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Chapter

Vaccines Targeted to Zoonotic 
Viral Infections in the Wildlife: 
Potentials, Limitations, and 
Future Directions
Salas-Rojas Mónica, Gálvez-Romero Guillermo  

and Pompa-Mera Ericka Nelly

Abstract

Currently, emerging viruses such as arboviruses, flaviviruses, filovirus, and 
orthohepeviruses are important agents of emerging zoonoses in public health, because 
their cycles are maintained in the nature or wildlife, involving hematophagous 
arthropod vectors and a wide range of vertebrate hosts as the bats. Development of 
blocking-transmission vaccines against these emerging viruses in wildlife will allow 
disease control at the veterinary field, preventing emerging human viral infections.
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1. Introduction

Emerging and/or re-emerging zoonotic viral infections affect significantly the 
human health in many geographic areas of the world, highlighting their potential to 
spread from animal reservoirs and their ability to evolve their virulence properties. 
While the transmission of viruses from wild animal species to human is intermit-
tent or rare, vaccines against zoonotic viral infections should be focused in wildlife 
reservoirs in order to prevent human disease.

In this chapter, we will focus on the vaccination in wildlife reservoirs, such as 
bats, rodents, boars, and carnivores, which play an important role in transmission 
of three emerging zoonotic viruses, rabies virus (RABV), hantavirus, and hepatitis 
E virus (HEV), to domestic species and humans.

We discuss the main challenges for efficacy improvement of vaccines, consider-
ing the diversity of viral quasispecies and antigenic and immunogenicity variations, 
as well as the biosafety and logistic problems associated to the delivery systems in 
the wildlife scenery. Finally, other emerging lethal viruses and the current approach 
to the development of vaccines will be discussed.

2. Hantavirus

Hantaviruses belong to family Bunyaviridae; they are enveloped viruses and have a 
negative-sense RNA organized in three segments denoted as small (S), medium (M), 
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and large (L) [1, 2]. Unlike the other genera in the family, the hantaviruses are not 
transmitted by arthropods; their hosts are rodents and insectivores, and there is often 
an association of a type of virus with a host species [2]. In addition, new hantaviruses 
have been described in moles and shrews, as well as in bats, which increases the host 
range [3, 4]. Hantaviruses are maintained in rodent populations asymptomatic. Human 
infections are accidental (spillover), since for epidemiology and/or virus transmission 
cycle, the latter are a dead end (except for the case of Andes virus, where human-
human transmission has been reported) [1, 5]. Transmissions among organisms occur 
by aerosol exposure, either by urine, feces, or saliva of infected animals, mainly [1].

In rodents, hantavirus infection has an acute phase (peak viremia) during first 
2–3 weeks, with virus replication in target tissues and finally a persistent infection 
[1]. In humans, hantavirus infection can produce two presentations of the disease, 
depending on the type of virus with which it is infected: hemorrhagic fever with 
renal syndrome (HFRS) that occurs in Europe and Asia (Old World) mainly and the 
syndrome cardiopulmonary by hantavirus (HCPS) reported in the Americas (New 
World) [6]. It is important to note that HFRS can be caused by different viruses, 
the most common being Puumala and Dobrava in Europe and Hantaan and Seoul 
in Asia, while for the HCPS, the most common and lethal are Sin Nombre in North 
America and Andes in South America [7].

3. Vaccines against hantavirus

Currently, vaccine for humans approved by the FDA or any other institution for 
use in the USA or Europe is not available. An inactivated virus vaccine produced 
in mouse brain or in cell culture infected with Hantaan virus (HFRS vaccine) is 
applied in China and Korea. However, this vaccine may not be as effective against 
the other viruses that produce HFRS in Europe (Puumala and Dobrava) and not for 
those who produce HCPS (Sin Nombre and Andes) [7].

Considering the variety of hantaviruses and hosts, as well as the fact that there 
is no authorized or commercialized vaccine for human use that protects against all 
types of hantavirus, the development of a vaccine that can be applied to the natural 
reservoir (in this case rodents) is an option that should be considered.

When talking about vaccinating wildlife, the best option is the use of baits, 
which contain antigenic vaccine material, with stability under different environ-
mental conditions. Since the capture and direct application of a vaccine would be 
unfeasible and the dispersion by a liquid or air (aerosol) constitutes a not selective 
administration, which might reach undesirable species and risk the risk of adverse 
effect, dispersion of the vaccine in species that had not been in contact naturally (in 
the case of attenuated vaccines) may not reach the desired species.

The viral target to which the vaccines are directed could be the Gn and Gc 
glycoproteins, which interact with the cellular receptor (integrins) for the entry of 
the virus into the cell [8]. We must consider the variability among the hantaviruses 
that can infect humans, since, as mentioned above, the vaccine applied in China 
and Korea runs the risk that, if it is not well designed, different vaccines against the 
hantavirus should be applied according to the region. Another point to consider in 
the design of this vaccine is the host variability that hantaviruses have as a group [6].

Mendoza et al. [9] described several characteristics desirable in the vaccine 
baits, such as having palatable baits for different species and stability of the vaccine 
in different environmental conditions among others. Development vaccine for 
animal use is faster in the process approval for commercial use. In this regard, the 
cost-benefit ratio is better, since the cost of production and distribution of a vaccine 
for veterinary use is lower, among other things [9].
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The idea of One Health program, recently developed and adopted (due to the 
concern for all environmental changes that generate various human activities) [10], 
is the hypothesis that vaccination of natural reservoirs of host animals could stop 
the transmission of diseases to humans. Thus, vaccines targeted to wildlife reser-
voirs would affect the environment less and improve the health of the wild species 
in order to improve our health.

4. Rabies

Rabies is a zoonotic disease characterized by acute and lethal encephalitis, and 
it is caused by rabies virus (RABV), a Lyssavirus from Rhabdoviridae family. Rabies 
occurs after bites or scratches from rabid animal [11]. As a result of the increase in 
the human population (together with their companion animals) and the invasion 
of natural habitats and other anthropogenic activities, such as the traffic of wild 
species, there is also a high risk in the exposure to infectious pathogens coming 
from the wildlife. In the last decades, the knowledge of the diseases produced in 
wild animals that could produce spillover phenomena in the human population and 
zoonoses has been of special interest [12].

The majority of cases of rabies in humans are transmitted by dogs. It has been 
estimated that infection causes 60,000 cases per year, mainly in Asian, African, and 
American countries, [13].

There have been considerable efforts in vaccination campaigns in domestic 
fauna in the Americas, in order to control rabies virus transmission [13, 14]. 
However, wild mammals such as bats and carnivores play an important role in 
transmission to humans, particularly bats constitute the principal rabies reservoir 
in the Americas [15–17].

In Europe, during the 1960s, the only method used to contain wild rabies trans-
mitted by red foxes was capturing and poisoning. However, it was an expensive and 
inefficient method in the long term [18]. One of the most cost-effective mechanisms 
to prevent the transmission of infection diseases is immunization. Since then, several 
approaches had been made for vaccination in the field with low effectiveness [18].

Nevertheless, the oral infection of mice coupled with the development of 
attenuated rabies strains gave the guideline for oral rabies vaccination (ORV) in 
wildlife [18–20].

Since the end of the 1970s, the ORV by means of baits was implemented in 
Europe using live attenuated rabies virus from 11 different strains, of which SAD 
Bern and SAD B19 were the most used [21]. This vaccination strategy resulted in 
the reduction of rabies by 80% and the eradication of the rabies disease in foxes in 
Western and Central Europe. In this regard, calendar of vaccination campaigns, the 
adequate distribution and density of baits, as well as the duration and follow-up of 
the ORV campaigns, were considered [21–23].

In the United States of America and Canada, the success story with ORV was 
replicated with the use of recombinant vaccines, employing the vaccinia virus 
(VRG) and a human adenovirus (ONRAB) that expresses the RABV glycoprotein 
[24]. In this case, the ORV programs were targeted at raccoons, gray foxes, and 
coyotes [25]. However, chiropters and carnivores are the main host of Lyssaviruses, 
and major spillover events have been detected from bats to carnivores [25].

As the European case, in Latin-American countries, the rabies control has been 
based in reservoir population reduction which means bat population reduction 
using anticoagulants [26]. Some approximations have been made for the develop-
ment of ORV for bats taking advantage of the habit of constant grooming and close 
contact with other members of the population [27]; the recombinant vaccine is 
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Figure 1. 
Worldwide distribution of HEV and their reservoirs in the wildlife.

mixed with petrolatum paste or glycerin jelly and applied topically on the back of 
a bat vector [28–30]. These works are carried out in controlled environments with 
promising results, obtaining survival rates between 80 to 70% in Eptesicus fuscus 
bats and 70 to 100% in Desmodus rotundus [28–30].

5. Hepatitis E

Hepatitis E is a liver disease caused by infection with a virus known as hepatitis E 
virus (HEV), globally considered as an emerging public health problem [31]. While 
hepatitis E is considered as self-limited liver disease in humans, it can evolve as a 
chronic liver disease, whose complications are responsible for 44,000 deaths in 2015 
[31, 32]. HEV infection can be acquired by fecal-oral route or contaminated water and 
other routes less frequent, such as zoonotic via ingestion of undercooked meat or meat 
products derived from infected animals, transfusion of infected blood products, and 
vertical transmission to fetus during pregnancy or occupational exposition [33, 34].

Since the first identification of HEV in 1983 [35], it was thought that the virus was 
only limited to animal species. However, in the recent years, an increasing number of 
HEV infections in humans have been reported [36–39]. Thus, and based on several 
anti-HEV antibody serosurveillance studies [37–46], it is important to highlight that 
the worldwide HEV prevalence seems to be higher than reported, as outbreaks or 
sporadic in pregnant women and immunocompromised patients [46–49].

This virus has a single, positive-stranded RNA genome of 7.2 kb in length. The 
genome contains three open reading frames (ORF1, ORF2, and ORF3). ORF2 encodes 
for viral capsid, which have immunogenic properties [50]. Hepatitis E virus is an RNA 
virus classified within the Hepeviridae family, belonging to the genus Orthohepevirus 
[51]. Four species are recognized. Orthohepevirus A viruses has been identified in sev-
eral mammals, such as swine, wild boars, mongoose, camels, rabbits, and humans. In 
this regard, swine is considered the main reservoir, and the consumption of uncooked 
pork products has been associated with the disease [52]. Orthohepevirus A is divided 
into eight genotypes of HEV (HEV-1 to HEV-8). HEV-1 and HEV-2 genotypes can 
infect humans, while HEV-3 and HEV-4 have been isolated from humans, swine, and 
wild boars, being HEV-3 the genotype with the highest worldwide distribution [53]. 
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Genotypes HEV-5 and HEV-6 have been identified in wild boars, while HEV-7 and 
HEV-8 genotypes are isolated from camelids (Figure 1) [54]. Orthohepevirus B viruses 
infect mainly birds, Orthohepevirus C viruses infect rodents, and Orthohepevirus D 
virus has been restricted to bats [55]. Although a majority of species mentioned above 
are not in close contact with humans, some of them participate as intermediate hosts, 
thus causing infection in humans [56].

6. Vaccines anti-HEV

Vaccines represent the most effective prophylactic approach against several viral 
infections. Current WHO position considers vaccination against HEV [13], in order 
to prevent disease in high-risk groups such as pregnant women and immunocom-
promised individual. In this regard, anti-HEV recombinant vaccine, based on the 
capsid protein, was developed, showing efficacy of 88.5% [57]. In addition, a vac-
cine, anti-HEV 239 Hecolin (Xiamen Innovax Biotech), based in two epitopes from 
capsid (368–606 aa of ORF2), of genotype HEV-1, was only approved in China, 
with an efficacy of 86.8% [58, 59]. DNA anti-HEV vaccines have been developed 
(Table 1). In this regard, DNA vaccines have some advantages over use of attenu-
ated viruses, besides to their stability at room temperature, making more affordable 
at veterinary field and the wildlife [60]. Thus, the delivery system for vaccination 
and genetic diversity of HEV must be considered in order to develop effective vac-
cines, especially in intermediate hosts such swine or wildlife reservoirs.

Finally, like the control strategies of wildlife rabies [65], the use of vaccine-laden 
bait delivery to intermediate hosts represents attractive alternatives useful to reduce 
the spread of HEV RABV circulation. While this approach is promising, it remains 
to be investigated.

7. Zika vaccines

Zika virus (ZIKV) is an arthropod-borne virus (arbovirus), belonging to the 
family Flaviviridae, which was first isolated from a rhesus monkey in the Zika forest 
of Uganda in 1952 [66]. Since Brazil reported in 2015, the association ZIKV infection 
and microcephaly [67]; outbreaks and evidence of their transmission in many areas of 
Americas Africa and other regions have been reported [68]. Although ZIKV infection 
is considered as self-limited illness and minimally symptomatic for most individuals, it 
can be threatening for human health worldwide, in particular to unborn fetus [69].

Example Immune response Host Reference

DNA vaccine ORF2 gene (1–660 amino acids, aa) Anti-HEV IgG Mouse [61]

DNA vaccine based on HEV genes ORF2 
(112–660) and ORF2(112–608), using papillomavirus 
pseudoviruses

IgG antibodies Mouse [62]

DNA vaccine based on complete ORF2 gene 
(1983 bp) in pVax plasmid

IgG-neutralizing 
antibodies

Rhesus 
monkey

[63]

Capsid protein/ORF2 HEV genotype 4 Anti-HEV IgG Rhesus 
monkey

[64]

Table 1. 
Experimental anti-HEV vaccines.
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Because arboviruses are often maintained in complex cycles involving vertebrates 
and blood-feeding vectors, not only humans are at high risk of ZIKV infection but 
also another species such as monkeys, domestic sheep, goats, horses, cows, ducks, 
rodents, bats, orangutans, and carabaos [69]. ZIKV infection has likely been pres-
ent in bats since time. In this regard, anti-ZIKV antibodies with cross-reactivity to 
flaviviruses (yellow fever virus, West Nile virus, among others) were detected in bats 
from Uganda and Angola [70, 71]. Although it is unclear how ZIKV could circulate in 
bat populations, it is noteworthy that bats represent a competent reservoirs in wild-
life, with potential for amplifying flaviviruses and, contributing thus in the sylvatic 
transmission of ZIKV [72]. In contrast, Bittar et al. [73] did not find serological and 
molecular evidence of past or latent arbovirus infections in captured bats from many 
areas of Brazil. Nevertheless, future studies are required to evaluate the role of bats 
as arbovirus reservoirs and to determine if these animal species are an important 
part of enzootic cycle of arboviruses [72].

Currently, there are no approved vaccines available to protect against infection. 
Unlikely to other antiviral vaccines, Zika vaccination must be approached mainly 
for the prevention of vertical transmission of the virus to the unborn fetus [74].

Finally, as long as a prophylactic vaccine is developed, it is important to consider 
that ZIKV is spreading rapidly into regions around the world where other flaviviruses, 
such as dengue virus (DENV) and West Nile virus (WNV), are endemic. In this regard, 
Zika virus is closely related to other flaviviruses, and cross-reactive antibody has the 
potential to exacerbate secondary flavivirus infections through antibody-dependent 
enhancement (ADE), leading to more severe forms of flavivirus disease [75].

8. Ebola and SARS-CoV vaccines

Ebola is a viral illness caused by Ebola virus. Five species of the genus Ebolavirus 
from Africa have been recognized, Zaire ebolavirus (ZEBOV), Sudan ebolavirus 
(SEBOV), Cote d’Ivoire ebolavirus (CEBOV), Bundibugyo ebolavirus (BEBOV), and 
Reston ebolavirus (REBOV), all belonging to Filoviridae family. Viral replication have 
a lethal nature, which involve necrosis of several lymph organs, kidneys, liver, testes, 
and ovaries; changes in vascular permeability; activation of the clotting cascade; and 
damage in platelets, among others [76]. Although the natural reservoir of the virus is 
unknown, it is assumed that bats represent a natural reservoir in the wildlife species, 
without causing disease [77], highlighting extensive coevolution of Ebola virus and 
bats, over time [76]. Therefore, feasibility of Ebola vaccine must focus on the preven-
tion of Ebola in endemic areas as well as usage during sporadic outbreaks in humans 
[78]. Ideally, candidate vaccine must be able to confer interspecies cross-protection 
against SEBOV, BEBOV, and ZEBOV [76].

With respect to SARS-CoV, the development of a vaccine that is applied to wild 
vectors is a little more complex. Bats have been proposed as potential reservoirs, 
and there may be an intermediate host, such as civets [79]. However, there are still 
epidemiological studies that help us understand the dynamics of animals, corona-
virus, and humans, in order to establish the best vaccination strategy, since not all 
zoonotic disease vector vaccination can be the solution.

9. Conclusions

Hantavirus, RABV, HEV, ZIKV, Ebola virus, and SARS-CoV are currently consid-
ered as emerging infectious pathogens to humans, whose reservoirs are in wildlife 
animals. While the transmission of these viruses from wildlife reservoirs to human 
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is rare, it is important to develop control strategies in order to reduce the substantial 
impacts on human health and agricultural production. In several cases, such as rabies 
disease the vaccines targeted to wildlife reservoirs, represent a control measure 
friendly with the environment, in virtue of they help to the conservation of healthy 
habitats with available niches and wild prey for bats, avoiding the migration of these 
species to another areas.
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