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Chapter

Regulation Effect of Different 
Water Supply to the Nitrogen and 
Carbon Metabolism
Szilvia Veres, László Zsombik and Csaba Juhász

Abstract

Drought stress and flood result in the generation and accumulation of active 
oxygen species, the peroxidation of membrane lipids, and reduction of nitrogen 
metabolism, photosynthesis, growth, and development, causing a significant 
decline in the qualitative and quantitative production. The water availability 
influences the different component of NUE and photosynthetic system and its 
connections. The goal of this chapter is to summarize the effect of water supply to 
the nitrogen and carbon metabolisms. Knowing about the value of nitrogen use effi-
ciency and photosynthetic parameters is really a useful essential for selecting and 
growing the best genotypes. But what will happen with these two crucial character-
istics of plants, if the environment for growing is not ideal?.
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1. Introduction

The most widely discussed projections—World Population Prospects every  
2 years—are those published by the United Nations from 1951. From this year they 
have published knowledge about the world population that increased more than 
400% over the twentieth century [1]. Expanding populations, income growth, 
and urbanization have brought about quantitative and qualitative changes in the 
demand for food. Agriculture faces multiple challenges: it has to produce more food 
to feed a growing population and more feedstocks for a potentially huge bioenergy 
market, adopt more efficient and sustainable production methods, and adapt to 
climate change. Although all of the challenges are more or less hang together, thus 
if we will be able to find a good point to step in, it can mean a medicine for all 
function. Climatic change is the middle of this complex problem; it is the reason 
and the solution as well. According to the most recent assessment report of the 
Intergovernmental Panel on Climate Change (IPCC), published in 2014, levels of 
anthropogenic emissions of greenhouse gases are now at their highest in history 
[2]. Agricultural production and its effect on land use are major sources of these 
emissions, by sharing methane and nitrous oxide gases. As more greenhouse gas 
emissions are released into the air, causing air temperatures to increase, more 
moisture evaporates from land and water bodies. Warmer temperatures also increase 
evaporation and evapotranspiration in plants and soils, which affects plant life and 
can reduce rainfall even more.
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Plant growth and productivity are adversely affected by water deficiency and/
or drought. Moreover, they are not able to solve their serious problem in a short way. 
Responses of plants to water stress may be assigned as either injurious change or 
tolerance index. Short-term acclimatization skills are not always enough mainly if any 
other loads are also presented. Therefore the development of plants with increased 
survivability and growth during water stress is a major objective in the breeding crops. 
All of the skills and traits of what the different plant genotypes are able to use need to 
be known to cope with water deficiency as single or under multiplied stress conditions.

2. Plant response to drought stress

Drought stress is one of the most common abiotic stresses for terrestrial plants  
[3, 4]. Drought adaptability of plants was defined as comprehensive capacity for adap-
tation to the drought stress and the re-watering cycle. Drought resistance and recovery 
determine drought adaptation of plants. Plants can increase the drought resistance 
through three strategies, namely, “drought escape,” “drought avoidance,” and “drought 
tolerance” (Figure 1). The “drought escape” strategy plants reduce life span and induce 
vegetative dormancy to escape severe drought stress [5]. Drought avoidance includes 
increasing water uptake ability and water use efficiency: stomatal closure, root systems, 
high capacity for water transport from roots to leaves, and high leaf mass per leaf area 
[6]. Behind the strategy of drought tolerance, the plant cells improve osmotic adjust-
ment ability, increase cell wall elasticity to maintain tissue turgidity, elevate antioxidant 
metabolism, and enhance the resistance to xylem cavitation [7].

It is possible to categorize plant responses to drought stress in accordance with 
the organizational level of study: from whole plant to molecular level. At molecular 
level: epigenomics, which affect DNA activity without modifying the gene sequence; 
transcriptomics, which are changes in gene expression; proteomics, referring to 
changes in proteins; and finally metabolomics, which are changes in metabolites [9]. 
Epigenetic mechanisms regulate chromatin structure, gene expression, transposon 
mobility, and DNA recombination [10]. Several authors have reported the dif-
ferential regulation of genes encoding epigenetic regulators [11–13] as well as local 
chromatin and DNA methylation changes in response to a variety of abiotic stresses 

Figure 1. 
Diagram about drought-adaptive capabilities during drought and re-watering cycle [8].
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[14–16] including drought [17–19]. Recent studies had been performed to investigate 
drought responses in plants using transcriptomic approaches [20, 21]. The differen-
tially expressed transcripts help for identifying the key genes in stress response and 
performing functional analysis to reveal their roles in stress adaptation in plants. 
High-throughput proteomics has proved to be a powerful tool for the comprehensive 
identification of drought-responsive proteins in plants [22]. In previous investiga-
tions, more than 2200 drought-responsive protein species have been identified in 
leaves [23]; these drought-responsive protein species are defined as 440 unique 
proteins on the basis of their protein sequence homology and functional domain 
similarity. Further progress in plant performance under stresses is expected by 
combining marker-assisted breeding with metabolite markers. The most dramatic 
effect on the metabolite composition was experienced in leaves compared with other 
organs [24]. Drought stress evoked the accumulation of many amino acids (glycine, 
serine) including isoleucine, valine, threonine, and 4-aminobutanoate, which has 
been reported in both field and greenhouse experiments in many plant species [25].

Plants can adapt to water deficiency by a wide range of alterations in their mor-
phology, anatomy, and physiology that have been the focus of many studies [26, 27]. 
Plant’s strategies on the whole plant level can lead to stomatal closure, reductions in 
photosynthesis and transpiration, growth inhibition, antioxidant production, and 
changes in hormonal composition [28–30]. Plants have evolved several strategies to 
cope with drought stress, including drought escape via a short life cycle or develop-
mental plasticity, drought avoidance via enhanced water uptake and reduced water 
loss, as well as drought tolerance via osmotic adjustment, antioxidant capacity, and 
desiccation tolerance [31]. Plant responses to drought stress also vary at different 
growth stages of the crop [32]. The decrease in yield varies from 13 to 94% in the 
investigated crops that were under drought stress [33].

3. Interaction between C and N metabolism

Nitrogen is an essential macronutrient for plants, and it can affect many aspects 
of plant growth and metabolic pathways [34–36]. Nitrate is a primary nitrogen 
source for photosynthetic organisms. The assimilation of nitrate-N into amino 
group of amino acids contains at least three main steps: nitrate uptake, reduction 
of nitrate to ammonium, and incorporation of ammonium to carbon skeleton. One 
of the main connections is that all assimilatory power utilized by plant metabolism 
originates from photosynthesis. In plant leaves nitrate assimilation is a direct 
photosynthetic process that increases the capacity of the photosynthetic apparatus 
for non-cycling electron flow, overcoming the limitation imposed by CO2 fixation 
through the Calvin cycle [37]. Nitrogen assimilation has an impact on the efficiency 
of CO2 fixation and the distribution of just fixed carbon among metabolite frac-
tions. Under limiting light intensity condition, there is a strong competition for 
reducing equivalents between CO2 and nitrate assimilation [38]. When the available 
nitrogen source is ammonium, there is no reduction in CO2 fixation under low light 
intensity; moreover ammonium has a positive effect on it [39]. Photosynthetic 
reactions are involved in the synthesis, regulation, and maintenance of the enzymes 
of nitrate assimilation pathway. Photorespiratory nitrogen metabolism is one of the 
important aspects of the interactions of carbon and nitrogen.

High carbohydrate content of grain (in maize, wheat) versus low nitrogen 
content indicates the crucial role of photosynthesis in attaining maximum yield. 
With the increased use of fertilizer N being closely associated with enhanced crop 
yields, it seems reasonable that both carbon and nitrogen metabolisms should be 
considered when attempting to identify factors that limit productivity [40].
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4. Water supply and nitrogen nutrition

Water and nitrogen are the most limiting factors in agricultural production 
in most parts of the world, which are able to determine and influence the carbon 
metabolism. Nitrogen is a vital structural component of proteins, ribulose-
1,5-bisphosphate carboxylase/oxygenase (Rubisco), nucleic acids, chlorophylls, as 
well as some hormones, and nitrogen fertilization is an essential agronomic man-
agement practice to enhance the crop productivity [41]. Primary carbon metabo-
lism is dependent on nitrogen assimilation, because much of the nitrogen pool of 
the plant is invested in the proteins (structural and enzymes) and chlorophyll of 
the photosynthetic apparatus. Leaf chlorophyll provides the platform for photo-
synthetic system [42], whereas Rubisco is the key enzyme involved in the process 
of photosynthesis [43]. A major part of plant nitrogen is stored in the enzymes 
participating in the photosynthesis especially Rubisco, which is a key source of 
N recycling [44]. The limitations in the photosynthetic process as a consequence 
of intensified drought stress not only impose direct drought stress-induced dam-
ages to plants but also result in light-induced oxidative stress. The lower efficiency 
of photosynthetic system under drought stress leads to the imbalance between 
absorbed light energy and its utilization in the carbon assimilation process, which 
in turn spares more electrons triggering the production of reactive oxygen species. 
Conversely, nitrogen assimilation requires a continuous supply of energy and car-
bon skeletons. Interconnected metabolic processes make the effect of water deficit 
on plant nitrogen nutrition status difficult to predict. An adequate assessment of 
the impacts of drought stress under different nitrogen levels on the physiological 
activities and yield attributes can provide the valuable insights for wheat cultiva-
tion under drought stress [45]. Efficient nitrogen nutrition has been reported to 
have the potential to alleviate the drought stress damages by maintaining metabolic 
activities even at low tissue water potential [31]. Abid et al. [46] published that 
higher N nutrition contributed to drought tolerance in wheat by maintaining higher 
photosynthetic activities and antioxidative defense system during vegetative growth 
periods. N-fertilized wheat plants responded more rapidly to increasing drought 
stress by closing stomata and reducing net photosynthesis [7].

The nitrogen form and the levels of nitrogen available affect root water uptake 
[47–49]. Synergetic transport has been found between nitrate and water uptake in 
roots. In plants supplied with nitrogen in both ammonium and nitrate forms, the 
high nitrogen supply also increased root hydraulic conductance in plants [50, 51]. The 
radial water transport also can be influenced by nitrogen nutrition. The water flow in 
apoplastic pathway is blocked by apoplastic barriers at the endodermis, and water flow 
continues through the symplastic pathway. The deposition of lignin and suberin in the 
endodermis may affect root hydraulic conductance; Ranathunge et al. [52] demon-
strated that high ammonium supply increased this deposition and thus decrease root 
hydraulic conductance. Drought stress may induce the alkalinization of leaf apoplast, 
in tomato [53] and hop [54], and especially in plants supplied with high nitrate [55].

5. Conclusion

Nitrogen is an essential nutrient for plants, and it can affect dry matter produc-
tion by influencing photosynthetic process in several direct and indirect ways. 
Drought is also a crucial abiotic factor in terms of photosynthesis and also means 
control for the nutrient nutrition of plants. The effect of water deficit on nitrogen 
nutrition has been the subject of considerable research on several plants [7, 56, 57]. 
The interconnected metabolic processes make it difficult to predict the effect of 
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water deficit on plant nitrogen nutrition status and the exact regulation point in the 
carbon metabolism. In the future we need to know more skills and traits what the 
different plant genotypes are able to use to cope with water deficiency as single or 
under multiplied stress conditions.
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