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State University of New York at Stony Brook 
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1. Introduction 

A multi-robot system is a collection of mobile robots, each of which is equipped with 
onboard processors, sensors and actuators and is capable of independent operation and 
individual autonomous behaviours, collaborating with one another through wireless 
communications or other forms of interactions to fulfil global goals of the system. The 
mobile robots bring mobility, sensing capability and processing capability to the system; 
while a communication network is established among the robots to support data delivery 
and facilitate collaboration. 
Multi-robot systems have higher flexibility, efficiency and reliability than single robots: a 
team of collaborative robots can accomplish a single task much faster, execute tasks beyond 
the limits of single robots, perform a complex task with multiple specialized simple robots 
rather than a super robot, and provide distributed, parallel mobile sensing and processing; a 
group of robots with heterogeneous capabilities can be organized to handle different tasks; 
the fusion of information from multiple mobile sensors helps to reduce sensing uncertainty 
and improve estimation accuracy; and the system function is less influenced by the failure of 
any individual robot. 
Multi-robot systems have numerous applications, from regular civilian tasks, such as 
surveillance and environment monitoring, to emergency handling, such as disaster rescue 
and risky material removal, from scientific activities, such as space and deep sea 
exploration, to military operations, such as de-mining and battle field support, and to 
largescale agricultural and construction activities. Many applications require a multi-robot 
system to rapidly deploy into a target environment to provide sensor coverage and execute 
tasks while maintaining communication connections, and promptly adapt to the changes in 
the system, environment and task. This imposes significant requirements and challenges on 
the deployment control of the involved multi-robot systems. 
Multi-robot deployment has become a fundamental research topic in the field of multi-robot 
systems. Both centralized and distributed schemes have been proposed in the literature. In 
general, centralized control depends on a leading robot to collect the state information of all 
the member robots, tasks and environment and to determine the appropriate motion of each 
individual robot. It helps to achieve globally optimal deployment and can be very effective 
in stable environments. However, centralized processing imposes high computational 
complexity on the leading robot and makes the multi-robot system vulnerable to the failure 
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of the leader. Moreover, real-time centralized control of multiple robots requires very high 
communication throughput which is difficult to achieve with the current wireless 
communication technology. As a result, centralized control has difficulties in adapting to 
dynamic environments and scaling to large multi-robot systems. Alternatively, distributed 
control allows each member robot to determine its motion according to the states of itself, its 
local environment and its interactions with nearby robots and other objects. Distributed 
processing largely reduces the computational and communication complexities. As a result, 
distributed control is highly scalable to large multi-robot systems and adaptive to unknown 
and dynamic environments and changes in multi-robot systems. With properly designed 
distributed control laws, the desired global goal of a multi-robot system can be achieved as 
the combined outcome of the self-deployment motion of individual robots. 
Recognizing its advantages, we focus our discussions in this chapter on distributed control 
of multi-robot deployment motion, with the objective to form and maintain sensor coverage 
and communication connections in a target environment. Section 2 will provide a review of 
some representative existing distributed multi-robot deployment control schemes. Although 
distributed multi-robot deployment has received a substantial amount of attention, there 
has not been enough effort made to address their implementation on realistic robot systems, 
in particular to explicitly take the kinematic and dynamic constraints into account when 
determining the deployment motion of individual robots. This disconnection between the 
control algorithm and physical implementation may degrade the operational effectiveness 
and robustness of these multi-robot deployment schemes. We will introduce a novel 
distributed multi-robot deployment control algorithm in Section 3, which takes into account 
the limited ranges of robot sensing and communication, and naturally incorporates the 
nonholonomic constraint arising among wheeled robots into individual robots’ equation of 
deployment motion. Simulation results will be reported in Section 4, which proves the 
effectiveness of the proposed scheme. Section 5 will summarize the proposed scheme and 
discuss future work. 

2. Review of distributed multi-robot deployment schemes 

Due to its distributiveness, adaptability and scalability, distributed multi-robot deployment 
control has attracted a substantial amount of research effort. Here we review some related 
works on this topic. 
One major category of distributed multi-robot deployment control schemes are based on 
artificial potential or force fields. Parker developed a two-level approach to deploy a 
homogeneous multi-robot system into an uncluttered environment to observe multiple 
moving targets (Parker, 1999; Parker, 2002). The low-level control is described in terms of 
force fields attractive for nearby targets and repulsive for nearby robots. The high-level 
control is described in terms of the probability of target existence and the probability of a 
target not being observed by other robots. The summation of the force vectors weighted by 
the high-level information yields the desired instantaneous location of the robot. The robot’s 
speed and steering commands, which are the functions of the angle between the robot’s 
current orientation and the direction of the desired location, are computed to move the robot 
in the direction of the desired location. Reif and Wang proposed a “social potential field” 
method for deploying very large scale multi-robot systems containing hundreds even 
thousands of mobile robots (Reif & Wang, 1999). Inverse-power force laws between pairs of 
robots or robot groups were defined, incorporating both attraction and repulsion, to reflect 
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the social relations among robots, e.g. staying close or apart. An individual robot's motion is 
controlled by the resultant artificial force imposed by other robots and other components of 
the system. The resulting system displays social behaviors such as clustering, guarding, 
escorting, patrolling and so on. Howard et al. presented an algorithm for deploying a mobile 
sensor network in an unknown environment from a compact initial configuration, based on 
an artificial potential field in which each node is repelled by both obstacles and other nodes 
(Howard et al., 2002). Poduri and Suktame presented a deployment algorithm for mobile 
sensor networks to maximize the collective sensor coverage while constraining the degree of 
the network nodes so that each node maintains a number of connected neighbors, where the 
interaction between nodes is governed by the repulsive forces among nodes to improve 
their coverage and the attractive forces to prevent the nodes from losing connectivity 
(Poduri & Suktame, 2004). Popa et al. proposed a potential field framework to control the 
behavior of the mobile sensor nodes by combining navigation, attracted by goals and 
repulsed by obstacles and other nodes, and communication, attracted by maximum 
communication capacity and avoiding exceeding communication range (Popa et al., 2004). 
Fan et al. presented a potential field method to ensure the communication among the robots 
belonging to a formation by adding to each robot one attractive communication force 
generated by topologically nearby robots (Fan et al., 2005). Ji and Egerstedt presented a 
collection of graph-based control laws for controlling multi-agent rendezvous and formation 
while maintaining communication connections, based on weighted graph Laplacians and 
the edge-tension function (Ji & Egerstedt, 2007). 
Closely related, Lam and Liu presented an algorithm for deploying mobile sensor networks 
such that the network graph approximates the layout of an isometric grid, under the force 
field defined by the difference between current and ideal local configurations (Lam & Liu, 
2006). Jenkin and Dudek presented a distributed method to deploy multiple mobile robots 
to provide sensor coverage of a target robot (Jenkin & Dudek, 2000). It is formulated as a 
global energy minimization task over the entire collective in which each robot broadcasts its 
current position in the target-based coordinate system and moves in the gradient descent 
direction of its local estimate of the global energy. Butler and Rus presented two event-
driven schemes to deploy mobile sensors toward the distribution of the sensed events 
(Butler & Rus, 2003). In one method, the sensors do not maintain any history of the events, 
and the robot position is determined by the positions of events like a potential field. In the 
other method, event history is maintained as a cumulative distribution of events by the 
sensors for more informed decisions about where to go at each step. With the intention to 
reduce the communication complexity, Tan presented a distributed self-deployment 
algorithm for multi-robot systems by combining potential field method with the Delaunay 
triangulation, which defines the potential field for each robot based on only the one-hop 
neighbors defined by the Delaunay triangulation (Tan, 2005). 
Other than potential/force field methods, Cortes et al. defined the coverage problem as a 

locational optimization problem, and showed that the optimal coverage is provided by the 

centroidal Voronoi partitions where each sensor is located at the centroid of its Voronoi cell 

(Cortes et al., 2004). A gradient decent algorithm is presented to lead the sensor locations 

converge to the centroidal Voronoi configurations. A similar centroidal Voronoi diagram-

based deployment was presented in (Tan et al., 2004). Jiang presented a slightly different 

method based on the r-limited Voronoi partition (Jiang, 2006). Schwager et al. proposed an 

adaptive, decentralized controller to drive a network of robots to the estimated centroids of 
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their Voronoi regions while improving sensory distribution over time (Schwager et al., 

2007). For this category of methods, local minimum is a potential problem. That is, the 

robots may be stuck at some Voronoi centroids determined by local configuration and 

cannot achieve the desired configuration. 

Diffusion-based multi-robot deployment schemes were also proposed. Winfield presented a 
distributed method that deploys a group of mobile robots into a physically bounded region 
by random diffusion (Winfield, 2000). Kerr et al. presented two physics-based approaches 
for multi-robot dynamic search through a bounded region while avoiding multiple large 
obstacles, one based on artificial forces, and the other based on the kinetic theory of gases 
(Kerr et al., 2005). By mimicking gas flow, the agents will be able to distribute themselves 
throughout the volume and navigate around the obstacles. Along the same line, Pac et al. 
proposed a deployment method of mobile sensor networks in unknown environments 
based on fluid dynamics, by modeling the sensor network as a fluid body and each sensor 
node as a fluid element (Pac et al., 2006). These methods are designed for continuous 
sweeping-like coverage, but not suitable for converging multi-robot deployment. 
Besides, Bishop presented a method which distributes the functional capability of a swarm 
of robots to a number of objectives (Bishop, 2007). His method is based on the definition of 
the capability function of each robot. The primary task (functional coverage) controller is 
defined based on the definition of the swarm-level objective function. The secondary task 
(e.g. obstacle avoidance, maintaining of line of sight) is carried out in the null space of the 
primary task. The potential problems with this method include local minima of the 
secondary functions and possible incompatibility of the secondary task with the null space 
of the primary task. 
In addition, Jung and Sukhatme addressed the problem of tracking multiple targets using a 
network of communicating robots and stationary sensors (Jung & Sukhatme, 2002). Their 
region-based approach controls robot deployment at two levels. They divided a bounded 
environment into topologically simple convex regions. A coarse deployment controller 
distributes robots across regions based on the urgency estimates for each region. A target-
following controller attempts to maximize the number of tracked targets within a region. 
Existing works on distributed multi-robot deployment mostly focus on general schemes. 

There has not been sufficient attention paid to their implementation on realistic robot 

systems, e.g. most of existing methods assume reliable information broadcasting among 

robots to facilitate self-deployment control and multi-robot coordination, which is in fact 

communication intensive and has reduced robustness in large multi-robot systems. In 

particular, various kinematic and dynamic constraints must be taken into account in order 

to determine physically-realizable deployment motion of individual robots. However, there 

is a lack of a natural framework to incorporate them into deployment control. A very limited 

number of works have considered kinematic and dynamic constraints explicitly. In general, 

the dynamic constraints of maximum velocity and maximum acceleration are 

accommodated by enforcing the computed above-limit acceleration and velocity into the 

desired ranges (Howard et al., 2002; Jiang, 2006), and the nonholonomic kinematic 

constraints are ignored by assuming that the robots have holonomic drive mechanisms, i.e. 

they can move equally well in any direction (Howard et al., 2002; Bishop, 2007). This 

disconnection between the control algorithm and physical implementation may cause the 

computed deployment motion unrealizable, and therefore degrades the effectiveness and 

robustness of the deployment of realistic multi-robot systems. 
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As an important step towards solving this problem, we propose a novel distributed 

multirobot deployment control algorithm for deploying a team of mobile robots to establish 

sensor coverage while maintaining communication connections over a target environment. 

It takes into account the limited ranges of robot sensing and communication, and in 

particular naturally incorporates the nonholonomic constraint which arises among wheeled 

robots. Each member robot self-deploys based on the state of its neighborhood and 

approaches the desired neighborhood configuration. The resulting local coverage in the 

neighborhoods of all the robots altogether forms a global coverage of the multi-robot system 

over the targeted environment. 

3. Proposed distributed control algorithm for multi-robot deployment 

Targeting to develop a robust distributed multi-robot deployment control scheme which can 

be reliably implemented in realistic multi-robot systems, we have recently initiated an 

alternative scheme for distributed multi-robot deployment (Zhou & Tan, 2008; Zhou, 2008). 

In the following sections, we will provide a extended and detailed description of our 

original distributed multi-robot deployment algorithm for establishing sensor coverage 

while maintaining communication connections over targeted environments, based on a 

lumped dynamics model of involved robots, accommodating the limited robot sensing and 

communication ranges, and incorporating the nonholonomic kinematic constraint which 

arises in wheeled robots. 

3.1 Objective and assumptions 

The objective of the proposed distributed multi-robot deployment algorithm is to deploy a 

multi-robot system into a targeted environment to form and maintain reliable sensor 

coverage and communication connections. 

To achieve the goal, it is required that 
1. The team of robots, each of which has limited independent sensing capability, must 

collaborate with one another to form and maintain sufficient sensor coverage at the 
multi-robot system level. 

2. The team of robots must maintain globally networked communications at the system 
level at any time in order to guarantee the information delivery and data sharing in the 
multi-robot system. 

In order to deploy the involved multi-robot system to form and maintain reliable sensor 

coverage and communication connections in the targeted environment, we propose an overall 

control strategy as guiding the multi-robot system to approach a desired global deployment 

configuration which is defined as that each member robot maintains desired distances with 

nearby objects, including other robots, obstacles and the boundary of the environment. 

To facilitate the discussion, we assume that (Fig.1) 
1. A group of N mobile robots (nonholonomic or holonomic) are to be deployed into a 2D 

environment in order to provide sensor coverage while maintaining communication 
connections, where Ri denotes the ith mobile robot. 

2. The underlying environment is a general 2D region which contains objects other than 
mobile robots, known in general as obstacles (stationary or moving) where Oi denotes 
the ith obstacle, and can be confined with a boundary denoted by B. 
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3. Each robot Ri has limited sensing and communication capabilities, represented 
approximately by a limited circular sensing range with a radius of rsi and a limited 
circular communication range with a radius of rci respectively. Though the robot 
sensing range and can be determined by off-line sensor calibration, multiple factors can 
affect the robot communication range, e.g. the obstacles and humidity. Therefore, 
varying rci is admitted. 

4. Each robot Ri updates and maintains a record of its pose (position and orientation) with 
respect to a global reference frame defined in the environment. The robot self-
localization can be accomplished using either relative localization techniques, e.g. 
odometry and inertial navigation, which is based on the integration of incremental 
motion, or absolute localization techniques, e.g. GPS, which is based on the 
measurement of external references, or a fusion of both (Borenstein et al., 1997). 

 

 

Fig. 1. Multi-robot deployment in a general 2D environment 

3.2 Desired deployment configuration 

In our scheme, a desired global deployment configuration is defined as such that each 
member robot maintains desired distances with nearby objects, including other robots, 
obstacles and the boundary of the environment.  
Considering the limited ranges of robot sensing and communication, we define a desired 
distance aij between robots Ri and Rj as a designated distance over which a sufficiently large 
but reliable in-between sensor coverage can be established and reliable in-between wireless 
communication can be maintained. Since Ri and Rj have circular sensing ranges with radii of 
rsi and rsj respectively, in order to achieve sensor coverage, one should choose aij≤rsi+rsj. 
Meanwhile, in order to achieve communication coverage, one should choose aij≤min(rci,rcj) 
such that Ri and Rj are inside each other’s communication range. As a result, in order to 
achieve both the sensor and communication coverage, one should choose aij≤min(rsi+rsj, 
min(rci,rcj)). In practice, the robot sensing range is relatively stable, and can be determined 
through off-line sensor calibration. The determination of the robot communication range is 
more complicated, because it is easily affected by various environmental factors in real time, 
such as surrounding objects and atmospheric conditions. However, a communication 
calibration and a conservative estimation are helpful. Moreover, the communication range is 
usually much longer than the sensing range, which means that an estimate of the desired 
robot-to-robot distance based on the sensing ranges of the involved robots is often reliable. 
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Besides the desired distance between a pair of robots, one can also specify the desired 

distance between a robot and an obstacle and the desired distance between a robot and the 

boundary. In fact, when detecting an obstacle (either stationary or moving), the robot should 

keep a distance from it to avoid collision while probably maintaining an observation of it. 

Similarly, in a confined environment, e.g. surrounded by a wall, when detecting the 

boundary (either stationary or evolving), the robot should also keep a distance from it to 

avoid collision while maintaining a sufficient sensor coverage of it. Denoting the desired 

distance between a robot Ri and an obstacle Oj inside its sensing range as bij, denoting the 

desired distance between Ri and the boundary B inside its sensing range as cij, denoting the 

safety margin of Ri as si and noticing si≤ri in general, one should choose bij∈[si,ri] and 

cij∈[si,ri]. 

In order to achieve the distributed control of the multi-robot deployment, we decompose the 

desired global deployment configuration into the desired local deployment configuration 

around each robot. That is, each robot only needs to approach and maintain desired 

distances with nearby objects, including other robots, obstacles and the boundary of the 

environment, in its neighborhood. It results in largely reduced computational and 

communication complexities. The combined effect of approaching desired local deployment 

configuration in the neighborhood of each member robot will lead to the desired global 

deployment configuration at the system level. 

To unify the representations, we denote the jth object, which can be another robot, an 

obstacle or the boundary, in the neighborhood of Ri as Tij, and the desired distance between 

Ri and Tij as dij which can be aij, bij or cij, as defined above, corresponding to the actual type of 

object. In general, a more conservative choice of dij tends to result in a more reliable but 

smaller coverage. 

3.3 Concept of neighborhood 

In order to reduce the computational and communication complexities and achieve 

distributed control of multi-robot deployment, we propose that each member robot 

determines its desired motion based on only the state information of other robots and 

objects in its neighborhood with the intention to approach the desired local deployment 

configuration in its neighborhood. Therefore, defining the neighborhood for each robot is of 

high importance to our distributed multi-robot deployment control algorithm. The 

proposed scheme applies to the following two different definitions of neighborhood: 

1. Physical neighborhood: The physical neighborhood of a robot Ri is defined by the robot 
sensing and communication ranges. If another robot Rj is inside the communication 
range of Ri, Ri can obtain the state of Rj through communication and retrieve the 
geometric relationship between Ri and Rj. If Rj is inside the sensing range of Ri, Ri may 
even sense the state of Rj directly, if appropriate onboard sensors are available. In these 
cases, we consider that Rj belongs to the neighborhood of Ri. If Rj is outside the sensing 
and communication ranges of Ri, Ri cannot obtain the state of Rj or retrieve the 
geometric relationship between Ri and Rj from either direct sensing or communication 
between them. In these case, we consider that Rj does not belong to the neighborhood of 
Ri. The concept of physical neighborhood provides a complete count of those physically 
nearby robots. However, intensive communications among multiple robots may arise in 
a dense robot gathering, such as the initial stage of the multi-robot deployment process. 
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2. Topological neighborhood: The topological neighborhood of Ri is defined as the set of 

its one-hop neighbors on a topological graph representation of the multi-robot system, 

such as the Delaunay triangulation and the Gabriel graph (Tan, 2005; Sander et al., 2002; 

Preparata & Shamos, 1985). Since, at any time, there are only a very limited number of 

one-hop topological neighbors, both the computational and communication 

complexities are relatively low. However, if the topological relationship among the 

multiple robots changes, in order to redefine the global topology, multi-hop 

communications are often necessary and may become intensive. Moreover, depending 

on the specific type of underlying graph, such as the Delaunay triangulation, we notice 

that the one-hop neighbors of a boundary node may include those at physically long 

distances. 

Besides robots, an obstacle or the boundary is considered belonging to the neighborhood of 

a robot Ri only when it is inside the sensing range of Ri. 

3.4 Mathematical formulation 

The deployment motion of each member robot is governed by its equation of deployment 

motion. According to the Hamilton’s principle (Goldstein, 1980), the optimal deployment 

motion of a mobile robot Ri during the time period [t1, t2] should minimize the total action of 

Ri during this period, i.e. 

 
(1) 

where qi(t) and q’i(t) denote respectively the optimal trajectory and a candidate trajectory of 

Ri in its configuration space which is spanned by the set of variables uniquely defining the 

state of Ri, and Li denotes the Lagrangian of Ri which is defined based on the states of Ri and 

its neighborhood and will guide Ri to approach the desired neighborhood configuration. In 

principle, using the method of the variational calculus, one can obtain the following 

Lagrange’s equation for Ri 

 
(2) 

which is the equation governing the deployment motion of Ri. Following (2), Ri will self-

deploy. The combined effect of the self-deployment motion of all the member robots will 

lead to the desired global deployment. 

Strictly speaking, the dynamics, represented by (2), of a realistic mobile robot can be 

substantially complicated, with qi composed of various motion parameters for the wheels, 

links and body of the robot. In practice, commercial robot systems mostly provide a 

transparent lower-level control for the motion of the components, such as the wheels, and 

users only need to define the motion parameters at the robot level, such as the position, 

orientation and speed of the whole robot. This is equivalent to an upper-level control of the 

robot motion, which is based on a lumped model of the robot. Following this practice, we 

further our discussion and derivation of the distributed multi-robot deployment algorithm 

with a lumped robot model. 
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A lumped model for a mobile robot Ri moving in a 2D environment can be defined as 
following: 
1. The position of the robot is represented by the coordinates of its center of mass, (xi, yi), 

in the global frame; 

2. The orientation of the robot is represented by the angle θi between the longitudinal 
direction of the robot and the x axis of the global frame; 

3. The robot is considered having a point mass mi at its center of mass; 
4. The robot is considered having a moment of inertia Ii about the vertical axis passing 

through its center of mass. 
Based on this 2D lumped robot model, we have 

 (3) 

We also define the Lagrangian of Ri in the 2D environment as 

 (4) 

where Ti denotes the kinetic energy of Ri 

 
(5) 

and Ui denotes an artificial potential energy which drives Ri. 
The artificial potential energy Ui is defined to move Ri towards its desired neighborhood 
configuration, based on the definitions of the desired distances between Ri and nearby 
objects 

 

(6) 

Here, ni denotes the number of other objects in the neighborhood of Ri. With (xij, yij) 
denoting the position of the jth object Tij (in fact the position of the nearest point on Tij 
relative to Ri) in the neighborhood of Ri, which can be another robot, an obstacle or the 

boundary,  gives the actual instantaneous distance between Ri and 

Tij. With dij denoting the desired distance between Ri and Tij, the term 

 
defines a potential energy component based on the 

difference between the desired and actual distances between Ri and Tij, which generates an 
actuating force to drive Ri towards the desired distance between Ri and Tij. If the actual 
distance is shorter than dij, it tends to push Ri away from Tij; if the actual distance is longer 
than dij, it tends to pull Ri towards Tij. In addition, wij is a coefficient weighting the effect 
among the objects in the neighborhood of Ri. A larger wij means a bigger influence of Tij on Ri. 

Meanwhile, 
 
defines Ci—the center of mass of the neighborhood of 

Ri, and 
 

gives the direction angle of the vector 
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pointing from Ri to Ci (where atan2(x, y) gives the arc tangent of y/x, taking into account 
which quadrant the point (x, y) is in). Therefore, the term 

 
defines a potential energy component based 

on the difference between the current orientation of Ri and the direction of Ci relative to Ri, 
which generates an actuating force to turn Ri towards Ci. This will help to drive Ri towards 

Ci, and therefore establish a balance in the local deployment. In addition, χ is a coefficient 
making the translational and rotational terms in (6) compatible. Altogether, (6) defines an 
artificial potential energy for a member robot according to the difference between the actual 
and desired configurations in the neighborhood of the robot, which generates the actuating 
force to drive the robot towards the desired local coverage distances. 
Substituting (3)-(6), which define the lumped dynamics model of a mobile robot moving in a 

2D environment, into (2), we obtain the basic equation of deployment motion for Ri 

 
(7) 

Where 

 

 

 
Equation (7) does not include any kinematic constraint. However, in practice, a wheeled 

robot is under the nonholonomic constraint. That is, at any time it can only have a non-zero 

speed in its longitudinal direction (i.e. along its orientation) while its side speed is zero. For 

the lumped robot model, the nonholonomic constraint is defined as 

 (8) 
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Then, instead of using (2), the optimal deployment motion of a wheeled robot Ri during the 
time period [t1, t2] should minimize the total action of Ri during this period and satisfy the 
nonholonomic constraint, i.e. 

 
(9) 

Using the method of the variational calculus (Goldstein, 1980), we can obtain the following 
Lagrange’s equation for Ri 

 

(10) 

where λi denotes the Lagrange undetermined multiplier. 
Furthermore, it is important for each member robot to converge towards the desired 
neighborhood configuration. In order to stabilize the deployment motion of each robot 
around its equilibrium position, a virtual Rayleigh’s dissipation function is adopted to 
provide the necessary damping mechanism 

 
(11) 

where kxi, kyi and kθi are the viscous damping coefficients associated with the linear and 
angular velocities of Ri respectively. Fi defines the damping force for each velocity 
component as 

 
(12) 

Incorporating (12) into (7), we obtain the equation of deployment motion for a holonomic 
mobile robot with dissipation as 

 
(13) 

Incorporating (12) into (10), we obtain the equation of deployment motion for a 
nonholonomic mobile robot with dissipation as 

 

(14) 

Equations (13) and (14) are the final equations governing the self-deployment motion of a 
member robot to approach the desired local coverage. In practice, each member robot can 
online calculate its desired instantaneous acceleration for the deployment motion by 
substituting its current pose (position and orientation) and the positions of other objects in 
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its neighborhood into (13) (holonomic) or (14) (nonholonomic), and command the lower-
level controller to move the robot at the resulting acceleration. By moving each mobile robot 
in the way defined by its equation of deployment motion, eventually the resulting local 
coverage in the neighborhoods of all the robots altogether forms a global coverage of the 
multi-robot system to the targeted environment. 

4. Simulation results 

The effectiveness of the proposed distributed multi-robot deployment control algorithm has 
been verified by simulations programmed in Matlab. 

4.1 Settings 

In the following reported simulations, we assume that 120 mobile robots, each with unit 
mass and unit moment of inertia, are deployed into a 2D environment. The deployments of 
both holonomic and nonholonomic mobile robots in both open and corridor environments 
based on both physical and topological neighborhood consideration have been simulated 
respectively. We assume that the initially the group of robots are uniformly distributed in a 

small square region of xi∈[-1, 1] and yi∈[-1, 1] with uniformly distributed orientation θi∈[-π, 

π]. We set the desired distance between a pair of nearby robots as dij=5, the viscous damping 

coefficients kxi=kyi=kθi=2, and the relevant weighting coefficients χ=wij=1. We also discretize 

the time into a equally-divided sequence {t0, t1, t2, …} with the common interval Δt=0.2. At 
each time tk, we calculate the desired instantaneous acceleration of each robot Ri from its 
equation of deployment motion (13) (if Ri is holonomic) or (14) (if Ri is nonholonomic). The 
velocity and the pose of Ri at tk are updated iteratively by numerical integration. 

4.2 Deployment in an open environment 
Considering 120 holonomic mobile robots being deployed in an open 2D environment, at 
first we define the self-deployment motion of each mobile robot based on the state of its 
physical neighborhood. A representative deployment of the robots at t=30 is shown as Fig.2. 
Then we define the self-deployment motion of each mobile robot based on the state of its 
topological neighborhood which is generated using the Delaunay triangulation. A 
representative deployment of the robots at t=30 is shown as Fig.3. 
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Fig. 2. Deployment of 120 holonomic mobile robots in an open 2D environment based on the 
state of the physical neighborhood 
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Fig. 3. Deployment of 120 holonomic mobile robots in an open 2D environment based on the 
state of the topological neighborhood 

Considering 120 nonholonomic mobile robots being deployed in an open 2D environment, 
at first we define the self-deployment motion of each mobile robot based on the state of its 
physical neighborhood. A representative deployment of the robots at t=30 is shown as Fig.4. 
Then we define the self-deployment motion of each mobile robot based on the state of its 
topological neighborhood which is generated using the Delaunay triangulation. A 
representative deployment of the robots at t=30 is shown as Fig.5. 
Figures 2-5 indicates that using the proposed distributed multi-robot deployment control 
algorithm, both holonomic and nonholonomic mobile robots spread out effectively from 
their initial gathering to cover the environment, based on the local driving forces defined on 
either the physical neighborhood or the topological neighborhood. However, while a 
holonomic mobile robot is capable of moving in any direction at any time (Fig.6), a 
nonholonomic mobile robot, under the nonholonomic constraint, has to move along its 
longitudinal direction at any time (Fig.7). For the convenience of display, we show the 
representative deployment paths of both holonomic (Fig.6) and nonholonomic (Fig.7) 
mobile robots generated from 12 robots instead of 120 robots, with the arrow head 
representing the robot orientation. In particular, in the nonholonomic case, backward 
movement along the longitudinal direction, which satisfies the nonholonomic constraint, is 
allowed as long as it moves a robot towards the desired neighborhood configuration. 
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Fig. 4. Deployment of 120 nonholonomic mobile robots in an open 2D environment based on 
the state of the physical neighborhood 
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Fig. 5. Deployment of 120 nonholonomic mobile robots in an open 2D environment based on 
the state of the topological neighborhood 
 

-10 -5 0 5

-8

-6

-4

-2

0

2

4

6

8

 
 

Fig. 6. Deployment paths for 12 holonomic mobile robots 
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Fig. 7. Deployment paths for 12 nonholonomic mobile robots 
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4.3 Deployment in a corridor environment 

Considering 120 holonomic mobile robots being deployed into a corridor environment with 

straight walls at y=±15, at first we define the self-deployment motion of each mobile robot 

based on the state of its physical neighborhood. A representative deployment of the robots 

at t=30 is shown as Fig.8. Then we define the self-deployment motion of each mobile robot 

based on the state of its topological neighborhood which is generated using the Delaunay 

triangulation. A representative deployment of the robots at t=30 is shown as Fig.9. 
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Fig. 8. Deployment of 120 holonomic mobile robots in a corridor environment based on the 
state of the physical neighborhood 
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Fig. 9. Deployment of 120 holonomic mobile robots in a corridor environment based on the 
state of the topological neighborhood 

Considering 120 nonholonomic mobile robots being deployed into the same corridor 

environment, at first we define the self-deployment motion of each mobile robot based on 

the state of its physical neighborhood. A representative deployment of the robots at t=30 is 

shown as Fig.10. Then we define the self-deployment motion of each mobile robot based on 

the state of its topological neighborhood which is generated using the Delaunay 

triangulation. A representative deployment of the robots at t=30 is shown as Fig.11. 
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Fig. 10. Deployment of 120 nonholonomic mobile robots in a corridor environment based on 
the state of the physical neighborhood 
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Fig. 11. Deployment of 120 nonholonomic mobile robots in a corridor environment based on 
the state of the topological neighborhood 

Figures 8-11 indicates that using the proposed distributed multi-robot deployment control 
algorithm, both holonomic and nonholonomic mobile robots spread out effectively from 
their initial gathering to cover the corridor environment, based on the local driving forces 
defined on either the geometric neighborhood or the topological neighborhood. 

5. Conclusions, discussions and future work 

This chapter addresses an important research topic in the field of multi-robot systems, the 

deployment problem, and introduces a novel distributed multi-robot deployment control 

algorithm for spreading a team of mobile robots into a targeted environment to form sensor 

and communication coverage. Each member robot self-deploys according to its equation of 

deployment motion. The driving force for each mobile robot is defined according to the 

difference between the actual and desired configurations in the neighborhood of the robot. 

The Rayleigh’s dissipation function is adopted to provide the necessary damping 

mechanism which maintains the stability of the deployment motion for each robot. Derived 

from the Hamilton’s principle using the method of the variational calculus, the equation of 

deployment motion naturally incorporates the nonholonomic constraint arising in wheeled 
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robots. Since the equation of deployment motion for each robot depends on only the robot’s 

own kinematic state and its detectable positional relationship with nearby objects, the 

proposed scheme decentralizes the multi-robot deployment problem into the motion control 

of individual robots. The combined outcome of the local deployment motion of individual 

robots leads to the desired global coverage. Simulation results show that the proposed 

approach can effectively guide the deployment of multi-robot systems. 

When deployed into a static environment with fixed obstacles and boundary, the multi-

robot system may converge to static sensor coverage. When deployed into a dynamic 

environment with moving obstacles and evolving boundary, the multi-robot system can 

change its configuration adaptively. Moreover, the resulting coverage can be a partial 

instead of complete coverage to the targeted environment, when the environment is larger 

than the maximum static coverage area of the multi-robot system. After the initial coverage 

is formed, the multi-robot system can move to provide a mobile coverage of the whole 

environment. In fact, to take the full advantage of the mobility of the multi-robot system and 

reduce the operation cost, instead of using a large number of mobile robots to form a static 

coverage network for a large environment, it is often more efficient to send fewer mobile 

robots to provide a mobile coverage to the environment. The technique governing multi-

robot mobile coverage will be discussed in our future work. 

Since the proposed multi-robot deployment control scheme is derived based on a lumped 

dynamics model of mobile robots and incorporates the nonholonomic kinematic constraint, 

it helps to result in physically realizable deployment motion in realistic robot systems. 

However, in order to further improve the implementation robustness of the proposed 

algorithm to guarantee the physical realizability of the resulting deployment motion, more 

kinematic and dynamic constraints, such as maximum velocity and acceleration, will be 

incorporated, and more detailed dynamics models of realistic mobile robots will be studied. 

Experimental research with physical multi-robot systems will be conducted to verify the 

results of our algorithm research. 

Moreover, we will investigate the convergence property of the whole multi-robot system 

towards the global optimal coverage as the result of the collection of local coverage. In fact, 

it is convenient to prove that, if a member robot Ri has a static neighborhood, i.e. other 

objects in Ri neighborhood are static, the self-deployment motion of Ri, defined by (13) and 

(14), converges asymptotically to a fixed equilibrium location. We consider the total energy 

function of each robot Ri as the Lyapunov function candidate 

 (15) 

From both (13) and (14), we obtain 

 (16) 

for both holonomic and nonholonomic mobile robots. Since kxi>0, kyi>0 and kθi>0, Ei tends to 

decrease, and hence the self-deployment motion of Ri is Lyapunov asymptotically stable. 

However, in practice, all member robots are moving. As indicated by the definition of the 

artificial potential energy on Ri (6), the motion of Ri is coupled with that of other objects in its 

neighborhood. The changing positions of other objects in Ri neighborhood result in the 

changing equilibrium position of Ri. Therefore, at each moment, Ri moves towards its new 
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equilibrium position. However, this change will slow down as the robots spread out, and Ri 

deployment motion will converge, as we observe from the simulations. As a future work, 

we will study the analytical relationship between the global convergence at the multi-robot 

system level and the local convergence at the individual robot level. 

The influence of the dynamic change in the multi-robot topological structure on the 

operational efficiency of deployment will also be investigated. Though the concept of 

topological neighborhood reduces the computational and communication complexities of 

the multi-robot deployment problem by coupling the deployment motion of each member 

robot with that of only its one-hop topological neighbors defined by Delaunay 

Triangulation, once the system topology changes, however, intensive communication and 

computation are required to update the Delaunay Triangulation of the whole multi-robot 

system. We will seek to maintain the global topologic optimality using local topologic 

adjustment instead of global reorganization. 
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