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Chapter

Retinoic Acid in Ocular Growth 
Regulation
Jody A. Summers

Abstract

All-trans-retinoic acid (atRA) is a metabolite of vitamin A (retinol) and is required 
for growth and development of a variety of organ systems in all higher animals 
from fish to humans. Evidence is accumulating to suggest that atRA may also be an 
important molecular signal in the postnatal control of eye size. Choroidal synthesis 
of atRA is modulated during periods of visually-induced changes in ocular growth 
and has pronounced effects on eye growth and refraction in several animal models 
of myopia. Choroidal atRA synthesis is exclusively regulated by expression of the 
enzyme, retinaldehyde dehydrogenase 2 (RALDH2). In chicks and humans, RALDH2 
is synthesized by a unique population of uncharacterized extravascular stromal 
cells concentrated in the proximal choroid. The identification of choroidal atRA and 
RALDH2 as visually induced ocular growth regulators provides the potential for 
new therapeutic targets for the treatment of childhood myopia. The objective of this 
chapter is to discuss what is presently known about atRA biosynthesis and transport 
in the eye during visually guided eye growth and how this research can contribute to a 
better understanding of the mechanisms underlying the development of myopia.
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1. Introduction

All-trans-retinoic acid (atRA) is the transcriptionally active derivative of 
vitamin A. atRA is an essential signaling molecule for developmental processes of 
numerous organ systems including those of the brain, limbs, lungs, pancreas, heart, 
and eye in many organisms from fish to humans [1, 2]. With the advent of increas-
ingly sensitive methods to measure endogenous concentrations of atRA, data is 
accumulating to suggest that atRA is also important in the growth and maintenance 
of a number of organ systems during postnatal and adult life [3–7]. Within the 
postnatal eye, atRA has been detected in the retina, where its synthesis was shown 
to be mediated by oxidation of the chromophore all-trans-retinaldehyde, released 
from bleached rhodopsin in the photoreceptor outer segments following exposure 
to light [8]. More recently, the choroid (the highly vascular layer between the retina 
and the sclera) has been shown to synthesize and accumulate high levels of atRA [9, 
10]. A number of studies in several animal models suggest that choroidal atRA may 
be an important molecular signal for the control of postnatal ocular growth  
[9, 11–13]. We and others have demonstrated that in response to visual stimuli, ocular 
atRA synthesis is regulated exclusively via choroidal expression of the atRA synthe 
sizing enzyme, retinaldehyde dehydrogenase 2 (RALDH2) by a unique population 
of cells [10, 14]. Furthermore, choroidally derived retinoic acid is transported to the 
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sclera (the outer connective tissue shell of the eye) by apolipoprotein A-1 (ApoA-1) 
which functions as a specific extracellular atRA-binding and transport protein in 
the eye [15, 16]. Once delivered to the sclera, we speculate that atRA regulates the 
transcription of many genes in the sclera to effect changes in scleral extracellular 
matrix remodeling, ocular size, and refraction.

This chapter therefore focuses primarily on the potential role of atRA on the 
control of postnatal growth of the eye, and implications for the development of new 
therapies for the control of myopia in children.

2. Retinoic acid is a vitamin A derivative

atRA is synthesized in two steps from vitamin A (all-trans-retinol). The first 
step produces all-trans-retinaldehyde from all-trans-retinol through the action of 
cytosolic or membrane bound alcohol dehydrogenases (ADH). The second, irre-
versible, step in atRA synthesis involves the oxidization of all-trans-retinaldehyde to 
atRA through the actions of the cytosolic retinaldehyde dehydrogenases (RALDH1, 
RALDH2, RALDH3; a.k.a. Aldh1α1, Aldh1α2, Aldh1α3) [16, 17]. Tissue concentra-
tions of atRA are regulated by the activities of these synthesizing enzymes, as well 
as the atRA-metabolizing enzyme CYP26, a member of the cytochrome P450 family 
[17]. Cyp1B1 may also contribute to atRA synthesis in the chick embryo [18] via 
synthesis of all-trans-retinaldehyde and atRA from all-trans-retinol. Furthermore, 
the rate of these reactions is regulated by the availability of the substrates, the 
accessibility of the enzymes to their substrates, and the catalytic activity of the 
enzymes [19]. Once synthesized, atRA can act within its own cell of synthesis 
(autocrine signaling) or be transported to nearby cells (paracrine signaling) and 
bind with nuclear retinoic acid receptor complexes to directly control the transcrip-
tional activity of more than 100 target genes [20].

3. Visual regulation of intraocular retinoic acid synthesis

3.1 Emmetropization: vision-dependent ocular growth regulation

Clinical and experimental evidence have indicated that postnatal eye growth is 
regulated, at least in part, by a vision-dependent “emmetropization” mechanism that 
acts to minimize refractive error through the coordinated regulation of the growth of 
the ocular tissues [21, 22]. Interruption of emmetropization in animal models, such 
as the chick, primate, and guinea pig, through the application of translucent occlud-
ers (form deprivation) causes a distortion in visual quality, which results in ocular 
growth and myopia through changes in the regulation of scleral extracellular matrix 
(ECM) remodeling [23–27]. Form deprivation-induced myopia is reversible; removal 
of the occluder and subsequent detection of myopic defocus results in a rapid ces-
sation of axial growth and the eventual reestablishment of emmetropia (recovery) 
[24]. Even stronger evidence for the presence of an emmetropization mechanism 
comes from studies in which animals are fitted with either concave (minus) lenses 
or convex (plus) lenses that shifts the focal plane behind (hyperopic defocus) or in 
front of (myopic defocus) the retinal photoreceptors, respectively. In animals with 
functional emmetropization, the axial length of the lens-treated eye will increase 
or decrease until the retinal location has shifted to match that of the new focal plane 
[28–31]. The emmetropization mechanism does not require the central nervous 
system and appears to be regulated by locally produced chemical signals within the 
eye itself. When visual form deprivation is restricted to nasal or temporal visual 
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fields, excessive growth of the sclera is limited to that portion corresponding to the 
visually deprived part of the retina [32, 33]. Furthermore experimental myopia 
can be induced animals lacking a functional optic nerve [34–36], suggesting that 
the central nervous system is not required for the development of myopia. It is now 
generally accepted that visually guided eye growth is regulated by a series of locally 
generated chemical events that begin in the retina in response to specific visual 
stimuli and terminate in the sclera where they result in scleral extracellular matrix 
(ECM) remodeling, changes in ocular length and refractive status [37–42]. Therefore 
the elucidation of the chemical events responsible for visually-induced changes in 
ocular growth is of great interest as it may provide new avenues for the development 
of therapies to slow or prevent the progression of myopia.

3.2 Choroidal retinoic acid: a potential ocular growth regulator

Several studies in a variety of animal models indicate that all-trans-retinoic acid 
(atRA) may be one of the chemical signals required for the regulation of eye growth 
during emmetropization [9, 11–13]. Mertz and Wallman [9] were the first to show 
that choroidal synthesis of atRA was increased in chick eyes during recovery from 
form deprivation myopia and following application of positive lenses (imposed 
myopic defocus), two visual conditions that cause a deceleration in ocular growth 
rates. Moreover, atRA was shown to be decreased in eyes undergoing form depriva-
tion myopia and compensation for hyperopic defocus compared with the fellow 
control eye, conditions that stimulate ocular elongation. It was therefore suggested 
that choroidal atRA could act as a locally produced (within the eye) scleral growth 
modulator during visually guided ocular growth. atRA is an attractive candidate 
for a visually regulated ocular growth regulator because it is readily diffusible, has 
pronounced effects on scleral extracellular matrix metabolism, and exerts its effects 
through highly regulated, locally controlled synthesis and degradation.

Studies by Simon et al. [43] and Rada et al. [10] identified transcriptional 
changes in choroidal RALDH2 in response to imposed defocus or recovery from in 
induced myopia. RALDH2 mRNA concentration was found to decrease in the cho-
roid following treatment with negative lenses and to increase with positive lenses or 
during recovery from induced myopia. No changes were observed in the expression 
of the atRA metabolizing enzymes, RALDH3, RDH10, CYP1B1, CYP26, and tran-
script levels of choroidal RALDH1 were undetectable [10]. Additionally, changes 
in choroidal RALDH2 protein concentrations and enzymatic activity in recovering 
eyes were reflective of the transcriptional changes in choroidal RALDH2 [14] sug-
gesting that, in response to myopic defocus or recovery from induced myopia, the 
concentration of choroidal RALDH2 increases which, in turn, results in increased 
production of atRA. No RALDH activity was detected in the sclera or retina/RPE 
of control or treated chick eyes, indicating that the choroid is responsible for the 
majority of atRA synthesized in the chick eye [14].

3.3 Choroidal RALDH2+ cells: a novel cell type

In chicks and humans, RALDH2 is synthesized by a population of extravascular cho-
roidal stromal cells, some of which are closely associated with blood vessels (Figure 1)  
[10, 14, 44]. In chicks, RALDH2+ cells increase in number markedly over 1–7 days 
of recovery due, in part, to cellular proliferation (Figure 1F and G) and become 
concentrated on the proximal (RPE) side of the choroid [14]. Immunohistochemical 
analyses of chick choroids indicate that many of RALDH2+ express pro-collagen type 
IA (Figure 1B and C), similar to activated pericytes (a.k.a. perivascular stromal cells) 
within the CNS perivascular space [45]. Additionally RALDH2 is expressed in the chick 
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choroid by a small population of round cells that are positive for the Ia antigen [46, 47], 
indicating similarities with thymic macrophages/dendritic cells (Figure 1D and E),  
but are negative for the macrophage markers KuL01, MHC-II, and IgY [48]. A sub-
population of RALDH2+ cells also express α-smooth muscle actin (αSMA) [10, 14], but 
are negative for the smooth muscle/myofibroblast proteins, smoothelin, desmin and 
myocardin. RALDH2+ cells do not co-localize with CD-45 [14], TCRδγ (Figure 1A),  
CD5, or GRL(2) positive cells [49, 50], indicating they are not of hematopoietic origin. 
RALDH2+ cells also do not co-localize with neuron-specific beta III tubulin, NOS 
(pan), or tyrosine hydroxylase, indicating they are not of neuronal origin. Negative 
results were also obtained using anti-NG2 (a pericyte marker), vimentin, and 
PECAM-1 (an endothelial marker). Similarly, RALDH2+ cells in the human choroid 
were negative for the endothelial cell marker, CD31, the pericyte markers, NG2 and 
CD146, α-smooth muscle actin, the macrophage markers CD68 and LYVE1, IBA1 
(microglia) and the pan-neuronal marker PGP9.5 [51]. Unlike results in the chick, 
some RALDH2+ cells in the human choroid co-localized with vimentin, suggesting 
a mesenchymal origin [51]. Based on the markers used in these studies, RALDH2+ 
cells seem to represent an independent cell-population. Studies are in progress using 
additional markers as well as transcriptome analyses on RALDH2+ cells isolated from 
chick and human choroids to further classify this new cell-population as this cell type 
may represent a potential target for therapies to slow or prevent myopia in children.

4. Retinoic acid on scleral proteoglycan synthesis

The retina, choroid and sclera are three possible tissue targets for choroidally 
generated atRA within the eye. Of these three targets, the sclera is a leading 
candidate. Based on results using a specific inhibitor of proteoglycan synthesis 

Figure 1. 
Choroidal RALDH2 positive (+) cells are heterogeneous. (A–E) RALDH2+ cells (green) are identified following 
labeling of 4 day recovering choroids with anti-RALDH2, together with anti-TCRγδ (γδ), pro-collagen IA (COL1A), 
or Ia antigen (IA) (red). Double-labeled cells are indicated by arrows. Asterisks in (C) indicate RALDH2+ cells that 
co-express Col1A. (F) Proliferating RALDH2+ cells were labeled with BrdU and identified with anti-BRDU (red). 
(G) Percentage of RALDH2+/BRDU+ cells is ≈ 3× higher in 4 day recovering choroids, suggesting that RALDH2 
activity is partially controlled by proliferation of RALDH2+ cells. Bar = 20 μM in A, 40 μM in B–F. ***Student’s t 
test, p < 0.0001. Error bars = SEM. Nuclei in A–F are stained with DAPI. BV, blood vessel.
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(p-nitrophenyl-beta-d-xylopyranoside), we previously demonstrated that the rate 
of proteoglycan synthesis in the cartilaginous layer of the chick sclera is largely 
responsible for visually guided changes in eye size [27, 52]. Moreover, proteoglycan 
synthesis is rapidly upregulated in the sclera in response to visual form deprivation 
and is rapidly downregulated in the posterior sclera to levels significantly below 
those of fellow controls within 12 hours upon restoration of unrestricted vision 
(=recovery from induced myopia) [53, 54]. Interestingly, the time course of the 
increase in choroidal atRA synthesis during recovery from induced myopia [9] was 
remarkably similar to that of the decrease in rate of sclera proteoglycan synthesis 
observed in the early phase of recovery from induced myopia [53] suggesting a 
causal relationship between choroidal atRA synthesis and scleral proteoglycan 
synthesis (Figure 2). Moreover, RALDH2 mRNA pools in the chick choroid were 
shown to increase and decrease in a manner that inversely correlated with changes 
in scleral proteoglycan synthesis in recovering eyes [10], suggesting that RALDH2 
gene expression in the choroid regulate choroidal atRA synthesis during visually 
induced ocular growth. It is well known that atRA is a potent inhibitor of proteogly-
can biosynthesis by chondrocytes [55, 56] and that it facilitates cartilage catabolism 
through the increased synthesis of matrix-degrading enzymes [55, 57, 58]. atRA 
inhibits scleral proteoglycan synthesis in a dose-dependent manner with an IC50 of 
8 × 10−9 M, which is similar to the measured endogenous levels of atRA in choroid 
organ cultures (4 × 10−9 to 7 × 10−9 M) [10]. At this concentration, atRA would be 
able to regulate scleral growth matrix remodeling through the stimulation or repres-
sion of transcription factors, extracellular matrix constituents, and MMPs or TIMPs.

5. Identification of apolipoprotein A-1 as a retinoic acid binding protein

Due to its hydrophobicity, atRA cannot diffuse freely in the hydrophilic extracel-
lular microenvironment. Therefore, the requirement for carrier proteins capable of 
forming a soluble complex with atRA and transporting atRA to target cells is neces-
sary to achieve high efficiency and specificity while avoiding toxicity associated with 
random diffusion. Mertz and Wallman [9] and our lab [15] identified a secreted pro-
tein of Mr = 27,000 that was the major atRA binding protein present in choroid and 
sclera conditioned medium. This Mr 27,000 protein did not correspond in size to any 
of the previously identified atRA binding proteins [59]. We subsequently determined 
that the Mr 27,000 protein was apolipoprotein a-1 (ApoA-1) [15] (Figure 3).

Figure 2. 
Choroidal retinoic acid synthesis and scleral proteoglycan synthesis during recovery from form deprivation 
myopia. (A) Changes in choroidal all-trans-retinoic acid (atRA) synthesis during recovery from experimental 
myopia. (B) Changes in scleral proteoglycan synthesis in during recovery from experimental myopia. A from: 
Mertz and Wallman [9]. B adapted from: Summers and Hollaway [53]. Reproduced with permission © Elsevier.
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We have also shown that choroidal expression of ApoA-1 is transcriptionally 
regulated by atRA, and choroidal ApoA-1 mRNA and protein synthesis are upregu-
lated during recovery from induced myopia, suggesting the presence of a regulatory 
feedback mechanism to regulate atRA transport and activity [15]. We postulate that 
ApoA-1 functions to transport atRA from its site of synthesis by RALDH2+ cells in the 
proximal choroid to the sclera for the regulation of scleral ECM remodeling. This idea 
is supported by our observation that the chick sclera (which is avascular) also releases 
significant amounts of ApoA-1 into culture medium, despite undetectable de novo 
protein synthesis [15]. These data provide further evidence that choroidally derived 
ApoA-1 accumulates in the sclera, presumably as a consequence of retinoid transport.

Figure 3. 
ApoA-1 is a specific atRA-binding protein. (A) Retinoic acid (atRA) lacks intrinsic fluorescence (not shown), 
but can quench intrinsic protein fluorescence excited at 290 nm due to energy transfer from tryptophan 
residues on ApoA-1. Increasing atRA concentrations cause decreased fluorescence emission following excitation 
at 290 nm. (B) Titration of ApoA-1 with various retinoids by measuring quenching of protein fluorescence 
(emission = 340 nm). Significant quenching of protein fluorescence was observed only for atRA, indicating 
that ApoA-1 is a specific atRA-binding protein. atRA, all-trans-retinoic acid; RAL, all-trans-retinaldehyde; 
9-cis, 9-cis-retinoic acid; 13-cis, 13-cis-retinoic acid. This research was originally published in the Journal of 
Biological Chemistry [70]. © The American Society for Biochemistry and Molecular Biology.
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6. Role of retinoic acid in postnatal ocular growth

To elucidate the role of atRA in the regulation of postnatal ocular growth, 
several studies have been carried out in which either atRA or non-specific atRA 
synthesis inhibitors (i.e., citral, disulfiram) were administered either systemi-
cally or locally in several animals undergoing visually induced changes in eye 
growth [12, 60, 61]. Results of studies using chicks and mammals to examine 
the role of atRA in emmetropization, myopia development and postnatal ocular 
growth are difficult to interpret due to species differences in the processes of 
scleral remodeling and in the mechanisms by which ocular length and refraction 
are modulated by visual stimuli [62]. Moreover, these studies are further com-
plicated by the multiple targets of atRA within the eye and pleiotropic cellular 
responses to retinoid signaling [63]. The mammalian sclera consists of a single 
fibrous layer that undergoes scleral thinning, and increased distensibility during 
periods of ocular elongation and myopia development. Scleral thinning during 
myopia development in mammals is the consequence of decreased sulfated gly-
cosaminoglycan and collagen synthesis [11, 64, 65]. In contrast, the chick sclera 
consists of both cartilaginous and fibrous scleral layers. Ocular elongation during 
induced myopia in chicks is the result of growth of the cartilaginous sclera, with 
increases in sulfated glycosaminoglycan synthesis, increased protein synthesis, 
and increased total scleral mass [27, 66–68]. In chicks, increased choroidal 
synthesis of atRA during recovery from form deprivation myopia results in inhi-
bition of scleral proteoglycan synthesis and slowing of the rate of ocular elonga-
tion. In primates [11] and guinea pigs [12], choroidal atRA synthesis is increased 
in treated eyes following induced myopia, a condition that is also associated 
with decreased proteoglycan synthesis in the posterior sclera but, in contrast to 
chicks, results in increased ocular elongation and myopia due to weakening of 
the fibrous sclera and localized ectasia at the posterior ocular pole. Considering 
the negative effect of atRA on scleral proteoglycan synthesis in animals contain-
ing either a single fibrous sclera (i.e., guinea pigs, primates) as well as chicks that 
contain both cartilaginous and fibrous scleral layers [9, 11], choroidally derived 
atRA represents a mechanism to regulate ocular length and refraction common to 
multiple species.

Furthermore, interpretation of experiments in which atRA agonists and atRA 
synthesis inhibitors are delivered either systemically or intraocularly is compli-
cated by the widespread multicellular effects of atRA. Eye growth is increased 
following dietary delivery of atRA to chicks and is decreased after oral delivery of 
citral, a non-specific inhibitor of atRA synthesis [61]. Similarly, intraocular deliv-
ery of the non-specific atRA synthesis inhibitor, disulfiram, inhibited the devel-
opment of form-deprivation myopia in chicks [60], a result generally opposite of 
what would be predicated if atRA acted to inhibit ocular elongation in chicks. It is 
likely that untargeted administration of atRA or use of non-specific atRA syn-
thesis inhibitors that also inhibit other aldehyde dehydrogenases lead to multicel-
lular effects that may differ from those mediated by endogenous atRA. We have 
recently developed a small molecule inhibitor, dichloro-all-trans-retinone (DAR) 
that is an irreversible inhibitor of RALDH1, 2, and 3 that effectively inhibits 
RALDH1, 2, and 3 in the nanomolar range but has no inhibitory activity against 
mitochondrial ALDH2 [69]. It is hoped that DAR, or similar compounds can be 
used to modulate endogenous concentrations of atRA through specific inhibition 
of the RALDH isoenzymes within the eye for future experimental and clinical 
studies to elucidate the role of atRA on postnatal ocular growth and myopia 
development.
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7. Conclusions

Although the cause of myopia in humans is complex, clinical and experimental 
studies indicate that failure of the emmetropization process often leads to the devel-
opment of myopia. It has been well-established that visually induced changes in 
ocular length are the result of altered extracellular matrix remodeling of the scleral 
shell. However no therapeutic targets have been identified and no pharmaceutical 
or optometric approaches have proven effective for the treatment of high myopia. 
The increasing prevalence of myopia and earlier age of onset emphasize the need 
for the development of an effective therapy. The identification of choroidal atRA, 
RALDH2, and the choroidal cells responsible for atRA synthesis, may provide new 
targets for the development of effective myopia therapies. Moreover the develop-
ment of small molecule inhibitors specifically targeting RALDH2 would greatly 
expand our basic understanding atRA’s role in postnatal growth and development 
as well as provide potential new therapies to slow or prevent the progression of 
myopia.
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