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Chapter

A Review of EMG Techniques for 
Detection of Gait Disorders
Rajat Emanuel Singh, Kamran Iqbal, Gannon White 

and Jennifer K. Holtz

Abstract

Electromyography (EMG) is a commonly used technique to record myoelectric 
signals, i.e., motor neuron signals that originate from the central nervous system 
(CNS) and synergistically activate groups of muscles resulting in movement. EMG 
patterns underlying movement, recorded using surface or needle electrodes, can be 
used to detect movement and gait abnormalities. In this review article, we examine 
EMG signal processing techniques that have been applied for diagnosing gait dis-
orders. These techniques span from traditional statistical tests to complex machine 
learning algorithms. We particularly emphasize those techniques are promising 
for clinical applications. This study is pertinent to both medical and engineering 
research communities and is potentially helpful in advancing diagnostics and 
designing rehabilitation devices.

Keywords: electromyography, feature extraction, classification, gait disorders, 
machine learning, time-frequency analysis

1. Introduction

EMG is an electrodiagnostic technique used to record the electrical activity in 
skeletal muscles. EMG signals are complex and exhibit intricate patterns that are 
dependent on the anatomical properties of the muscle [1–3]. The signal manifests 
the neuromuscular activation underlying muscle contraction [1, 3]. Therefore, 
an abnormality in the contraction of a muscle due to an injury, nerve damage, or 
muscular or neurological disorder that causes motor dysfunction can be identified 
through EMG signal diagnosis. The motor neuron signal carries information from 
the CNS aimed for limb displacement by flexing and extending the joints [4, 5]. The 
dynamic electrical activity of these motor units is called motor unit action poten-
tials (MUAPs). These are super-positioned and recorded by the EMG device [6]. 
EMG can be recorded using surface electrodes, fine wire electrodes as well as anal 
and vaginal probes for pelvic floor muscles [2]. A simple model of an EMG signal is 
given by Eq. (1), where, y(n) is the sampled EMG signal, a(r) is the MUAP, x(n) is 
point processed firing impulse, wn is the white Gaussian noise and N is the number 
of motor unit firing at a particular time.

  y (n)  =   ∑ 
i=1

  
N−1

    a  i   (r)   x  i   (n − r)  +  w  n    (1)
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Our aim in this article is to review EMG signal processing techniques that facili-
tate detection of gait and movement disorders. We discuss techniques from simple 
enveloping to complex computational machine learning algorithms that may help 
detect alterations in EMG patterns while performing daily life activities. We may 
note that there are number of highly cited review articles such as Raez et al. [7], and 
Chowdhury et al. [8], that review EMG processing and classification techniques. 
The novelty in our review is that in addition to discussing innovative processing 
techniques we have emphasized their applications, particularly focusing on lower 
limb disorders. In Section 2, we review the basic techniques such as EMG envelop-
ing, followed by EMG onset/offset detection in Section 3. In Section 4, we review 
current literature on the decomposition of EMG signals into MUAPs and muscle 
synergies. In Section 5, we discuss the analysis of the EMG signal in the frequency 
and time-frequency domain to understand changes due to motor impairment. 
When working with a larger sample size, a machine learning system can be used to 
classify subjects with altered muscle activation and abnormal gait patterns [9, 10]. 
In Section 6, we discuss algorithms that employ supervised and unsupervised learn-
ing to detect patterns of gait disorders, followed by a discussion of future trends 
and conclusion in Section 7.

2. EMG envelopes

Visual inspection of the raw EMG plot or its envelope requires high dexterity 
and clinical experience to detect motor impairment. The methodology to obtain 
the EMG envelope includes preprocessing, signal filtering, rectification, smooth-
ing, standardization, statistical testing, and intricate computational algorithms. 
Scientific recommendations by SENIAM project and International society of elec-
tromyography and Kinesiology (ISEK) suggest use of bandpass filters (10–500 Hz) 
to reduce aliasing effects when using a sampling frequency of 1 kHz. Intramuscular 
and needle recordings should be made with the low-pass cut-off set at 1500 Hz. 
Avoiding notch filter is recommended as it destroys the signal information [2]. De 
Luca et al. recommended root mean square (RMS) value to compute the signal 
amplitude of the EMG during voluntary contraction [3]. Methods to form EMG 
envelopes include moving average, root mean square, spline interpolation over 
local maxima, integrated EMG etc. EMG envelope can also be obtained from low 
pass Butterworth 6 Hz filter. Hilbert finite impulse response (FIR) filter computes 
magnitude of the analytic EMG signal.

A decrease in EMG amplitude was visually observable for chronic spinal cord 
injury (SCI) patients while walking for 3 min [11]. Biceps femoris (BF) and gas-
trocnemius medial (GM) revealed consistent activity, but that was not the case for 
tibialis anterior (TA) and rectus femoris (RF). The RMS magnitude of the signal 
from BF and GM muscles decreased with longer activity duration (10 min) followed 
by an EMG burst resulting from muscle spasm. Identification of chronic SCI was 
done by simple visual inspection of the raw EMG [11]. The inter-neuronal degrada-
tion was the cause of decreased locomotor performance [11]. The RMS amplitude 
of the EMG signal using a paired t-test showed a higher duration of muscle activity 
for BF and TA among cervical spondylotic myelopathic patients (CSM) [12]. The 
amplitude of the muscle burst activity was not statistically different between the 
healthy group and CSM [12]. The muscle stretch analyzed from kinematic data did 
not relate with spasticity, but the ratio of EMG RMS amplitude to the mechanomyo-
gram data showed statistically significant results for healthy and myotonic control 
groups [12, 13].
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The stochastic and nonstationary nature of EMG signals makes it harder to 
study the innate patterns of the electrical activity of the muscles. Statistical tests 
such as Pearson’s, Pearson’s r, the Kolmogorov-Smirnov T-test, ANOVA F ratio 
and t-test, and Wilcoxon Signed Rank Test can demonstrate significant changes 
in the EMG profiles associated with different behavior [14, 15]. Domingo et al. 
performed an ANOVA on the normalized EMG amplitude of spinal cord injured 
patients, which led to the conclusion that with increased speed and no manual 
assistance the EMG pattern exhibited statistical significance when compared to 
the control group. The shape and timing of EMG patterns were less similar to 
controls [16]. Among stroke patients, the EMG activity displayed heterogeneity 
in comparison with healthy individuals [17]. Nieuwboer et al. [18] demonstrated 
that raw EMG and its linear envelopes of Parkinson’s patients during freezing 
episodes displayed abnormal activity of TA and GM. Nonparametric tests on the 
RMS EMG envelope of the hemiplegic patient showed statistical significance 
during push off and early stance phase [14]. EMG data acquired from Parkinson 
patients’ shoulder muscles revealed higher activation than those of healthy 
control subjects [19]. Average and maximum EMG amplitude were calculated for 
comparison [19].

Traditional statistical testing of the EMG uses ANOVA techniques that may not 
identify visually differentiable waveform features. McKay et al. [20] developed a 
more reliable statistical method to find the underlying patterns with the wavelet-
based functional test (wfANOVA). Its performance to detect the changes in the 
magnitude and shape of EMG was more precise than the time domain ANOVA test. 
Wilcoxon signed rank tests were also used in studies with non-parametric data [12]. 
EMG envelope extraction using time domain features from multichannel sensors and 
their statistical tests can assist in the detection of altered myoelectric activity. Specific 
features such as EMG onset/offset, MUAP etc. can be analyzed from the envelopes 
for the diagnosis of gait disorders. Figure 1 shows signal envelope extracted from 
the EMG signal with RMS. MATLAB functions were used to extract envelope and 
perform a statistical hypothesis test for a healthy individual and other disorders.

Figure 1. 
RMS envelope from a healthy, a myopathic, and a neuropathic patient. A non-overlapping window of 200 
samples was used and a paired student t-test revealed statistical significance (p < 0.05) between healthy and 
neuropathic, and healthy and myopathic conditions. The data was obtained from physionet [21].
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3. EMG onset detection

EMG onset parameters define the duration for the muscles to stay active [2]. 
Onset estimation is useful to diagnose abnormality in muscle coordination. To 
detect the EMG onset, visual inspection or measurement of nerve conduction 
velocity may be used [22]. The basic thresholding method for onset detection is sen-
sitive to the type of trials, EMG amplifiers and noise level in the signal. The thresh-
olding based on SD baseline noise can be improved with local peak value. In a study 
[23], integrated EMG provided more information about early activation. During 
preconditioning, Teager-Kaiser Energy Operator (TKEO) also improved the onset 
detection accuracy by constricting the energy of the baseline noise [24, 25]. Staude 
et al. compared onset detection methods based on the statistical optimal decision 
threshold [26]. The simple threshold algorithm of Hodges and Bui [26] identifies 
the onset at a point where the mean of the samples within a fixed time window 
surpasses the baseline level by a defined multiple of standard deviation [27].

The basic framework of the threshold detection algorithm includes signal 
conditioning (rectification, filtering, whitening etc.), detection (Test Function and 
Decision rule), and postprocessing [26]. A block diagram is shown in Figure 2.

Double threshold methods are considered better in comparison to single thresh-
old methods [7]. The Bonato algorithm [28] includes pre-whitening filter and data 
sample squaring in the conditioning unit. The test function is computed between 
two successive samples from the conditioned EMG signal. The onset point identifi-
cation is based on the following rules: (1) x out of y samples must exceed the thresh-
old and (2) activation state of the muscle after surpassing the threshold should last 
for a certain number of samples or duration of time [26].

In Lidierth [29] method, the signal conditioning unit performs full wave recti-
fication. The test function and decision rule are based on Hodges [26]. Additional 
post-processing rules increase the efficiency of the algorithm. The test function 
unit detects the onset if the sEMG signal exceeds the threshold. Any decline in the 
activity below threshold within a defined duration, should not be longer than the 
defined range of samples [29]. The power spectral correlation coefficient method 
performs better than TKEO and utilizes the moving average method of Hodges and 
Bui [30]. The statistical estimation algorithm includes an optimal estimator and 
approximated generalized likelihood-ratio detector. The statistically optimized 
algorithms are more robust in terms of signal parameters [26]. Tenan et al. [25] 
reviewed three classes of standard EMG (linear envelope, entropy, TKEO) and 

Figure 2. 
EMG onset estimation framework; xk is Gaussian noise signal, yk is the processed signal, σ′o and μ′o are 
standard deviation and mean of samples, respectively, gk ≥ Th (Threshold) is the value to trigger an alarm ta, 
and t′o is the change time estimation.
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six classes of statistical EMG onset detection (general time series/mean–variance, 
sequential change point detection with parametric and non-parametric methods, 
batch change point detection, and Bayesian change point analysis). The Bayesian 
Change Point analysis algorithm showed higher reliability and accuracy for the 
singular EMG onset detection.

Maximum voluntary contraction (MVC) is a common scaling technique for 
EMG onset detection. MVC is the largest RMS amplitude a muscle generates in 
maximum contraction [31]. MVC has a curvilinear relationship with the muscle 
force production, where less force production amount to muscle weakness. EMG 
onset on a normalized time series with MVC can help diagnose gait disorders 
associated with atrophy [2]. Muscle spasticity/co-contraction during tremors 
among patients with neurological gait disorder exhibited abnormality in EMG onset 
compared to healthy individuals [12, 32]. EMG envelope indicated alterations in 
EMG onset for patients with Parkinson’s during freezing episodes [20]. A premature 
activation of TA and GM muscles before a freezing episode was observed. In gait 
impairment, due to cervical spondylotic myelopathy, delayed onset and prolonged 
activation were present [12]. In cerebral palsy earlier onset suppression of EMG 
within cutaneous muscular reflex is associated with motor dysfunction, which 
results in inhibitory postsynaptic potentials [33].

4. EMG decomposition into MUAP

Raw EMG signal consists of superpositioned motor unit activation potentials 
(MUAP) and noise components. Muscle crosstalk is a major issue during recording 
of the biological signals. The crosstalk is dependent on factors such as anatomical 
site for the placement of electrodes, type of movement, and skin thickness. Since 
it is harder for sEMG to detect the origin of muscle electrical activity, the chances 
of muscle crosstalk are higher in sEMG than needle EMG [13]. Besides, low spatial 
resolution, high movement artifact, and narrow frequency range makes needle 
EMG more promising as a diagnostic tool in nerve conduction studies for assessing 
neurological disorders [13]. Changes in the shape of MUAPs, large dynamic range 
of action potential among motor units and superposition of motor units pose major 
challenges to decomposing the sEMG.

Fang et al. [34] decomposed EMG into MUAP by wavelet transform. The 
technique utilized spectrum matching in wavelet domain as opposed to waveform 
matching. De Luca et al. [35] proposed a method to decompose the sEMG into 
MUAP during cyclic dynamic contractions. The algorithm solved two main prob-
lems, the first associated with the displacement of the electrode on the surface 
of the skin leading to alteration in the shape of MUAPs, and second regarding 
lengthening and shortening of the muscle fibers while undergoing those contrac-
tions. The algorithm was an extension of the algorithm by Nawab et al. The process 
was followed as an extracting time-varying time template parameter, performing 
time-varying filter analysis, clustering on MUAP trains, shape refinement, test, 
and decomposition. If the test failed, the iterations were done again for shape 
refinement of MUAPs. Precision Decomposition I (PD I), which was earlier used 
to decompose needle EMG data was updated to decompose sEMG and referred as 
PD (III). An updated approach of PD III reported by Nawab et al. has PD-IPUS 
(Integrated Processing and Understanding) and PD-IGAT (Iterative Generate and 
Test) [36, 37]. Another method to decompose sEMG into MUAP trains included 
a hybrid approach of K-means clustering and convolution kernel compensation 
method. K-means clustering was performed to estimate the pulse trains, which were 
later updated iteratively by convolution kernel compensation method [38].
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The question arises, what changes may a neurological disorder or injury bring 
to MUAPs? The features of a MUAP (rise time, duration, amplitude, phases/turns, 
recruitment and, stability) are vital to diagnosing the cause of abnormality in 
muscle coordination leading to gait or other movement disorders. A normal motor 
unit and a motor unit after injury (axonal injury) are distinguishable [32, 39–41]. 
MUAPs from needle EMG are not only adequate in diagnosing neuropathy (nerve 
injury) but can also determine the severity of the neuropathic condition [41]. 
Abnormal motor units constitute polyphasic potentials, unlike diphasic or triphasic 
potentials that exist in healthy individuals. Polyphasic potentials are a result of 
nascent potentials and terminal collateral sprouting [40]. Rodriguez-Carreno et al. 
[6] reported MUAPs shape abnormality pertinent to the anatomical phenomena 
shown in Table 1. A study conducted on mice with amyotrophic lateral sclerosis 
(ALS) using single unit extracellular recording within the spinal cord and EMG 
revealed gait variability [32]. In ALS mice, the low frequency of motor neuron and 
irregularities in the motor burst were co-occurring with fractionated EMG.

Among patients with myopathy, short, small, long duration, polyphasic and 
early recruitment of MUAPs were observed [39]. Different myopathy disorder 
studies in relation to MUAP trains were conducted using needle EMG by Paganoni 
et al. [39]. In early phases of disorders due to loss in muscle fibers the compound 
muscle action potential amplitude is lower. The result was short, small and early 
recruitment of MUAPs, but in Lambert-Eaton Myasthenic Syndrome, higher CMAP 
amplitude was observed. The shapes of MUAPs also alter with chronicity. Instead of 
positive sharp wave and fibrillation in the needle EMG, a mixture of long and short 
duration of EMG is prevalent [39]. Use of sEMG in comparison to needle EMG for 
postural disorder is preferable. sEMG is very good at detecting kinesiological disor-
ders such as myotonia, myoclonus and tremors [13]. It can further be decomposed 
into MUAPs with the PD (III) algorithm, or hybrid of K-means and convolution 
kernel compensation method.

5. Extraction of muscle synergies

Linear decomposition of multi-source EMG signal is another method to diag-
nose the alteration in EMG patterns of patients with gait disorders [5, 42]. The 
muscle synergy hypothesis can be employed to understand better the physiological 
aspects of gait disorders using a number of linear decomposition algorithms such 

MUAP abnormality Anatomical relation to changes

Increased amplitude Increment in connective tissues, loss of muscle fibers

Decreased amplitude Muscle fibers grouping

Decreased duration Loss of muscle fibers

Increased duration Increased muscle fibers

Increased spike duration Variation in muscle diameter and increased endplate thickness

Increase in number of turns and 
phases

Slow conduction of terminal axons/increased diameter of muscle fiber 
and end plate

Increase in firing rate Loss of motor units

Increase in the jiggle Atypical neuromuscular transmission

Table 1. 
MUAP abnormalities and indicated anatomical changes.
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as principal component analysis (PCA), factor analysis (FA), independent com-
ponent analysis (ICA), and non-negative matrix factorization algorithm (NNMF). 
Each algorithm is unique and extracts the synergy structure based on the assump-
tion made on the synergy (e.g. orthogonality, non-negativity, statistical indepen-
dence, etc.). After applying the factorization algorithm, the multi-electrode EMG 
signal is decomposed into the activation coefficients and synergies. The synergy 
vectors from the healthy group can be compared with a group suffering from the 
neurological or non-neurological disorder [43]. Statistical tests including cosine 
correlation, Pearson correlation or cluster analysis are generally used to compare 
the similarity and alterations in synergy structures [44, 45]. The application of 
a clustering algorithm for diagnosing gait disorder is discussed in a later section. 
Patients with thoracic spinal cord injury revealed lesser modules, higher co-
contraction and, less directional tuning in relation to healthy individuals [46]. It 
is likely that the number of dimensional space was affected due to the choice of 
preprocessing [47]. A review cum research by Kieliba et al. [47] supported that 
increase in the cut off frequency of the filter decreases the variance, accounts 
for a particular component and increases dimensional space of synergies to be 
extracted. EMG acquired from children with cerebral palsy and from individual’s 
post-stroke has shown that the choice of preprocessing (filtering, normalization) 
had an effect on the number of synergies and differentiation of physiological 
traits [48, 49]. Figure 3 displays how the choice of low pass filter (10 and 20 Hz), a 
second-order Butterworth filter, effects the dimensional space. Filters are generally 
used to remove movement artifact. The principal component variance is higher for 
10 than 20 Hz.

From a neurophysiological perspective, the recruitment of fewer spinal modules 
during movement is due to the loss of supraspinal inflow that results in simple 
muscle coordination (neuroadaptation). In upper extremities, the neuroadaptation 
was similarly perceived in the form of changes in the dimensional space of muscle 
synergy structures. Alteration of synergy structures was also present in patients 
with chronic stroke (upper extremity), and cerebral palsy [42, 43, 45, 50]. The 
linear envelopes extracted from the EMG data are subjected to MS extraction. The 
synergy hypothesis is well suited for capturing the physiological aspects of motor 

Figure 3. 
A variance threshold ≥0.9 reveals five synergies for 10 Hz low pass filter and four synergies for 20 Hz low pass 
filter for 9-channel EMG data.
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impairment [19]. In chronic stroke, merging and fractionation of synergies were 
observed. Merging of muscle synergies results in poor muscle coordination. In 
children with cerebral palsy, the dimensional space was smaller than it was in the 
control participants (unimpaired) [42]. However, the modules for cerebral palsy 
were higher for Duchenne muscular dystrophy (DMD) and typical developing 
(TD) children [43]. Rodriguez et al. revealed that fewer modules were recruited 
while walking on treadmill among Parkinson’s patients. Thus, the size of dimen-
sional space is crucial for the assessment of gait disorder such as cerebral palsy and 
Parkinson’s [51, 52]. It is also important to properly choose preprocessing before 
analyzing the synergies as the dimensional space is sensitive to the preprocessing 
methods.

6. Frequency and time-frequency analysis

EMG power spectrum estimation methods can be categorized into parametric 
and nonparametric techniques. The spectral methods include fast Fourier transform 
(FFT), multitaper analysis and short-time Fourier transform (STFT) and wavelet 
transform. The difference between FFT and Wavelet Transformation is that FFT is 
localized to the frequency domain whereas the latter is localized to time-frequency 
analysis. Hu [53] recorded cortical and spinal somatosensory evoked potential 
(CSEP and SSEP), cortical motor evoked potential (CMEP) and spinal cord evoked 
potential (SCEP). The short time Fourier transformation was applied to the CSEP 
signal with a Hanning window [53]. The results revealed that the time-frequency 
analysis is a better marker for spinal injury than time domain analysis. The peak 
power after spinal injury had lesser energy with more dispersion in time-frequency 
scale.

The EMG time series signal can be analyzed in the frequency domain for the 
diagnosis of gait disorders. The frequency spectrum for EMG signals is in range of 
0–500 Hz [54]. The FFT algorithm [55] computes the discrete Fourier transform 
(DFT) of EMG signal more efficiently. The FFT decomposes the EMG signals into 
periodic sine and cosine waves. We computed the FFT of EMG signal recorded from 
the Vastus Medialis (VM) during walking (Figure 4).

Figure 4. 
(A) sEMG signal from VM during walking in time domain; (B) frequency domain representation of the signal 
using FFT.
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The FFT allows computation of power spectra by squaring of FFT’s magnitude 
[56]. In Parkinson disease, the spectral power of the signal has lower amplitude for 
the usual tremor than for the unusual tremor, which has peak amplitude of 4–6 Hz 
during an atypical tremor [15]. The signals associated with nonperiodic tremors 
are differentiable with FFT [57]. The EMG signal from neuropathic patients with 
SCI also exhibited distinct power spectrum density and amplitude in comparison 
to healthy individuals [58]. The application of FFT to the EMG envelope revealed 
muscle burst discharge in frequency domain ranging from 4 to 7 Hz [15]. Average 
power spectra computed from fractionated EMG of ALS mice by FFT was signifi-
cantly higher than the control group. In the ALS group the spectra were skewed 
towards higher frequency content but single unit recordings revealed the absence 
of higher motor neuron (MN) frequencies or shortening of MN frequency in 
ALS mice [32], due to small type firing neurons improperly increasing firing 
frequency. This phenomenon results in co-contraction thus producing fraction-
ated EMG. Co-contraction in muscles can also be observed in spinal cord injured 
patients [32]. In a study, EMG signals from lower limbs of dystonic and non-
dystonic participants while walking were recorded. The non-dystonic participants 
were also patients suffering from other gait disorders. The power spectral density 
was computed using FFT with the Welch method of 50% overlap. The median 
power frequency (MdPF) and total power in low frequency were calculated for each 
muscle. The results revealed that MdPF for dystonic muscles had shifted to low 
frequencies and a concurrent increase in total power percentage in low-frequency 
range was observed [59]. Thus, frequency analysis of EMG signal not only provides 
us with distinction between normal and abnormal gait behavior but also specific 
gait abnormalities can be distinguished.

6.1 Short-time Fourier transform

Short-time Fourier transformation (STFT) is used to analyze a nonstation-
ary signal in the frequency-domain. The signal is sliced and subjected to Fourier 
transform. Segmenting the signal is called time domain windowing, and the time 
localized signal is defined by   S  t   (τ)  = S  (τ) h (τ − t)  , where h(t) is the window function 
centered at time t. The equation for STFT is given by (2).

   S  t   (ω, t)  =   1 ___ 
 √ 

___
 2n  
  ∫ S  (τ) h (τ − t)   e   −i𝜔t  .  d𝜏  (2)

Mitchell et al. [60] used cross time-frequency analysis to diagnose hypertension 
of the GM muscle. The study included 57 elderly people with 10 younger adults. 
Reduced Interference distribution (RID) was utilized to remove cross terms imple-
menting time smoothing window and frequency smoothing window. A Hanning 
frequency smoothing window was chosen. In the study of gait, it is necessary to 
consider a time-localized cross-correlation between two signals, such as left and 
right muscle groups responsible for gait [60]. Hence, cross Wigner distribution 
(CWD) was selected to preserve the phase information. The results revealed 
statistical significance for several time-frequency parameters of sEMG between 
control group and persons with neuropathy, diabetes, osteoporosis, and arthritis 
patients [60]. STFT does not adopt an optimal time window or frequency resolution 
for non-stationary signals [7]. For the implementation of FFT and STFT the signals 
are considered to be stationary [8]. The problem or resolution can be overcome by 
continuous wavelet transform (CWT) [8]. Multitaper analysis is another and per-
haps more efficient method for power spectral analysis to deal with non-stationary 
signals [61, 62].
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6.2 The wavelet transform

Wavelet transform such as Multitaper is well suited for non-stationary signals. 
Wavelet transform elicits good localization of energy when the MUAP shape 
matches that of the wavelet [8]. Continuous wavelet transform (CWT) of bandpass 
filtered EMG showed alteration in the motor unit among stroke patients when a foot 
drop stimulator device was used (FDS) [63]. Energy localization below 100 Hz that 
resulted from foot drop was caused by slow motor unit recruitment. The neuromus-
cular activation improved with FDS. The time-frequency plot for Gastrocnemius 
showed that peak energy localization shifted from 50 to 100 Hz as a neuromuscular 
strategy [63]. Instantaneous mean frequency (IMNF) is the average frequency of 
power density spectrum of a signal and is computed from time-frequency distribu-
tion, W(f, t) [63], where W is obtained from continuous wavelet transformation 
defined by (3) and (4).

  IMNF  (  t )    =   
 ∑  j=1  

N      f  i   W  (   f  i  , t )   
 ____________ 

 ∑  j=1  
N    W  (   f  i  , t )   

    (3)

  W (x, y)  =   1 __  √ 
__

 x       ∫ 
−∞

  
+∞

   y (t) ψ .   
 (t − y) 

 _____ x   dt  (4)

In the above, x is the scaling factor that controls the width of the wavelet, y 
controls its location in time,  ψ  is the mother wavelet function and y(t) is the signal. 
Instantaneous mean frequency can also be computed from the scalogram of CWT 
by its dimensional reduction. The scalogram has three dimensional space with time 
(x axis), frequency (y axis) and power (z axis) [63, 64]. In growing children, the 
higher IMNF level computed from scalogram revealed difference with respect to 
the children with cerebral palsy. The IMNF frequency component, unlike healthy 
children, decreased with age and maturation for children with cerebral palsy. IMNF 
also provided significant differences between the affected and unaffected site 
among stroke patients [63].

7. Feature extraction and classification

Time and frequency domain features of the EMG signal may be used to diag-
nose gait disorders. For example, an image processing technique can be used to 
detect pathological gait affected by abnormal firing of MUs [65]. Machine learning 
algorithms are important tools in detecting the pattern of normal and abnormal 
gait [66, 67]. They do so by making minimum assumptions about the data gener-
ating system, as it does not need a carefully controlled experimental design [9]. 
Application of machine learning algorithms to detect and classify gait disorders is 
suited to big data. Machine Learning is further divided into: (1) Supervised learn-
ing and (2) unsupervised learning. We will now discuss techniques to detect gait 
disorders using supervised and unsupervised learning algorithms.

7.1 Unsupervised learning

Unsupervised learning can be used to find structures in the EMG data. For 
example, cluster analysis has been used to identify alteration in the gait patterns, 
which are undetected by statistical tests. Patients with Parkinson’s disease can be 
distinguished from a healthy individual by using cluster analysis of dimensionally 
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reduced feature vector [68, 69]. K-means clustering is a very common clustering 
technique that initially estimates K centroids randomly or selectively. The algorithm 
iterates between two steps, data assignment steps and updating centroid. The aim is 
to minimize objective function, which is given by (5).

  V (j)  =  ∑ 
j=1

  
k
    ∑ 
i=1

  
n
      ‖ x  i   −  c  j  ‖    2   (5)

where V(j) is the objective function, n is the number of data points in jth cluster, 
k is the number of clusters and    ‖ x  i   −  c  j  ‖    

2
   is the square of Euclidean distance.

The hypothesis of muscle synergies has been applied in several studies [44, 45, 70]. 
Unsupervised Learning helps in grouping identical synergies and can be helpful 
in diagnosing gait disorders. Kim et al. [70] identified synergies using iterative 
K-mean clustering and intraclass correlation. Hierarchical, model-based, fuzzy c 
means clustering has been employed to group gait patterns [69, 71–73]. Dolatabadi 
et al. [71] used mixture model clustering on spatiotemporal gait pattern to classify 
pathological gait. Pathological disorders such as cerebral palsy that show higher 
inter-stride variability can be analyzed with a hierarchical clustering method 
proposed by Rosati et al. [72]. Feature Fusion technique with Davies Bouldin 
Index (DBI) based on fuzzy C means algorithm was used in a trip/fall study [73]. 
The DBI can be used to evaluate the clustering algorithm. We have used K mean 
cluster analysis to cluster normal gait and gait with constraints, which are  
displayed in Figure 5.

7.2 Supervised learning

In supervised learning, the predictive models are based on the input and output 
data. Some of the widely used learning algorithms are decision trees, Bayesian net-
works, support vector machine, artificial neural networks, and linear discriminant 
analysis (LDA). After feature extraction and classification, the EMG time series 
can be modeled to control prosthetic or rehabilitative device. The fundamental 
approach to classification of EMG signal is shown in Figure 6 [66].

The performance of different algorithms (SVM, LDA, MLP) in classifying gait 
disorders (Cerebral Palsy) was compared [74]. SVM classifier, compared to LDA 
and MLP, performed better when the analysis was done on kinematic data [74]. 
The normalization of the EMG data from different limb configurations increased 

Figure 5. 
A total of four clusters were chosen to group sEMG signal based on 93% variability in data within each cluster. 
The clusters were plotted for the first two principal components for walking with and without constraint.
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classification accuracy [74, 75]. Feature level fusion is used to extract the feature 
space from daily life activities [73]. Patients with Parkinson’s were classified with high 
accuracy using SVM with leave-one-out cross-validation [75]. Results from Nair et al. 
[76] suggest that least square kernel algorithm performed better than LDA, Neural 
Network, MLP and learning vector quantification (LVQ ) for patients with arthritis. 
Decision Tree (DT) classifier used to classify toe walking gait disorder revealed three 
major toe-walking patterns [77]: (1) muscle weakness of TA and quadriceps and 
spasticity of Tibialis Surae; (2) severe spasticity of Tibialis Surae with limited range 
of ankle motion; and, (3) hamstring spasticity. The MLP, on the other hand, exhib-
ited higher accuracy while classifying gait disorders associated with myopathy and 
neuropathy. Based on the literature studied, normalization, feature extraction and 
selection are important steps for accurately classifying gait disorders [75, 76].

Artificial neural networks (ANNs) are considered better at discovering nonlin-
ear relationships in data. Ozsert et al. [78] classified biceps, frontalis and abductor 
muscles using ANN. The authors used wavelet transform for pre-processing the 
sEMG signal and an AR model to train the ANN. Senanayake et al. [79] used EMG 
RMS value and soft tissue deformation parameter (STDP) extracted from the video 
recordings to train a feed-forward-backward propagation neural network (FFBPN) 
to identify gait patterns. The proposed evaluation scheme improved classification 
accuracy between healthy and injured subject’s gait patterns as Vastus Medialis and 
Lateralis revealed higher positive correlation between EMG and STDP for healthy 
individuals [79].

An adaptive neuro-fuzzy inference system (ANFIS) successfully diagnosed 
neurological disorders [8, 80]. In a number of studies, ANN and SVM worked well 
in diagnosing the gait pathology [7, 8, 71, 81]. Naik et al. [82] decomposed needle 
EMG from brachial biceps with ensemble empirical mode decomposition (EMD). 
The authors used Fast ICA and LDA classifier with majority voting to diagnose 
healthy participants from ALS, and myopathic individuals [82]. The algorithm of 
Naik et al. [83] for walking, sitting and standing tasks, achieved 86% classification 
accuracy for participants with and 96% without knee pathology. ICA via entropy 
bound minimization, time domain feature extraction, and feature selection with 
fisher score were performed prior to LDA classification. Ai et al. [30] used fused 
accelerometer and EMG data to discriminate among four participants including an 
amputee; more amputees in the study could provide better insight of the suggested 
technique [30].

There is no perfect machine learning algorithm to detect gait disorders. Signal 
processing techniques for feature extraction and selection, and standardization of 
the time series play a crucial role in enhancing classification accuracy. We also see 

Figure 6. 
Block diagram of an EMG Signal classification system.
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consistent improvement in the existing models with increased classification accu-
racy [84]. ANN classifier has some deficiencies, such as high training process time 
and overfitting. Extreme Machine Learning algorithm (EML) improves on these 
anomalies at no cost to classification accuracy [8]. SVM accuracy was low for eight 

Classifier Authors Year Conditions Classification Performance

Neural 
networks

Senanayake 
et al.

2014 Soft tissue 
deformation

Gait pattern 
identification 
between healthy 
and injured

Accuracy = 98%

Nair et al. 2010 Osteoarthritis EMG of healthy 
and osteoarthritis

Accuracy = 89.4 ± 11.8%

Nair et al. 2010 Rheumatoid 
arthritis

EMG of healthy 
and rheumatoid 
arthritis

Accuracy = 57 ± 1 8%

Kamruzzaman 
and Begg.

2006 Cerebral 
palsy

Gait pattern 
identification 
using stride length 
and cadence 

Accuracy = 94.87%

LDA Naik et al. 2018 Knee 
pathology

Movement 
classification 
for healthy and 
patients with knee 
pathology

Accuracy = 86% 
(Unhealthy) and 96% 
(Healthy)

Nair et al. 2010 Rheumatoid 
arthritis

EMG of healthy 
and rheumatoid 
arthritis

Accuracy = 72 ± 20%

Ai et al. 2017 Normal and 
amputated

Movement-based 
classification 
for normal and 
amputee subject

Accuracy = 95.6 ± 2.2%

Kamruzzaman 
and Begg.

2006 Cerebral 
palsy

Gait pattern 
identification 
using stride length 
and cadence 

Accuracy = 93.59%

SVM Kamruzzaman 
and Begg.

2006 Cerebral 
palsy

Gait pattern 
identification 
using stride length 
and cadence 

Accuracy = 96.8%

Kugler et al. 2013 Parkinson Differentiate 
between healthy 
and Parkinson 
patients by auto-
step segmentation

Specificity = 90% and 
Sensitivity = 90%

Ai et al. 2017 Normal and 
amputated

Movement-based 
classification 
for normal and 
amputee subject

Accuracy = 98.1 ± 1.6%

Xi et al. 2018 Fall Gait recognition 
for daily life 
activities 
including Fall

Accuracy = 100%

Decision 
tree

Armand et al. 2006 Toe Walking 
disorders 

Identification of 
ankle kinematic 
patterns for toe 
walkers

Accuracy = 81%
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daily life activities including falling. The accuracy for detecting trip fall improved 
with weighted genetic algorithm [73]. A wide variety of time domain, frequency 
domain, and time-frequency domain features, and optimization techniques pro-
vide multiple options to enhance the classification accuracy of gait diagnosis. The 
performance of each algorithmic class discussed in this review with respect to the 
abnormal physiological condition is shown in Table 2.

8. Future trends

The computational methods reviewed in this study have evolved over several 
decades and continue to do so. For example, ANOVA test’s inability to detect visu-
ally observable waveform due to abnormal gait behavior had been improved with 
wfANOVA test [20]. Apart from factorization algorithms and PCA, artificial neural 

Classifier Authors Year Conditions Classification Performance

Least 
square 
Kernel 
Algorithm

Nair et al. 2010 Rheumatoid 
arthritis

EMG of healthy 
and rheumatoid 
arthritis

Accuracy = 91%

Nair et al. 2010 Osteoarthritis EMG of healthy 
and osteoarthritis

Accuracy = 97%

Table 2. 
EMG classification methods.

EMG method Pros Cons

Visual inspection 
of raw EMG

1. Lower computational burden
2. Takes advantage of experience

1. Relies on experience only, hence 
chances of error

2. Limited theoretical basis

EMG envelope/
onset detection

1. EMG onset can reveal altered muscle 
activity (e.g., freezing episodes in 
Parkinson’s)

1. Impacted by a number of param-
eters, hence may not be reliable

Frequency and 
time-frequency 
analysis

1. Provides quantitative information 
in frequency and time-frequency 
domain

2. Specific Gait abnormalities can be dis-
tinguished (suitable for SCI patients)

3. Provides additional features like 
MdPF, IMNF for further classification

4. Provides algorithmic options that 
sidestep stationarity issues

1. Added processing time and 
computational burden

2. Assumption of stationarity is made 
for some FFT tools

MUAP 
decomposition

1. An abnormality in MUAP’s shape 
reveals altered motor behavior

2. Requires less processing for Needle 
EMG

1. Harder to decompose sEMG signal
2. Computational cost is high for 

sEMG

Muscle synergy 
decomposition

1. Recovers dominant spatio-temporal 
profiles in EMG signal

2. Useful in certain disorder diagnosis 
(Cerebral Palsy, stroke, SCI, etc.)

3. Computational cost is dependent on 
the type of factorization algorithm

1. Preprocessing of EMG signal 
impacts the dimensional space for 
synergy extraction

2. Choice of algorithm alters the 
results, i.e., assumption on the type 
of synergies need to be made

Table 3. 
Pros and cons of EMG processing techniques discussed.
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network were implemented for synergy extraction [5]. New time and frequency 
domain features and hybrid methods for feature selection have been developed and 
introduced over the years [67]. In these examples, the conventional techniques were 
enhanced or detection of gait disorders. There is a consistent effort to augment cur-
rent computational techniques and improve the EMG based detection methods for 
motor behavior abnormalities. Optimization algorithms, feature level fusion, and 
advances in computational methodology point to a future for detecting intricate 
EMG patterns EMG associated with abnormal gait behavior in machine learning. 
Recently, application of deep learning algorithms to detect abnormal EMG patterns 
appears more promising [85], and performs well with EMG acquired directly from 
the muscles. The main issue in clinical application of deep learning is its real-time 
implementation. The development of powerful graphics processing unit (GPU) and 
faster training algorithms will likely resolve such issues in near future.

In conclusion, in this article we reviewed the existing literature on EMG process-
ing techniques from simple thresholding to complex computation algorithms and 
their application in detecting gait disorders. The pros and cons of the techniques 
discussed are summarized in Table 3. Besides discussing these techniques in detail, 
our study cites pertinent literature where these techniques were successfully used 
to detect gait abnormalities. This study clearly points towards the recent trend in 
assessing gait disorders from EMG data using an intelligent system. Examples of 
such systems using supervised and unsupervised learning were also reviewed.
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