
[ ]
ri

tatat yixii

,...,1

)(ˆ  )(ˆ)(

=

=T

wa   (7) 

The accelerations  )(ˆ taxi  and )(ˆ ta yi  are the longitudinal and lateral accelerations 

respectively of the i-cybercar of the cooperative system. The accelerations (7) could be 

obtained through the following steps. By considering the kinematical model of a non-

holonomic vehicle (cf. eq. 6), it is possible to calculate the accelerations along the axes of the 

ground reference (X,Y) (see Fig. 2) in function of the linear and angular velocities. It results: 
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Differentiating (6) leads to: 
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Therefore the human body is subjected to forces along the X and Y axes. Now it is necessary 

to project the forces above along  the axes of  the body reference, i.e. cX and cY , so that the 

lateral and longitudinal accelerations (7) can be calculated as: 
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After some calculations it results: 
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Due to non-holonomic constraints given by (2), the components of iq  (i=1…r) vector are 

not independent. For this reason the dynamic model (3) cannot be employed directly for the 

motion control. A dynamic model in body fixed coordinates has to be used. Substituting  the 

equation (6) into model (3) leads to: 
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3. Decentralized cooperative trajectory planning algorithm 

In this paragraph a new decentralized trajectory planning algorithm is developed for the 

non-holonomic cooperative motion of the cybercars. The problem is the following. All the 

cybercars must reach a target position without collisions between them. Once the distances 

between the initial positions of the cybercars and the target are known, a decentralized 

algorithm permits to plane circular trajectories intersection-free. After communication to 

each cybercar of the initial position and target coordinates, the trajectory planner of each 

cybercar provide to plane a circular trajectory independently of each other. This means we 

have a decentralized planner. More precisely, indicate with   )]0(   )0(    )0([ 00 iii yx θ   the 

initial position and orientation of each cybercar. An automated vehicle moving with 

constant linear and angular velocities, tracks a circular trajectory. Therefore a reference 

motion may be planned along a circumference that includes the initial coordinates above 

and the  position of the target. With reference to Fig. 3, let )0(),0(),0(( 0 iioii yxC θ  be the 

initial position  of the i-cybercar. Let ),,( TTT yxB θ the position and orientation of the 

target. Let 
ixΔ  and  

iyΔ  be the shiftings  along the tangent and radial directions 

respectively of the i-vehicle. The i-cybercar moves from Ci to B along a circular trajectory of 

which the radius is equal to  
iλ , while the center is located in D.   

 

 

Fig. 3. Motion planning  

It yields: 
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where iγ  is the angle between iBC  and the x axis. Consider the following angular relation 

(see Fig .3): 
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The length of the line BA is equal to the distance ixΔ . Therefore, if we consider the triangle 

ABCi , then: 

 .sin
~

  ;cos
~

iiiiii dydx δδ =Δ=Δ   (16) 

The angular shifting iα  between iC  and B results as it follows: 

 .sin iiix αλ=Δ   (17) 

From observation of the triangle DAB, it results: 

 .)( 222

iiii xy Δ+Δ−= λλ   (18) 

The solution of the equation (13) with respect to iλ  is: 

 .2/)( 22

iiii yyx ΔΔ+Δ=λ   (19) 

Now the values of the reference angular ( riω ) and linear ( riu ) velocities of each 

cooperative vehicle may be calculated as follows: 
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ri

u
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iiri

i

ri

=

=
Δ

= λω
α

ω
  (20) 

where TΔ   is a fixed look-ahead time interval chosen by the designer. Let us consider 

multiple automated cybercars  in an initial open chain configuration (cf. Fig. 1), i.e. collinear 

and with the same orientations given by ixΔ (i=1,2). The algorithm above allows circular 

trajectories without intersections to be planned, so that the vehicles will avoid collisions 

while moving. Each trajectory is planned independently of the others. This means we have a 

decentralized cooperation of the vehicles.  Fig. 4 shows an example, where two vehicles are 

considered in open chain configuration 21 CC − . One observes that the first vehicle of the 

open chain follows a circular trajectory from 1C  to the target B along 1xΔ , while the second 

vehicle follows a circular trajectory from 2C  to the target one along 2xΔ . The distance 

between 1C   and B  is smaller than  the distance between 2C  and B, so that, based on the 

equation (9), it is 21

~~
dd <  . Consequently, based on the equations (16) and (19), the radius 

of the circumference tracked by the first vehicle (i.e. 1λ ) is smaller than the radius of the 

circumference tracked by the second vehicle (i.e. 2λ ). Since the cybercars are initially 

collinear and have the same orientations, and the circumferences must be include both the 

initial positions of the vehicles and the target position, the trajectories are without 

intersections and the vehicles can reach the target without collisions. The method can be 

used for r cooperative vehicles in initial open chain rCCC −−− ...21  , so that each 

vehicle can reach the target without coming into collision with other vehicles. 
Note that the vehicles have to be in open chain configuration initially, i.e. collinear. If there 
is a vehicle which is not mutually collinear, it must reach a collinear position. On this 
subject, some studies have focused on modelling formations of non-holonomic vehicles 
(Bicho & Monteiro, 2003). 
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Fig. 4. Trajectory planning  without collisions for multiple vehicles in initial open chain 
configuration  

4. Fuzzy dynamic closed loop motion control for cooperative cybercars with 
passengers comfort 

Consider the i-cybercar  of the cooperative system (cf. Fig. 2).The kinematical model is given 
by (6), while the dynamical model is given by (12) and (13). Employing the values of linear 
and angular velocities given by (20) and using the kinematical model (6) lead to the 
following equations for the circular reference motion of each cybercar: 
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Let the following vectors: 
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be the position and orientation of each cybercar. One defines the following motion errors 
between the planned circular reference trajectories the state variables given by (22) as it 
follows: 
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The errors )(texi and )(teyi are said to be the longitudinal and lateral motion errors 

respectively, while )(te iθ  is the orientation error. The following velocity control laws are 

employed for each cybercar: 
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Replacing (24)  into (6) leads to the following closed loop mathematical model: 
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It is possible to formulate the following theorem.    

Theorem 1. Consider the cooperative system (6), in closed loop with the velocity control laws 

(24). If the linear and angular reference velocities given by (21) are limited functions, then 

the equilibrium state of the closed loop model (25) is the origin of the state space and it is 

asymptotically stable. 

Proof. From model (25), it is evident that, if  0)( =tie$  (i=1…r), then  0)( =tie  (i=1…r), so 

that the equilibrium point is the origin of the state space. Consider the following extended 

vector 
1)()( ××∈ nrRte which contains the motion errors of all the cooperative vehicles: 

 [ ]. )(   .    .    .    )(  )()( 21 tttt reeee
T =   (26) 

 The following Lyapunov’s function is chosen: 
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The function (27) is definite positive. By calculating the time derivative of the function (27) 

and substituting the equations (25) into result, it yields: 
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The function (28) does not depend on lateral motion errors )(teyi   (i=1…r), so that it is 

equal to zero in correspondence of the inputs  [ ]0  )(   0 teyi . Therefore the function (28) is 

semi-definite negative. The conclusion is that the components of the vector (26) are  stable 
and bounded. Since all the motion errors and the reference velocities are bounded, the 
second time derivative of the function (28) is bounded, therefore Barbalat’s lemma implies 
that the function (28) converges to zero when t diverges, so that the longitudinal motion 
errors and the orientation errors of all the cooperative vehicles converge to zero. From the 
second and third equations of system (20) it follows that: 
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Therefore: 
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where yie  is a constant value. Since the orientation errors converge to zero,  from the third 

equation of the system (25) it results: 

 

....1

,02

ri

eKu yiii

=

=−
  (31) 

It can be concluded that the lateral motion errors converge asymptotically to zero. Q.E.D.  
By employing the kinematical control strategy (24), it is difficult to control directly the 
lateral and longitudinal accelerations which are responsible of harmful effects on the 
passengers. For this reason a fuzzy dynamical control strategy is developed below, where 
the properties of the fuzzy maps assures the Lyapunov’s stability of the motion errors given 
by (25), while the saturation properties of the maps ones permit to control directly the 
maximum acceleration of each vehicle of the cooperative system during the motion.   Let 

)(~ tiη  the time varying error between the velocity control laws given by (24) and the 

physical velocity )(tiv  of each cybercar (i.e. the solution of  the differential equations (12)): 
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The fuzzy inference mechanism is explained below. The inputs of the fuzzy system are the 

errors (32). The fuzzy rules for jiη~  (j=1,2 and  i=1,2…r) are the following: 

1) if jiη~  is negative and jiη$~ is negative then the output 
jiΣ  has a negative big value;  

2) if 
jiη~ is negative and jiη$~  is positive, then the output jiΣ  has a negative small value;  

3) if jiη~  is positive and jiη$~  is negative, then the output jiΣ  has a positive small value;  

4) if jiη~  is positive and jiη$~  is positive, then the output jiΣ  has a positive big value. 

 Now we assume the following dynamical control laws (Raimondi & Melluso, 2007-b): 
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where ))(( tii qS , 
iM  and ))(( tii ωmV  are given by (6) and (13) respectively, )(tFi  and 

)(tTi  are the linear force and the angular momentum applied to the i-cybercar, while )(tis$  

is the output of the fuzzy inference system, so that it is:    
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tt
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ttt

iii

iii

iiii
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, 
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 ))(~ ),(~(
))( ~),( ~()( 

222

111

=
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⎢
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⎡

Σ

Σ
==

ηη

ηη
$

$
$$ ηηΣs

  (34) 

where jiΣ  (j=1,2 i=1…r) are the nonlinear input-output maps of the fuzzy inference system. 

The maps above depends on  the choice of the input and output memberships.  Figs 5 and 6 

show  the  membership  functions  for  obtaining  i1Σ  (i=1…r).  
 

 

Fig. 5. Input membership functions  

 

Fig. 6. Output membership function 

The memberships employed for obtaining the control surfaces i2Σ  (i=1…r) have the same 

symmetry.  The input values of the memberships of Fig. 5 are chosen in such a way to be in 

the range of the physical velocity errors obtained in our application. The outputs jiΣ  (j=1,2 
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i=1,2,…r) given by (34) represent the variations of the torques applied to the right and left 

wheels of each cooperative cybercar for positive or negative changes of  the speed  errors 

given by (32). Due to the choice of the form of the memberships functions, the outputs above 

are nonlinear uniformly continuous and bounded functions. They contribute to evaluating 

the acceleration or deceleration of the cybercars, to track the planned reference motion with 

good dynamic perfomances.   
Assumption 1. The following properties for the nonlinear fuzzy maps given by (33) are 

assumed:  

                        1) ;0)0,0( =Σ ji  

                        2) ))(~),(~())(~),(( tttt jijijijijiji ηηηη $$ −−Σ−=Σ ; 

                        3)
jijijijiji tt δηηδ ≤Σ>∃ ))(~),((:0 $ ; 

                        4) 0)(~0)0),(( =⇒=Σ tt jijiji ηη ;                                                                   (35) 

                        5) ;0))(~),(~()(~ >Σ ttt jijijiji ηηη $                                

                        6) 

)).0),(~())(~),(()((~0

)));(~,0())(~),(()((~0

tttt

tttt

jijijijijiji

jijijijijiji

ηηηη

ηηηη

Σ−Σ≤

Σ−Σ≤
$$

$$
 

 

The assumption above  is a necessary condition to ensure that each cooperative cybercar can 

follow the planned trajectory; also by varying the values ijδ , the acceleration saturation 

values can be changed, so that the motion of each cybercar can be controlled with low 

accelerations. Note that, if we choice different number or form of the membership functions, 

then the properties given by (35) cannot be guaranteed. 

Substituting (33) into dynamical model (12) leads to: 

 

....1

,))(~),(~()(~

ri

ttt iiii

=
=+ 0ηηΣη $$

  (36) 

It can be written: 

 

, ...1

,))(~),(~(

ri

tt iii

=
= 0ηηΣ $

  (37) 

so that: 

 

....1

)),(~()(~

ri

tt iii

=
= ηfη$

 (38) 

Considering equations (25) and (38) leads to the following closed loop model of the fuzzy 
dynamic control system: 
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 (39)   

Now the following theorem may be formulated. 
Theorem 2. Consider the closed loop system given by (39). Under the assumption 1,  the 
equilibrium state of the modeled system  is the origin of the state space and it is 
asymptotically stable. 
Proof.  Consider the following extended state vector: 
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where: 
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From equations (39) it results: 

 [ ] ,...1   ;   , )( )( )( rittetete iyixi =∀= 0T

θ$$$   (42) 

so that:        
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Also, if 0η =)(~ ti
$ , then: 

 
,...1

,)),( ~(

ri

tii

=
= 00ηΣ

  (44) 
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so that, based on the property 4 given in the Assumption 1, it can be said that: 
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,)( ~

rit
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= 0η

  (45) 

This implies that: 
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ri

i

=
= 0f0

  (46) 

Therefore the equilibrium point of model (39) is the origin of the state space. The following 

Lyapunov’s function is chosen: 
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The first, second and third terms of function (47) are always positive. Now, from the 

property 6 of the fuzzy maps it results: 
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Consequently, if 0)( =tjiη$ , then it yields: 

 )),0,0()0),(()((~0 jijijiji tt Σ−Σ≤ ηη   (49)  

so that, based on the property 1,  one obtains: 
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It can be concluded that: 
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Therefore the function (47) is positive definite. Calculating the time derivative of the 

function (47) and replacing (39) into it lead to: 
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The first and second terms of (52) are negative. Based on the property 5 (see Assumption 1), 
the elements of the summation of the third term of (52) are positive numbers, so that the 
term above is negative. From property 5 and inequality (50) it yields: 

 

,,...,2,1   ;2,1
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rij
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>ΣΣ ηηηη $
  (53) 

so that, if  )0),(~( tjiji ηΣ  is positive, then ))(~),(~( tt jijiji ηη $Σ  is positive. Therefore the 

elements of the summation of the fourth term of function (52) are positive. Note that 

function (52) does not depend on the lateral error, therefore it can be concluded that the 

function above is negative semi-definite. Therefore the components of the vector (40) are 

bounded. Now it is possible to calculate the second time derivative of function (47). Based 

on the previous considerations, it is a bounded function, so that, by applying the Barbalat’s 

lemma, it follows that: 

 .0)(lim =
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eV
t

$   (54) 

From (52) it can be concluded that the errors  iiixi ee 21
~,~,, ηηθ  (i=1,…,r) converge to zero. 

Replacing (24) into (32) leads to: 
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  (55)    

Since the errors iiixi ee 21 
~,~,, ηηθ  converge asymptotically to zero, the lateral errors yie  of 

each cooperative cybercar  converges asymptotically to zero. Q.E.D. 
Fig. 7 illustrates  the block scheme of the Fuzzy dynamical motion closed loop control 
system for a single cybercar. 
With regards to the passengers comfort, several factor influence vibration discomfort in 
relation to passenger activities, e.g. seated posture, use of backrest. Passengers usually adopt 
their posture to attenuate the intensity of vibrations and jerks in  order to perform their 
activities satisfactorily. However the transmission of vibrations on the human body is higher 
if a passenger uses armrest, backrest or places boot feet on the floor. Therefore attenuation 
of vibration exposure  is a very important requirement of a motion control system for 
cybercars. There are various means by which the vibration may be expressed, such as  
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Fig. 7. Block scheme of the dynamical fuzzy control system for  cybercar motion  

displacement, velocity and acceleration. Of these physical quantities acceleration is  

generally adopted as preferred measured of quantifying the severity of human vibration 

exposure (Suzuki, 1998).  From (10) it appears that the accelerations which cause vibrations 

on the human body depend on the curvature of the trajectory.  Indicate with 2R∈wia  the 

following vector: 

 
[ ]

, ...1    

, )(ˆ  )(ˆ

ri

tata yixi

=

=T

wia
  (56) 

where )(ˆ taxi  and  )(ˆ ta yi  are the accelerations given by (11). Indicate with xia  and yia  

the r.m.s. values of the accelerations given by (56). Indicate the jerks with the following 

vector: 

 

. ...1
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ri

tjtjt yixii

=

=T
j

  (57) 
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The components  )(tjxi  and  )(tjyi  are said to be the lateral and longitudinal jerks of each 

cybercar, i.e. the rate of change of the accelerations as it follows: 
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ri
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=

 (58) 

Indicate with xij  and yij  the R.M.S. values of the jerks given by (58). The ISO 2631-1 

Standard relates comfort of the passengers with the r.m.s. overall acceleration which causes 

vibrations acting on the human body defined as:  

 

,...1

,~ 222222

ri

aaaa ziyixiwi

=

++= γβα
  (59) 

where  xia  and yia  are given by (56), zia  is the acceleration on the z axis perpendicular to 

plane Xc,Yc (see Fig. 2), while βα ,  and γ  are multiplying factors. Since each vehicle 

moves on the plane, the acceleration zia  is equal to zero. Based on the ISO 2631-1, the  

relations between the values of the overall acceleration given by (58) and the passenger 

comfort of the i-cybercar are given by the Table 1 . 
 

R.M.S. overall acceleration 
Passenger comfort 

level 

2/315.0~ smawi <  
Not 

uncomfortable 

2/63.0~315.0 smawi <<  
A little 

uncomfortable 

2/1~5.0 smawi <<  
Fairy 

uncomfortable 
2/6.1~8.0 smawi <<  Uncomfortable 

2/5.2~25.1 smawi <<  
Very 

uncomfortable 

2/5.2~ smawi >  
Extremely 

uncomfortable 

Table 1. ISO 2631-1 Standard 

By using our fuzzy approach, it is possible to obtain low values of the lateral and 

longitudinal accelerations in easy way. In fact the saturation values of the outputs of the 

fuzzy maps, i.e. the values  
jiδ given by the third property of (35),  represent a saturation of 

the linear and angular accelerations of the cooperative cybercars, so that they are degree of 

freedom and can be chosen by  the designer. In particular, from equation (9) it can be seen 

that the accelerations along the axes of the ground reference depend on the linear 
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acceleration )(tui$   and on the angular acceleration )(tiω$ . Now, during  the motion, the 

values of  )(tui$  and  )(tiω$  depend on the outputs of the dynamical fuzzy control law 

given by (33) and (34).  Fig. 8 shows the typical fuzzy control surfaces obtained by using the 

fuzzy control law (33), where the acceleration given by (34) satisfies the properties of the 

assumption 1. 
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Fig. 8. Fuzzy mapping  

The saturation property of the fuzzy map causes the accelerations above to be bounded, and 

so, after a few attempts, the designer can choose the ranges of the crisp output values of the 

fuzzy system in order to  satisfy  the ISO 2631-1 standard and to reduce the vibrations and 

the jerks. It is evident that the the output values of Fig. 8 fall within a small range, since a 

motion with low acceleration and jerk is desired.  The simulation experiments described in 

the next section confirm the efficiency of our algorithm in terms of cooperation,  stability of 

the fuzzy motion control system and passenger comfort.   

5. Simulation experiments 

In this performed simulations the efficiency of the cooperative fuzzy motion control law 

proposed and developed in this chapter and the good level comfort of the passengers 

during the motion of the cybercar is illustrated. The parameters of the cybercars have been 

chosen based on existing cybercars (McDonald & Voge, 2003).  The weight of a cybercar is 

300kg, the width is 1.45m, the height is 1.6m, while the length is 3.7m. Referring to Fig. 2, the 

kinematical parameters are chosen as:  

 .3,2,1  ;725.0  ;40.0 === imbmr ii
  (60) 

The dynamical parameters are: 

 .3,2,1  ;5.1  ;300 === imdkgM ii
  (61) 

The parameters of the speed control law (24) are given by: 
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=
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KK ii   (62) 

The reference trajectories of each cybercar were generated using the decentralized algorithm 

developed in Section 3, so that the initial motion error values are equal to zero. In fact the 

circumferences have been generated based on the distance between the initial position of the 

cybercars and the position of the target. Initially the vehicles are in open chain configuration 

along y-direction. The initial positions of the three cooperative cybercars are the following: 
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  (63) 

 

All the generalized coordinates given by (63) refer to a ground reference whose origin is 

shown in Fig. 9. The position coordinates of the target with respect to the ground reference 

are: 
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To analyze the performances in terms of passenger comforts, we compare for cases with 

reference to the parameters  ijδ given by the third property of (35) : 

a. low values of the parameters )3,2,1 ;2,1(  == jijiδ  ; 

b. high values of the parameters  )3,2,1 ;2,1(  == jijiδ . 

Case a- The absolute saturation values of the crisp outputs of the fuzzy control surfaces  are: 
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  ;/1.0 

2
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=Σ=

=Σ=

i

srad

sm

satii
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δ

δ

  (65) 

Fig. 9 shows the planar trajectories of the cybercars as planned by using the algorithm given 

in Section 3. 

Initially the cybercars are in open chain configuration. The trajectories are intersections-free 

and therefore there are not collisions during the motion.  

The graphs of Fig. 10 and  11 show the time evolutions of the velocity errors given by (32). 

Due to the dynamics of the cybercars, there are not perfect velocity tracking, i.e. the speed 

control laws (24) do not affect instantaneously the linear and angular velocities, but the 

errors converge to zero after some times.  

The most significant graphs which illustrate the stability performances of the motion errors 

of each cybercar are drawn in Figs. 12 and 13, where the time evolutions of the  longitudinal, 

lateral and orientation errors given by (23)  are shown. 
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Fig. 9. Motion of three  cooperative cybercars 
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Fig. 10. Velocity errors of the cybercars 1 and 2 
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Fig. 11. Velocity errors of the cybercars 3 
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Fig. 12. Tracking errors of cybercars 1 and 2. 
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Fig. 13. Tracking errors of cybercar 3 

Now we investigate on the passenger comforts with the saturation values given by (65). 
Figs. 14 and 15 shows the time evolution of the accelerations given by (56) which are 
responsible of vibrations on the human body, while Table 2 illustrates the r.m.s  values of 
the same accelerations and the overall acceleration given by the mean index (59).  
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Fig. 14. Lateral and longitudinal accelerations of the cybercars 1 and 2. 
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Fig. 15. Lateral and longitudinal accelerations of  the cybercars 3. 

 

Longitudinal acceleration Lateral acceleration Overall Acceleration 

2

1 /0787.0 sma x =  
2

1 /2034.0 sma y =  2

1 /305.0~ smaw =  

2

2 /0882.0 sma x =  
2

2 /3097.0 sma y =  2

2 /45.0~ smaw =  

2

3 /0902.0 sma x =  
2

3 /3853.0 sma y =  2

3 /554.0~ smaw =  

Table 2. r.m.s. and mean accelerations of all the cybercars 

Note that the values of the r.m.s. overall accelerations are between “Not uncomfortable” and 

“A little uncomfortable” (see Table 1 and 2), so that the passengers comfort level is very 

good. 

Case b- With respect to (65), the saturation values of the fuzzy control surfaces are increased 

as follows: 
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δ

δ

 (66) 

The comfort of the passengers are also studied in this case. On this subject Figs. 16 and 17 

illustrate the lateral and longitudinal accelerations of the cybercars. The r.m.s  values of the 

accelerations above and the mean acceleration given by the index (59) are listed in Table 3, 

while the values of the jerks given by (58) in cases of low and high saturation values of the 

fuzzy control surfaces are illustrated in table 4. 

Figures 16 and 17 and the results of the table 3 show that the overall accelerations are 

between “fairy uncomfortable” and “uncomfortable”, so that the comfort of the passengers 

during the motion is bad. By the results shown in Tables 2-4 it is evident that, in case of low 
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values saturation of the fuzzy control surfaces, the accelerations and the jerks are reduced, 

which means ride passengers comfort enhancement. Therefore the designer can be choice 

the parameters of the fuzzy controller to optimize the vibrations acting on the human body 

of the passengers. 
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Fig. 16. Lateral and longitudinal accelerations of  the cybercars 1 and 2 
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Fig. 17. Lateral and longitudinal accelerations of  the cybercar 3 

 

Longitudinal acceleration Lateral acceleration Overall Acceleration 

2

1 /1714.0 sma x =  
2

1 /3113.0 sma y =  2

1 /497.0~ smaw =  

2

2 /1903.0 sma x =  
2

2 /4934.0 sma y =  2

2 /54.0~ smaw =  

2
/4559.03 sma x =  

2

3 /5673.0 sma y =  2

3 /79.0~ smaw =  

 

Table 3. r.m.s. and mean accelerations of all the cybercars 
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Jerks with low  saturation 
values of the fuzzy control 

surfaces (cfr. (65)). 

Jerks with high saturation 
values of the fuzzy control 

surfaces (cfr. (66)). 

3

1 /1177.0 smjx =  
3

1 /1589.1 smjx =  

3

1 /0226.0 smj y =  
3

1 /4712.0 smj y =  

3

2 /0458.0 smjx =  
3

2 /6166.2 smjx =  

3

2 /0225.0 smj y =  
3

2 /5837.0 smj y =  

3

3 /1118.0 smjx =  
3

3 /2999.2 smjx =  

3

3 /0226.0 smj y =  
3

3 /5702.0 smj y =  

Table 4. r.m.s. lateral and longitudinal jerks of all the cybercars 

6. Conclusion 

In this chapter a new fuzzy cooperative control algorithm for multiple fully automated 
cybercars, where the parameters of fuzzy controller may be tuned to obtain low vibrations 
on the body of the passengers, has been developed. A generalized mathematical model for 
multiple cybercars to project the fuzzy control system and an acceleration model to ensure 
the comfort of the passengers have been formulated. A new decentralized trajectory planner 
which guarantee the absence of collisions between the closest vehicles has been presented.  
A new fuzzy control strategy which  stabilizes all the cooperative vehicles in the planned 
trajectories has been developed, where the asymptotical stability of the motion errors has 
been proved by using Lyapunov’s theorem and Barbalat’s lemma. Good passengers comfort 
levels during the motion has been ensured by tuning of the saturation of the fuzzy maps.  In 
the simulation tests an example in case of motion control of three automated vehicles has 
been developed. Trajectories without intersections have been generated and, by choosing  
suitable input-output values of the fuzzy maps, the stability of the motion errors and very 
good passengers comfort levels based on ISO 2631-1 Standard have been  obtained. 
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