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Abstract

The development of ligands capable of binding to the aryl hydrocarbon receptor 
(AhR) and hijacking its signaling pathway is of potential use for the design of novel 
agents against breast cancer. To guide the synthesis of new compounds and charac-
terize their binding to the AhR, we employed homology modeling, ligand docking, 
and molecular dynamics simulations. As there is currently no crystallographic 
information available for the structure of the AhR’s ligand-binding PAS-B domain, 
a homology model was developed. The location of the binding site was identified by 
scanning the model for concave areas and comparing them to known ligand-binding 
sites in proteins related to the AhR, such as the CLOCK:BMAL1 transcriptional 
activator complex and the hypoxia-inducible factor-2α (HIF-2α). Docking of several 
chlorinated phenylacrylonitriles was performed with the modeling suite MOE, 
identifying π-π stacking, hydrophobic, and van der Waals interactions as the driving 
forces for binding, an observation consistent with the hydrophobic nature of the site. 
Molecular dynamics simulations with one of the compounds for 100 ns verified the 
overall stability of a docking-predicted pose and revealed the presence of interact-
ing water molecules in the vicinity of the ligand. Given the buried location of the 
ligand in the core of the receptor, this observation was somewhat unexpected, but it 
explained a slight shift of the ligand pose seen during the simulation.

Keywords: homology model, molecular dynamics, MOE, ligand-binding interactions, 
docking, breast cancer, aryl hydrocarbon receptor

1. Introduction

The aryl hydrocarbon receptor (AhR) is a member of the basic helix-loop-helix/
Per-ARNT-SIM (bHLH/PAS) transcription factor family [1–4]. In its inactive state, 
the AhR resides in the cytosol of the cell as a complex with a number of other 
proteins. This complex ensures the stability of the AhR in a high-affinity ligand-
binding form and prevents the premature translocation of the receptor. Upon 
binding of a ligand, it dissociates from these proteins and travels to the cell nucleus, 
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where it binds to DNA xenobiotic response elements (XREs). This in turn induces 
the expression of several cytochrome P450 enzymes and a sulfotransferase (typi-
cally SULT1A1) that contain XREs in their promotor sequence. These enzymes then 
initiate the oxidative breakdown of the offending compound.

The AhR pathway has a number of roles, including as a modulator of viral 
immunity and the correct functioning of the female reproductive system. Its most 
well-known role is a mechanism by which cells defend themselves against the toxic 
effects of polycyclic and polyhalogenated aromatic hydrocarbons, such as the 
Seveso toxin dioxin (1) (Figure 1) [5, 6].

Hijacking of the pathway is based on the use of compounds capable of activating 
the pathway and then converting into highly reactive species such as nitrenes once 
being targeted by the metabolic enzymes. This process ultimately leads to DNA 
damage and the death of the affected cell (Figure 2) [7].

It has been noted that the AhR detoxification process involves the active transport 
of a ligand, e.g., 1–4, but not the inhibition of the AhR, which would result in a 
buildup of toxic materials within the cell. This hijacking of the AhR signaling path-
way has been proposed as a novel strategy for designing a new class of drugs against 
breast cancer [1, 8]. Several compound classes, such as the aromatic acrylonitriles, 
have shown promise in cell-based assays, displaying remarkable potency and selec-
tivity for breast cancer cells [9, 10]. Two reported AhR ligands, Aminoflavone (2) 
and Phortress (3) (Figure 3), have progressed to clinical trials, demonstrating the 
clinical applicability of this approach [11, 12]. Based on this, we have postulated that 
the AhR is a promising target in the development of breast cancer-specific drugs. In 
particular, our early studies have demonstrated activity against triple negative breast 
cancer cell lines [9, 10, 13]. This makes AhR ligands, including the aromatic acryloni-
triles, promising candidates for further development into novel agents against breast 
cancer, that act by a hitherto unexploited mechanism of action.

Here, we demonstrate the use of computational tools for the elucidation of the 
interactions between the AhR and a targeted selection of chlorinated phenylacrylo-
nitriles. The methods employed include homology modeling, molecular docking, and 
molecular dynamics (MD) simulations to model the structure of the ligand-binding 
domain of the AhR, identify its ligand-binding site, characterize critical ligand/

Figure 2. 
The AhR pathway showing ligand binding, nuclear translocation, CYP1 activation, metabolism, and cell death. 
AF = Aminoflavone (2), Phort = Phortress (3), and ANI-7 = (Z)-2-(3,4-dichlorophenyl)-3-(1H-pyrrol-2-yl)
acrylonitrile (4) (see Figure 3 for details).

Figure 1. 
The aryl hydrocarbon receptor ligand 2,2,6,6-tetrachlorodioxin (1).
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receptor interactions, and study the time-dependent behavior of a ligand bound 
to the AhR. The results illustrate the value of computational tools for revealing the 
potential binding mechanism of these compounds to their target and for guiding the 
synthesis of novel compounds with improved properties.

2. Homology model

The sequence of the human form of the AhR was downloaded from the NCBI 
website (access code: NP_001612.1). Since only the ligand-binding PAS-B domain 
was of interest to our study, the sequence was appropriately truncated before Pro275 
and after Lys397. A search in the modeling suite MOE’s structural database for suit-
able templates returned the structures of 4F3L [14], 3RTY [15], and 2KDK [16] as 
the best matches. Of these, only 4F3L, a murine transcriptional activator complex, 
provided complete coverage of the PAS-B domain with a sequence identity of 24.4% 
and a sequence similarity of 48.0% (Figure 4). Only three indels were noted in the 

Figure 3. 
The known AhR ligands, Aminoflavone (2) and Phortress (3), that have proceeded to clinical trials for the treatment 
of cancer and our recently reported lead AhR ligand, ANI-7 (4) [13].

Figure 4. 
Alignment of the target sequence of the human form of the AhR (NP_00161) with the sequence of a murine 
transcriptional activator complex, 4F3L.
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alignment—deletions of positions 361 and 362 in the target sequence and an inser-
tion in position 308. The absence of major gaps in the alignment is favorable for 
the development of homology models as it reduces the need for loop modeling and 
grafting, which can be challenging [17]. Model development based on the alignment 
in Figure 4 was performed using MOE’s default settings.

Figure 6. 
Ramachandran diagram for the homology model for the AhR. Green ( ) symbols represent torsion angles in 
favored regions, whereas yellow ( ) symbols represent angles in allowed regions. No entries are present in the 
“forbidden” areas.

Figure 5. 
(A) Homology model for the AhR colored by secondary structure. (B) Comparison of backbone traces of homology 
models obtained by using the MOE modeling suite (template 4F3L) and the automated SWISS-MODEL server 
(template 5SY7). Coloring is according to RMSD between the two structures (green—yellow—red, in order 
of increasing deviation), showing very good agreement between the two models. The model obtained from the 
SWISS-MODEL server had a somewhat longer sequence, resulting in the gray loops at the termini that have no 
counterpart in the MOE model.
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The resulting homology model of the AhR (Figure 5A) was subjected to a num-
ber of quality tests, such as an analysis of the Ramachandran diagram (Figure 6) 
and an inspection of observed bond lengths, bond energies, and torsion angles. No 
abnormalities that would have questioned the quality of the model were detected.

An additional check of the model’s reliability was carried out by submitting the 
PAS-B sequence to the automated server SWISS-MODEL [18]. The returned homol-
ogy model was superimposed to the model obtained from MOE. Even though the new 
model was derived using a different template (5SY7, an NPAS3-ARNT complex) [19], 
a very good agreement between the backbones of the two structures was observed 
(Figure 5B), which further instilled confidence in the accuracy of the model.

3. Computational ligand docking

Before ligands could be docked into the homology model of the AhR, the exact 
location of the binding site had to be identified. We subjected the homology model 
to a binding site search, a feature implemented in MOE that screens the surface 
of a protein for concave areas capable of binding small molecules. Two areas large 
enough to accommodate a typical AhR ligand were detected: one on the surface and 
another one in the core of the receptor. To decide which of these two sites was more 
realistic, the crystal structures of the ligand/receptor complexes 3F1O [20], 3H7W 
[21], and 3H82 [21], all of which are proteins related to the AhR, were superimposed 
onto the homology model. As shown in Figure 7, all three ligands were found in an 
area equivalent to the binding site located at the center of the protein (Figure 5). 
To facilitate a convenient designation of the binding site for the subsequent dock-
ing runs, the ligand of 3F1O—N-[2-nitro-4-(trifluoromethyl)phenyl]morpholin-
4-amine (5)—was copied into the file of the homology model as a point of reference.

Figure 7. 
(A) Superposition of protein/ligand complexes related to the AhR onto the homology model of the AhR. Spheres 
delineate the putative binding site predicted by MOE that coincides with the position of the ligands seen in the crystal 
structures. (B) A closeup view of the ligand 5, overlaid with the spheres depicting the binding site predicted by MOE. 
(C) The chemical structure of the ligand of 3F1O—N-[2-nitro-4-(trifluoromethyl)phenyl]morpholin-4-amine (5).
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To analyze the utility of this model for further drug development, the struc-
tures of a representative ensemble of six dichlorophenylacrylonitriles with known 
bioactivities (Figure 8) were modeled in MOE. Their conformational energies were 
minimized by molecular mechanics in conjunction with the MMFF94x force field. 
Docking was performed with the default settings of MOE, utilizing a flexible ligand 
and a mostly static receptor structure and defining the binding site by a position 
equivalent to that of the ligand present in 3F1O. The top-scoring pose for each 
ligand was considered for further analysis.

As shown in Figure 9, the docked compounds occupied a narrow and mostly 
hydrophobic site in the core of the AhR. Almost all ligands in the pool engaged 
with the AhR in a similar fashion, binding in comparable binding poses and exhib-
iting similar ligand/receptor interactions. Key hydrophobic contacts were observed 
between nonpolar regions of the ligands and the side chains (Phe21, Leu34, 
Phe50, Met66, Leu79, Ala93, Ile105, and Val107). Moreover, the ligand phenyl ring 
engaged in π-π stacking interactions with the ring of His 17. In addition, the tight 
fit between the ligands and the site suggested the presence of extensive favorable 
van der Waals interactions.

Figure 9. 
(A) 3D representation of dichlorophenylacrylonitrile 7 docked into the binding site of the AhR, illustrating the 
central nature of the site. (B) Interaction diagram of the pyrrole ligand ANI-7 (4), showing π-π -interactions, 
hydrophobic contacts, and shape complementarity as the driving forces for ligand binding.

Figure 8. 
Structures of six dichlorophenylacrylonitriles (4, 6–10) used for docking.
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In an attempt to attain a quantitative measure of ligand-binding affinity, the dock-
ing scores of the compounds were graphed against observed potencies (Figure 10). 
Potencies had been obtained in cell viability assays and the underlying assumption 
was that ligand binding to the receptor constituted the critical step that would lead to 
cell toxicity and therefore would correlate with bioactivity. Figure 10 shows a reason-
able correlation between the two quantities with a squared correlation coefficient of 
0.79. This data is consistent with the proposed binding mode of AhR ligands, which 
relies predominately on hydrophobic but also on additional π-π interactions.

4. Molecular dynamics simulations

We complemented our docking-based analysis by MD simulations, whose purpose 
was twofold. First, we wanted to ensure the stability of a docked pose by monitoring 
its behavior in a time-resolved system. Second, MD simulations can reveal the role 
of explicit solvent molecules, something that cannot be accounted for by docking. 
We selected compound 7 as a representative and subjected it to a simulation time of 
100 ns, using the CHARMM36m force field for the protein [22] and the CHARMM 
general force field for the ligand [23]. The parameters for water were taken from the 
CHARMM-modified TIP3P water model [24–26] to match those used for the solute. 
The initial structure of the protein-ligand complex was obtained from docking 
experiments, and the simulation was performed with the software NAMD [27].

As shown in Figure 11, the differences between the poses before and after 100 ns 
of simulation time were minor. The overall position of the ligand did not change 
significantly and the only notable difference related to a slight rotation around the 
central axis of the molecule which placed the nitrile group in a somewhat different 
environment.

Interestingly, analysis of the MD simulation data revealed the presence of several 
water molecules in close proximity to the ligand. This observation was somewhat 
unexpected; while polar water molecules have been found in predominately hydro-
phobic cores of proteins, it is a rare occurrence [28, 29]. Residues exposed to water 
molecules included Leu315, Thr289, His 291, Gln383, Ser365, and His 337. In some 
cases, the solvent molecules formed bridged hydrogen bonds between the nitrile 
group and the ligand. The latter could explain the abovementioned slight twist of 
the nitrile group into a more favorable position.

Figure 10. 
Linear correlation between docking score and bioactivity (−log IC50). Docking was performed with the 
standard settings of MOE.
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5. Conclusions

Using the AhR and substituted phenylacrylonitriles as an example, we demon-
strated the usefulness of a number of computational tools for the study of ligand/
receptor interactions. Homology modeling gave access to the structure of a protein 
domain that has not yet been solved by X-ray crystallography. The most probable 
binding site was identified, allowing for the docking of ligands, along with a good 
estimate of their affinities. The identification of this docking site was consistent 
with subsequent compound design and biological data obtained [10]. MD simula-
tions validated the stability of docked poses and illustrated the role of solvent 
molecules in the binding pocket. The value of the described techniques lies in their 
ability to rapidly evaluate the potential of a new ligand in silico before spending 
precious time and resource on its synthesis and experimental evaluation.
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