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Chapter

Targeted Photodynamic Therapy 
as Potential Treatment Modality 
for the Eradication of Colon 
Cancer
Cherie Ann Kruger and Heidi Abrahamse

Abstract

Photodynamic therapy (PDT) can be used to treat colorectal cancer (CRC). 
When a photosensitizer (PS) drug is administered to a patient, it can either pas-
sively or actively accumulate within a tumor site and once exposed to a specific 
wavelength of light, it is excited to produce reactive oxygen species (ROS), resulting 
in tumor destruction. However, the efficacy of ROS generation for tumor damage is 
highly dependent on the uptake of the PS in tumor cells. Thus, PS targeted uptake 
and delivery in CRC tumor cells is a crucial factor in PDT cancer drug absorption 
studies. Generally, within non-targeted drug delivery mechanisms, only minor 
amounts of PS passively accumulate in tumor sites and the remainder distributes 
into healthy tissues, causing unwanted side effects. To improve the efficacy of 
PDT research is currently focused on the development of specific receptor based 
photosynthetic nanocarrier platform drugs, which promote the active uptake and 
absorption of PS drugs in CRC tumor sites only, avoiding unwanted side effects, as 
well as treatment enhancement. This chapter will focus on current actively targeted 
PS nanoparticle drug delivery systems, which have been investigated for the PDT 
treatment of CRC cancer.

Keywords: colorectal cancer, photodynamic therapy, photosensitizer, nanoparticles, 
targeted drug delivery

1. Introduction: colorectal cancer (CRC)

There are over a million new cases of colorectal cancer (CRC) being diagnosed 
worldwide each year [1]. CRC is known to be the third most commonly diagnosed 
cancer malignancy worldwide and is the fourth most frequent cause of cancer 
related cell deaths, with around 0.6 million deaths annually [2].

CRC is an uncontrolled growth that originates within polyps that are found in 
the inner lining of either the colon or rectum [3]. The intestinal wall of the colon and 
rectum is made up of many layers [3]. CRC polyp growth formation begins within 
the innermost mucosal layers of either the colon or rectum and these polyps can grow 
outward through some or all of these intestinal layers [1]. When CRC primary polyp 
cells growth spreads from the inner to the outer intestinal walls, they can grow into 
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blood or lymph vessels and so spread to other parts of the body forming secondary 
cancer metastasizes [1]. Adenocarcinomas polyps originate within intestinal cells that 
produce mucus to lubricate the inside of either the colon or rectum and this is the most 
common form of CRC, with approximately 96% of cases, being diagnosed annually 
[3]. Other less common types of CRC tumors that can originate in colorectal tissues or 
cells include: lymphomas, sarcomas, gastrointestinal carcinoid or stromal tumors [3].

The risk of developing of CRC is often attributed to either a variety of environ-
mental factors or genetic predispositions. Approximately 25% of diagnosed CRC 
cases can be attributed to inherited syndromes, while the remaining 75% cases are 
due to external environmental contributing factors [4, 5]. The most common CRC 
inherited syndromes include familial adenomatous polyposis (FAP) and hereditary 
nonpolyposis colorectal cancers (HNPCC) [4]. While common triggering environ-
mental factors include: diets which are low in fiber and high in fat and red meat, 
low physical activity, obesity, heavy alcohol consumption, cigarette smoking and 
deskbound seated occupations [5].

Even though numerous advances have been made in relation to early diagnosis 
and treatment of CRC, tumor reoccurrence and metastatic spread are two critical 
factors which affect the survival rate of patients [6]. Dependent on the stage at 
which they have been diagnosed, approximately 25% of patients with CRC at time 
of diagnosis have metastases (due to late detection) and 50% of patients diagnosed 
with CRC will develop metastases, either at presentation or during follow-up [7, 8].

2. Resistance of CRC to conventional treatments

The most common conventional treatments for CRC include surgical resection, 
chemotherapy or radiation therapy [9]. These treatments are either used in combi-
nation or alone depending on the stage at which the disease has been detected and 
diagnosed [9].

In early stages (0 to I) of CRC diagnosis, the most common treatment practice is 
surgical resection of the CRC polyps, without any further need for treatment [10]. 
In stages II to III of CRC detection, surgical resection with lymph node dissection to 
examine for presence of cancer cell spread, is standard practice [11]. Patients with 
stage IV CRC disease often require chemotherapy and/or radiation therapy com-
bined with surgery to treat the disease [12].

Typical standard CRC chemotherapy treatment regimens include; FOLFOX: 
leucovorin, 5-fluorouracil (5-FU), and oxaliplatin (Eloxatin), FOLFIRI: leucovorin, 
5-FU, and irinotecan (Camptosar), CAPEOX or CAPOX: capecitabine (Xeloda) 
and oxaliplatin, FOLFOXIRI: leucovorin, 5-FU, oxaliplatin, and irinotecan, one of 
the previous combinations, plus either a drug that targets VEGF, (bevacizumab 
[Avastin], ziv-aflibercept [Zaltrap], or ramucirumab [Cyramza]), or a drug that 
targets EGFR (cetuximab [Erbitux] or panitumumab [Vectibix]) or 5-FU and leu-
covorin, with or without a targeted drug, Capecitabine, with or without a targeted 
drug, Irinotecan, with or without a targeted drug, Cetuximab alone, Panitumumab 
alone, Regorafenib (Stivarga) alone, Trifluridine and tipiracil (Lonsurf) [13].

Thus, 5-FU-based chemotherapy remains the mainstay of therapy for patients 
with CRC, however in recent year’s chemotherapy drugs such as oxaliplatin, 
irinotecan and capecitabine have been developed and generally conventional 
chemotherapy treatment for advanced CRC combines 5-FU and leucovorin with 
oxaliplatin or irinotecan [14]. The greatest strides over recent years in chemo-
therapy treatments have been combining these drugs with monoclonal antibod-
ies such as Bevacizumab and Cetuximab in order to target vascular endothelial 
growth factor (VEGF) or epidermal growth factor receptor (EGFR) which are 
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respectively overexpressed in CRC cells [14, 15]. Angiogenesis, plays an important 
role in CRC tumor development and metastasis, is partly mediated by vascular 
endothelial growth factor (VEGF), thus by combining chemotherapeutic drugs 
with Bevacizumab monoclonal antibodies, VEGF overexpressed receptors can 
be targeted to enhance drug uptake and so improve treatment [14, 15]. Likewise, 
since EGFR plays and important role in tumorigenesis, it is often found to be over-
expressed in a high percentage of patients with late-stage colorectal cancer and 
by combining chemotherapeutic drugs with Cetuximab monoclonal antibodies, 
chemotherapeutic drug targeting and uptake can be promoted [14, 15]. Moreover, 
by utilizing chemotherapy monoclonal antibody treatments for CRC, resistance to 
EGFR inhibitors may be partially mediated, by activating VEGF-dependent signal-
ing, and so drug delivery strategies that combine anti-EGFR and anti-VEGF agents 
appear promising [15].

Overall, the choice of these various chemotherapy treatment regimens for CRC 
depends on various factors such as previous treatments received, if the regime is no 
longer working and the patients overall health [13]. For some patients with certain 
genetic marker changes in their CRC cells another treatment option after chemo-
therapy to be considered is immunotherapy with pembrolizumab [13].

Nevertheless, despite the improved CRC response rates with these various 
advanced strategies, the overall survival rate for metastatic CRC remains only 
slightly over 12% [18]. One of the major causes for this poor survival rate is due to 
the fact that nearly half of all metastatic CRC patients are resistant to 5-FU-based 
chemotherapies, which demises their overall treatment and recovery [14]. The 
reason for the development of chemotherapeutic drug resistance in CRC cells is that 
they have the ability to enhance DNA repair mechanisms, deregulate signaling path-
ways, as well as increase drug metabolism [16]. Generally, 90% CRC patients report 
drug resistance to chemotherapies, resulting in poor treatment due to oncogene 
mutations, which deregulate signaling pathways [16]. This deregulation of signaling 
pathways, results in increased aerobic glycolysis, fatty acid synthesis, and glutamine 
metabolism causing a decrease in chemotherapeutic drug induced apoptosis [17]. 
Moreover, drug efflux transporter proteins are often found to be overexpressed in 
drug-resistant CRC cells, which decrease the successful uptake of chemotherapeutic 
drugs in cancer cells [6, 18]. Thus, if metastases has occurred, chemotherapy will 
probably not be curative and so only help in improving prognosis via tumor shrink-
age [19]. Thus continuous research is required into CRC in order to unravel these 
multiple drug resistance mechanisms and so develop improved treatment regimens 
with better outcomes [18, 19].

Radiation therapy is usually utilized pre-CRC surgical resection in stages II to 
IV, depending on the degree of metastasis, to shrink un-respectable tumors or to 
try and help control the cancer that has spread to other parts of the body [11, 20]. 
However, radiation therapy has numerous unwanted side effects in patients receiv-
ing such treatments, which include: nausea, stool leakage, fatigue, sexual problems, 
skin irritation, rectal irritation and diarrhea [21]. Moreover, some CRC patients 
have noted resistance to radiation therapy, whereby in response to radiation DNA 
damage, Ataxia Telangiectasia Mutated (ATM) genes and anti-apoptotic factors 
phosphatases of regenerating liver-3 (PRL-3) become activated in cancer cells and 
so begin to regulate cancer cell pro-survival and resistance [22]. Additionally, these 
genes have been noted to be overexpressed in CRC patients whom have previ-
ously received radiation therapy and their cancer has reoccurred, shortening their 
survival [23].

Moreover, in addition to resistance to conventional treatments, the metastasis 
spread of CRC is of major concern. Primary CRC tumors are highly prone to TGF-β, 
PIK3CA, and TP53 gene mutations and since these genes are responsible for clonal 
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expansion and invasiveness, the metastatic cellular potential of CRC to spread 
is high [24]. Lastly, another important factor in CRCs resistance to conventional 
therapies and metastasis, is the presence of cancer stem cells, since these cells have 
the ability to go by undetected (due to their slow growth) and so enhances CRC 
treatment resistance, as well as allows this type of cancer to initiate new tumor 
growth and so metastasize [6].

Thus, currently conventional treatments are not very successful at curing CRC 
and patients are at high risk of developing secondary cancers, due to the ease at 
which this cancer can migrate through the blood and lymphatic systems to other 
parts of the body, such as the liver, lungs and digestive system [8, 25]. Thus, there is 
dire need to investigate other alternative therapies for the treatment of CRC.

3. Photodynamic therapy an unconventional treatment for CRC

Photodynamic therapy (PDT) is a promising unconventional treatment method 
for CRC (Figure 1) [8].

PDT treatment is a coordinated process, which begins with the intravenous 
administration of a photosensitizer (PS) drug [8]. Once the PS drug enters the 
blood stream it is then either passively or actively absorbed in tumor site, depend-
ing on the PS drug delivery mechanism that is involved [26]. Within standard 
conventional PS drug delivery mechanisms the advantage is that the PS drug tend 
to preferentially localize in diseased tissue via the enhanced permeability reten-
tion (EPR) effect and so is passively absorbed, promoting PDT induced tumor 
destruction with only slight healthy tissue damage [26]. However, current research 
studies are focused on improving PS passive drug uptake via chemical or functional 
modifications in order to promote a more specific and actively targeted PS delivery 
in cancer cells only, so that photosensitivity, localized healthy tissue destruction 
and other additional unwanted side effects can possibly be eliminated [26]. Since, 
PS drugs are light absorbing molecules their activation is achieved when they are 

Figure 1. 
PDT treatment of CRC. PS drugs are administered to a patients CRC tumor site via a colonoscopy endoscope, 
whereby they localize in targeted tumor cells. Laser light irradiation is then also administered to the target 
tumor site via a colonoscopy endoscope, whereby it penetrates the large intestines tissues/tumor and activates 
the PS. The PS then undergoes a photoreaction to produce ROS and/or singlet oxygen, which in turn induces 
cytotoxic cell death in CRC tumor tissues.
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exposed to laser irradiation light at a specific wavelength [26]. Thus when a tumor 
(which contains the localized PS drug) is exposed to laser irradiation light, the PS 
absorbs the photons and becomes excited [2]. This excitation promotes the PS from 
a ground state to a higher level of energy known as a singlet state [27]. This singlet 
state is very short lived and PSs return to their ground state rapidly after losing 
their energy to fluorescence or internal heat conversion [27]. However, the singlet 
state PS may also convert to a triplet state via intersystem crossing, resulting in an 
electron spin change, which if reacted with molecular oxygen (as found in cells), 
it will give rise to free reactive oxygen species (ROS), which can result in tumor 
destruction [27].

Since the colon can be easily accessed via the rectum opening of the large 
intestine using an endoscope, this form of oncological PDT treatment for CRC 
tumors is possible [8]. Studies by Hodgkinson et al. [2] and Kawczyk-Krupta et al. 
[8] have noted that the PDT treatment of CRC which are inoperable, have only 
slightly advanced lesions/polyps or massive advanced tumors is a safe and feasible 
treatment option. Thus, colonoscopy endoscopes are used to directly deliver PS 
drugs to target tumor regions, as well as administer the required wavelength of laser 
irradiation light to activate a PS drug [2, 8].

The overall ability of PDT to successfully destroy cancer cells depends of the effi-
cacy of ROS production in target cells. ROS can be produced via two different types 
of photoreactions (Figure 2) [26]. Within photoreaction type I, the PS drug reacts 
with surrounding cellular biomolecules via a hydrogen atom electron transfer to form 
free radicals, which react with cellular molecular oxygen, generating ROS, which 
in turn induces oxidative stress in target cells and so destroys them [27]. Whereby 
within photoreaction type II, the PS drug reacts directly with molecular oxygen in the 
cell to form singlet oxygen species, which are able to oxidize various substrates within 
target cells and so induce cell death [27]. When ROS and singlet oxygen species are 
generated from a PDT reaction, they are cytotoxic and so oxidize various substrates 
in a tumor cell inducing stress that triggers various cell death pathways such as 
apoptosis, autophagy or necrosis. Both types of photoreactions may occur simultane-
ously, however type I reactions generally favor apoptotic death in tumor cells [28]. 
Additionally, the effectivity of both photoreaction pathways depends on the type of 

Figure 2. 
PDT photophysical and photochemical mechanism of action for PS drug activation in tumor cells. When a PS 
drug is activated at a specific wavelength of light it becomes excited and so reacts with either molecular oxygen 
or other substrates within the surrounding areas of a cell, generating ROS, which in turn induces oxidative stress 
in cells triggering various cell death pathways and overall tumor destruction.
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PS drug administered, where is localized in the tumor cell, as well as the amount of 
molecular oxygen present within the tumors microenvironment [29].

In the absence of laser irradiation light the PS drug remains inactive and so is not 
phototoxic in the body, therefore PDT can provide an alternative method to eradi-
cate target tumor cells (since it is a localized treatment), while avoiding systematic 
toxicity and unwanted side effects when compared to conventional therapies 
(which affect healthy cells and tumor tissues) [26]. Thus, the major advantage of 
PDT over conventional therapies is that PS drugs tend to preferentially localize and 
be passively absorbed in tumor cells due to the enhanced permeability retention 
(EPR) effect and so their selective uptake can be achieved, allowing only minimal 
damage to healthy surrounding cells to occur during treatment [30]. Therefore, 
PDT can provide an alternative for the treatment of CRC, since it can avoid sys-
tematic toxicity, is minimally invasive, has a low morbidity rate, has the ability to 
preserve the anatomical function of healthy tissues, has minimal side effects, has no 
drug resistance and allows for repeated treatments [31].

However, in relation to PS drug delivery mechanisms CRC PDT research has 
now begun to focus on more selective passive (e.g. nanocarriers) and active (e.g. 
antigen–antibody targeting) uptake delivery mechanisms in tumor cells in order to 
further improve the efficacy of treatment [26]. These actively targeted PDT PS drug 
delivery mechanisms ensure preciously targeted PS drug delivery and localization 
in CRC only so that no damage occurs to normal healthy surrounding tissues [26].

4. PS drugs for CRC

PS drugs generate cytotoxic ROS or singlet oxygen species when they become 
activated at a particular wavelength, which in turn induces physical or chemi-
cal damage in target tumor cells [28]. In relation to the activation of PS drugs for 
effective PDT, it is important that they have a high molecular absorption coef-
ficient within the red spectrum of light (650–780 nm), as to ensure maximum 
light absorption for PS excitation (as some endogenous human body pigments can 
absorb light), warrant minimal patient photosensitivity before treatment, as well as 
guarantee deep tissue penetration in target tumor sites [32, 33].

PSs are generally categorized into four different groups dependent on their 
functional capabilities. First generation PSs are one of the first types of PSs to be 
developed in PDT applications and they are stable, however have been shown to 
induce photosensitivity in patients and are activated within the lower red regions 
of light and so have a poor laser light tissue depth excitation range (e.g. haemato-
porphyrin derivatives) [33]. Second generation PSs have been further researched in 
PDT applications and since they are activated within the higher red regions of light, 
they have reported far less patient photosensitivity, with far deeper tissue laser light 
excitation (e.g. phthalocyanines, benzoporphyrins, purpurins, hypercin and chlo-
rines [34]. Third generation PSs are currently the most promising PS drugs which 
are currently being researched within PDT cancer treatments [10]. Third generation 
PSs comprise of second generation PS drugs which have been chemically modified, 
functionalized or bound to nanoparticles (in order to promote their passive uptake) 
or active targeting biomolecules (such as aptamers, peptides, monoclonal antibod-
ies, in order to promote their specific uptake in cancer cells only) [33]. In relation 
to current research, third generation PSs are reporting enhanced uptake in cancer 
cells with some of the most promising PDT treatment outcomes in CRC patients 
[33]. Lastly, most recent research has also begun to develop fourth-generation PS, 
which consist of second-generation PS encapsulated in a nanoparticle delivery 
system so its of third generation, however it is additionally co-encapsulated with a 
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Photosensitizer Remarks Ref.

In vitro PDT CRC research

3,4,5-trimethoxyphenyl, 

3-hydroxyphenyl,4-hydroxyphenyl and 

sulfonamide phenyl porphyrin derivatives

Significant apoptotic cell death within HCT-

116 CRC cells.

[37]

5,15-diaryltetrapyrrole derivatives 

porphyrin derivatives

Significant apoptotic cell death within HCT-

116 CRC cells, with high yields of ROS being 

noted.

[38]

5-aminolevulinic acid Enhanced PS uptake and improved PDT was 

noted within SW-480, HT-29 and CaCO-2 

CRC cell lines.

[39]

5-aminolevulinic acid (ALA) After PDT prognostic factor S100 protein 

concentration was reduced by 27% in SW480 

and by 30% in SW620 CRC cell lines.

[40]

5-aminolevulinic acid (ALA) Following PDT treatment autophagy cell 

death in human SW620 colon carcinoma cells 

was observed.

[41]

Chlorin e6 (Ce6) CRC in vitro SW620 cells noted PDT induced 

apoptotic cell death.

[42]

Gallium phthalocyanine CaCO-2 CRC cell line reported PDT induced 

cytotoxic effects.

[43]

Glycoconjugated chlorin (H2TFPC-SGlc) MKN28, MKN45, HT29 and HCT116 CRC 

cell lines noted suppressed cell growth and 

apoptotic cell death post-PDT.

[44]

Hypericin High doses induced massive ROS generation 

and severe ER stress, which then led apoptotic 

cell death while low doses triggered protective 

autophagy and promoted cell proliferation.

[45]

Indocyanine green Effective ROS generation was observed with 

apoptotic cell death within in vitro cultured 

colon cancer cells at high PS concentrations.

[46]

Lysosome localizing Chlorin e6 (Ce6) 

ATX-S10Na(II)

Within CRC HCT116 cells, early apoptosis via 

Bax- and p53-dependent proteins was noted 

post-PDT.

[47]

Meta-tetra (hydroxyphenyl) chlorine 

(mTHPC)

Liposomal PS sub cellular localized 

localization in Colo-201 CRC cells was noted 

with significant cytotoxic apoptotic PDT 

induced cell death.

[48]

Meta-tetrahydroxyphenylchlorin PS reported and effective PDT dose dependent 

effectivity in inhibiting cell proliferation, 

decreasing migration ability and colon 

formation within SW620 CRC cell lines.

[3]

Palmatine hydrochloride (PaH) PDT showed significant photocytotoxicity on 

HT-29 cells and apoptotic cell death increased 

significantly in PS concentration-dependent 

and light dose-dependent manner.

[49]

Pheophorbide-a methyl ester (PPME) HT-29 CRC cell line noted significant 

apoptotic cell death post-PDT treatment.

[50]

Photofrin II (Ph II) and hypericin (Hyp) Combination of both PS post-PDT noted 

more effective cell death within doxorubicin-

resistant LoVo DX CRC cell lines by reducing 

the multidrug resistance efflux protein 

P-glycoprotein (P-gp) and so promoted 

improved cytotoxic cell death.

[51]



Multidisciplinary Approach for Colorectal Cancer

8

small-molecular inhibitor system capable of blocking any tumor survival pathways 
post PDT, in order to halt possible tumor reoccurrence [35]. However, in relation to 
fourth-generation PSS this form of PDT treatment research is limited to only being 
able to target and inhibit VEGFs, in order to promote PS drugs uptake and so deter 
the neovascularization of tumors, preventing CRC tumor metastatic spread and 
reoccurrence [35].

At the moment clinically FDA approved first and second generation PSs for 
PDT oncology include: Porfimer sodium (Photofrin), 5-Aminolevulinic acid 

Photosensitizer Remarks Ref.

Porfimer sodium (PII) and 

2-[1-hexyloxyethyl]-2-

devinylpyropheophorbide-a (HPPH)

PDT controlled metastatic tumor growth in 

murine colon 26-HA cells and enhanced anti 

tumor immunity.

[52]

Protoporphyrin IX (PpIX) Enhanced the apoptosis in HCT116 CRC cell 

line

[53]

Sulfonated zinc phthalocyanine (ZnPcSmix) Within CRC DLD-1 and CaCo-2 cells the PS 

localized in multiple organelles and noted 

significant apoptotic PDT induced cell death.

[54]

Tetra-α-(4-carboxyphenoxy) 

phthalocyanine zinc

Noted interaction between p38 MAPK and 

caspase-9 regulated mitochondria-PDT 

mediated apoptosis in LoVo human colon 

carcinoma cells.

[55]

δ-aminolevulinic acid (ALA) CRC cell lines SW480 and SW620 were treated 

in sublethal doses with ALA PDT in hypoxia- 

like conditions with cobalt chloride and noted 

decreases release of VEGF and significant 

tumor inhibition.

[56]

In vivo PDT CRC research

Bacteriochlorin analogues: 3-(1′-butyloxy)

ethyl-3-deacetyl-bacteriopurpurin-18-N-

butylimide methyl ester

High tumor uptake and long-term cure within 

BALB/c mice bearing Colon 26 tumors.

[57]

Hydrophilic bacteriochlorin (F2 BOH) PDT enabled long-term cures of BALB/c 

mice with subcutaneously implanted CT26 

tumors, and the cured mice rejected tumor 

re-inoculation 1 year after the treatment.

[58]

Metalloporphyrin Ga-4cisPtTPyP 

(5,10,15,20-tetrakis{cis-diammine-chloro-

platinum(II)}(4-pyridyl)-porphyrinato 

gallium(III) hydroxide tetranitrate)

High tumor accumulation and almost 

completely inhibited tumor growth over 

2 weeks in BALB/c mice bearing Colon 26 

tumors.

[59]

Photosan-II (PS-II) and chloroquine Significantly reduced the tumor size in a 

xenograft mice model and induced apoptotic 

and autophagy cell death within in vitro 

SW620 and HCT116 cells.

[60]

Porphyrazine platform with gadolinium 

(III) cation chelated by tetrapyrrole 

macrocycles (GdPz1 and GdPz2)

Selective in vivo accumulation within murine 

colon carcinoma CT26 models was observed, 

with significant inhibition of tumor growth.

[61]

Redaporfin Single dose was well tolerated by male BALB/c 

mice with subcutaneously implanted colon 

(CT26) tumors and PDT led to the complete 

tumor regression in 83% of the mice.

[62]

Table 1. 
Current PDT studies which utilize different types of PS for the in vitro, in vivo or clinical treatment of CRC.
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(Levulan), Methyl aminolevulinate (Metvixia), Meta tetra(hydroxyphenyl) 
chlorin (Foscan), N-aspartyl chlorin e6 (NPe6, Laserphyrin), Benzoporphyrin 
derivative monoacid ring A (Visudyne) and N-hexyl ester of ALA (Cysview) 
[32–35]. Whereas, first- and second-generation PSs, which are currently under 
clinical trials include; Hypocrellin A, Pheophorbide-a, Chlorin e6, Methylene Blue, 
Hypericin, Phthalocyanine, Rose Bengal, HPPH: 2-(1-Hexyl-oxyethyl)-2-devinyl 
pyropheophorbide-alpha [30, 34, 36]. However, in relation to third and fourth gen-
eration PSs, none to date have received clinical approval for PDT CRC treatments 
and so remain a commanding area of research focus [26]. Table 1 shows various 
research studies currently that have been performed with different types of PSs for 
the PDT treatment of CRC.

To date only one single successful clinical study from 2016, utilizing Photofrin 
II (Ph II) PS PDT drug on 23 young patients with advanced CRC, noted improved 
clinical symptoms and reduce complications post-PDT treatment [63]. These find-
ings suggest that more research is required to develop better PS drugs to withstand 
clinical trials.

5. PDT CRC clinical challenges

Despite the many positive features of CRC PDT, within clinical settings this 
form of treatment has experienced some drawbacks in relation to PS drug solubility, 
mode of delivery and selective tumor uptake [64, 65].

In order to ensure the maximum levels of ROS are generated during a PDT 
treatment, as to ensure complete tumor destruction, the highest possible con-
centrations of PS drugs must be able to be successfully delivered and localize in 
target tumor tissues [27]. Within PDT clinical settings using first and second 
generation PS drugs, poor outcomes and effectiveness has been noted, as only 
minor amounts of PS drugs are able to overcome the human bodies biological 
barriers and so passively accumulate (due to the EPR effect) in tumor cells, 
generating very low levels ROS and tumor destruction [2, 31]. Additionally, due 
to this passivation process sometimes PS drugs can accumulate in healthy tissues 
inducing unwanted PDT side effects such as patients’ photosensitivity and dam-
age to normal tissues [26].

Figure 3. 
Passive PS NP drug delivery versus active targeting moiety conjugated PS NP drug delivery, which shows 
targeted and enhanced CRC tumor PS drug uptake for more effective PDT treatment outcomes.
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Another issue sometimes noted in clinical settings is that PS drugs have limited 
solubility and so tend to aggregate during administration, limiting their overall 
uptake and effectivity [2]. Moreover, a PS drugs concentrated subcellular localiza-
tion in a tumors mitochondria, lysosomes, endoplasmic reticulum, plasma mem-
brane etc., is of utmost importance since ROS have only a very short half-life and so 
will only induce effective cell death in tumor cells if they are proximately localized 
within these organelles [29, 32].

Thus, shortcomings such as poor solubility, bioavailability, maximum ROS 
generation and tumor subcellular localization targeting need to be overcome in 
order to ensure the effectivity of PDT [26]. Nevertheless third generation PS drug 
nanoparticle (NP) drug carriers are currently being investigated to ensure PS drug 
solubility and improved passive uptake, with functionalized active targeting abili-
ties (e.g. overexpressed peptides), as to ensure specific uptake in tumor cells only to 
enhance the overall efficacy of PDT (Figure 3) [29, 32].

6. Nanoparticles for enhanced passive PS drug delivery and PDT

Passive PS uptake makes use of the drugs physiochemical factors, as well as the 
morphological and physiological differences between tumor and tissues (i.e. EPR 
effect) to allow PSs to accumulate in tumor sites [30].

There has been great interest in combining PS drugs with NPs in order to over-
come some of the challenges conventional PS drug delivery mechanisms experience 
in clinical settings [65]. This is because NPs can enhance PS drug passive uptake, 
promote solubility, stability and limit non-specific toxicity [66]. Additionally, 
NPs can mimic biological molecules and so when combined with PSs, they go by 
unnoticed by immune barriers, remaining in tacked and so improved passivation 
of PS drug uptake in tumors [33]. Examples of nanoparticle platforms to assist 
in the passivation PS drug delivery for PDT CRC treatment include: liposomes, 
polymers, micelles, dendrimers, silica, nanoemulsion, nanotubes and nanogels 
[67]. Moreover, these NP platforms (especially polymeric NPs) have the additional 
benefit of protecting PS drugs against chemical and enzymatic gastrointestinal 
tract degradation, and so increase the drugs stability and cellular uptake within the 
intestinal epithelium [68, 69]. Various studies listing the effective passive PS drug 
delivery in CRC tumors utilizing NP carrier platforms have been listed in Table 2.

In vitro and in vivo PDT CRC research

Photosensitizer Nanoparticle Remarks Ref.

5-(4-aminophenyl)-

10,15,20-triphenylchlorin 

and 5-(4-carboxyphenyl)-

10,15,20-triphenylchlorin

Chitosan Drugs localized in endocytic vesicles of HCT116/

LUC human colon carcinoma cells and within 

tumor-bearing mice, showed strong PDT 

treatment.

[70]

5,10,15,20-Tetrakis(4-

hydroxy-phenyl)-21H, 

23H-porphine (pTHPP)

Polyhydroxyalkanoates 

(PHAs)

In vitro photocytotoxicity in human colon 

adenocarcinoma cell line HT-29 revealed time and 

concentration dependent cell death.

[71]

5-aminolevulinic acid Co polymer methoxy 

poly(ethylene 

glycol)-chitosan

Enhanced delivery and PDT phototoxicity. [72]

5-aminolevulinic acid 

(ALA)

Chitosan Enhanced cellular absorption in Caco-2CRC cells. [73]

5-flurouraci (5-FU) Solid lipid Enhanced delivery and PDT phototoxicity, within 

CRC cells and chemo resistant stem-like cells.

[74]
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In vitro and in vivo PDT CRC research

Photosensitizer Nanoparticle Remarks Ref.

Chlorin e6 (Ce6) Methoxy poly(ethylene 

glycol) (MePEG)

Showed enhanced cellular uptake, phototoxicity, 

and ROS generation within in vitro CRC cells and 

reported improved tumor tissue penetration and 

accumulation within in vivo animal studies.

[75]

Chlorin e6 (Ce6) Polymeric carrier 

polyvinyl alcohol 

(PVA)

Noted higher uptake in murine colon carcinoma 

CT26 tumors models with significant tumor 

regression and necrotic cell death.

[76]

Chlorin e6 (Ce6) Doxorubicin (DOX)-

loaded micelles with 

mPEG lipoic acid (LA)

PS and anticancer drug are colocalized in within in 

vitro CT-26 and HCT-116 CRC cells. Dual therapy 

induced apoptotic cell death and inhibited tumor 

growth in CT-26 tumor bearing mouse model

[77]

Curcumin and 5-fluorouracil Chitosan CRC HT29 cell line had a 3-fold increase in 

anticancer effects.

[78]

Cyanine IR-780 Solid lipid and 

flavonoid derivatives 

for electroporation

Showed improved uptake and demonstrated the 

ability to act as an anticancer PDT modality to 

eliminate LoVo and CHO-K1 CRC cells in vitro

[79]

Diaryl-porphyrin (PMMA@

PorVa)

Core-shell poly-methyl 

methacrylate

Human colon carcinoma cell line HCT116 noted 

PDT induced apoptotic cell death.

[80]

Dimeric zinc(II) 

phthalocyanine

Alkyne-modified 

mesoporous silica

Exhibited high intracellular fluorescence in 

human colon adenocarcinoma HT29 cells with 

notable photocytotoxicity

[81]

Hypericin Pluronic P123 (P123) In vitro Caco-2 and HT-29 intestinal colon 

carcinoma cells noted 90% photocytotoxic cell 

death.

[82]

Indocyanine green (icg) Super carbonate apatite 

(sCA)

In vitro and in vivo HT29 CRC tumors exhibited 

drastic and highly significant tumor growth 

retardation.

[83]

IR780 iodide Pluronic coated gold Show enhanced phototherapeutic and 

photothermal activity with no dark cytotoxicity 

within in vitro murine colon carcinoma cells 

(C26).

[84]

Meso-tetra (carboxyphenyl) 

porphyrin (TCPP)

Poly(D,L-lactide-co-

glycolide) (PLGA)

Improved uptake of PS, with enhanced 

phototoxicity within in vitro SW480CRC cells and 

dramatic tumor-inhibiting efficacy in four-week-

old female athymic mice.

[16]

Meta-tetra (hydroxyphenyl) 

chlorine (mTHPC)

Liposomal formulation 

FosPeg®

Improved PS absorption with enhanced 

phototoxicity and cell death in HT29 cell lines.

[85]

Oxaliplatin Chitosan micelles Eliminated bulk CRC cell populations and stem-

like cells both in vitro and in vivo.

[86]

Photoprotoporphyrin 

IX dimethyl ester 

(PppIX-DME)

Polyethylene glycol and 

polylactic acid block 

copolymer (PN-Por)

Noted improved uptake and sustained release 

within in vitro Colon-26 carcinoma and efficient 

tumor deposition was found in C26 tumor-

bearing mice with a significant and highly 

effective PDT anti-tumor effect.

[87]

Porfimer sodium (PII) and 

2-[1-hexyloxyethyl]-2-

devinylpyropheophorbide-a 

(HPPH)

Polymeric tubule-

forming phospholipid, 

DC PC with PEGylated 

lipid

Enhanced tumor accumulation and superior 

therapeutic efficacy in HT29 tumor mouse 

xenographs and Colon-26 bearing BALB/c mice 

showed no tumor reoccurrence up to 100 days.

[88]

Porphyrin Nano micelles and 

SN-38 (7-ethyl-10-

hydroxycamptothecin) 

chemotherapeutic drug

Synergistic chemo drug and PS dramatically 

enhanced in vivo antitumor PDT efficacy over 

single treatment in nude mice bearing HT-29 colon 

cancer xenograft.

[89]
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7.  Active targeting biomolecules for enhanced PS drug  
delivery and PDT

Active PDT PS drug delivery involves the conjugation of the PS drug to 
specific ligands or biomolecules moieties, which are complementary to overex-
pressed cancer cell receptors and so via a molecular recognition process PS drug 
uptake in target tumor cells is enhanced [31]. These moieties include monoclonal 
antibodies (mAb), proteins (e.g. transferrin), nucleic acids (aptamers), small 
molecules (folic acid), polymers (hyaluronic acid) and peptides (proteins), which 
are over-expressed on CRC tumor cells only [31, 96]. These specific ligands or 
biomolecules moieties, which are conjugated to a PS NP drug delivery system, 
have a specific affinity for receptors that are over-expressed on CRC tumor cells 
and their vascular, but not on normal cells [34]. This facilitates enhanced PSs 
retention in tumor target sites only, improving the efficacy of PDT and local-
izing its treatments effectiveness to killing CRC tumors only [34]. Common 
protein receptors in CRC cells which have been noted to be overexpressed and so 
can be utilized for possible PS active drug targeting include: epidermal growth 
factor receptor (EGFR), fibroblast growth factor receptor (FGFR), epithelial 
cell-adhesion molecule (EpCAM), carbonic anhydrase IX (CA IX), peroxisome 
proliferator-activated receptor γ (PPARγ), cyclooxygenase-2 (COX-2), cholesterol 
and low-density lipoprotein, estrogen receptors, cholecystokinin A receptors, 
lectin saccharide receptors, anti-DR5 antibody, as well as cluster of differentiation 
44, 133, 166 and 24 (CD44+, CD 133+, CD166+ and CD24+) [13, 97–99]. Recent 
research approaches to enhance PS NP drug delivery by actively targeting CRC 
tumors using various moieties and so increase the efficacy of PDT have been 
listed in Table 3.

In vitro and in vivo PDT CRC research

Photosensitizer Nanoparticle Remarks Ref.

Protoporphyrin IX (PpIX) Non-biodegradable 

silica

Improved PS accumulation in both HCT-116 cell 

lines and tumor bearing mice, with enhanced ROS 

generation.

[90]

SN-38-Cyclodextrin 

Complexation

Chlorin-core 

star-shaped block 

copolymer (CSBC) 

micelles

Combination of PS and chemotherapy 

nanocarrier showed 60% tumor regression in 

HT-29 human CRC xenograft model, after three 

applications.

[91]

Zinc phthalocyanine Liposomal CRC CT26 tumor models which received PDT and 

sonodynamic therapy tumors shrank by 20% after 

120 days.

[92]

Zinc phthalocyanine Titanium dioxide Improved uptake and enhanced theranostics of 

PDT within in vitro colorectal adenocarcinoma 

(HT29) cells.

[93]

Zinc protoporphyrin (ZnPP) N-(2-hydroxypropyl) 

methacrylamide 

copolymer with PEG

Nanodrug caused necrosis and disappearance of 

>70% of tumors in colon cancer mouse models.

[94]

Zinc(II) phthalocyanine Tetronic® 1107 

polymeric poloxamine 

micelles (T1107)

Improved uptake and enhanced PDT apoptotic 

cell death within in vitro 2D and 3D murine colon 

adenocarcinoma CT26 cells.

[95]

Table 2. 
Passive Targeting PDT PS drug delivery mechanisms within in vitro and in vivo CRC.
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In vitro and in vivo PDT CRC research

Photosensitizer Active drug delivery 

system

Remarks Ref.

5-Fluorouracil Eudragit S100 

coated citrus pectin 

nanoparticles

Eudragit S100 is a pH responsive enteric polymer 

and citrus pectin is a ligand receptor for galectin-3. 

Targeted drug delivery was found both in vitro and in 

vivo with enhanced PDT cytotoxic effects.

[100]

Chlorin e6 (Ce6) Site specific immune-

conjugates (murine 

monoclonal antibody 

17.1A)

Cationic electric charge of photoimmune-conjugate 

enhanced PS delivery and showed a 90% phototoxic 

effect within in vitro HT-29CRC cells.

[46]

Chlorin e6 (Ce6) Phototoxic DNA 

aptamers were bound to 

unique short O-glycan-

peptide signatures

Drug conjugate reported >500-fold increase in 

toxicity upon light activation in HT-29CRC cells 

and was not cytotoxic towards cell types without 

O-glycan-peptide markers.

[101]

Chlorin e6 (Ce6) and 

indium

Biotinylated to target 

biotin receptors

Colon carcinoma in vitro CT26 cell lines showed 

targeted uptake with enhanced apoptotic cell death.

[102]

Chlorin e6 (Ce6) Hyaluronic acid 

conjugated to 

5β-cholanic acid 

(5β-CA) to target CD44 

ligands

Effective tumor targeting noted with tumor growth 

being significantly suppressed and inhibited by 

9.61 ± 1.09-fold in human colon HT29 cell line and 

murine tumor model.

[103]

Chlorin e6 (Ce6) Hyaluronic acid 

nanoparticle to target 

CD 44 receptors

Enhanced uptake in human colon cancer xenograft 

model was observed with significant tumor 

destruction.

[104]

Chlorin e6 (Ce6) Glycoconjugated chlorin 

(G-chlorin)

PDT induced significant targeted immunogenic 

apoptotic cell death in a syngeneic CT26 mouse tumor 

model (allograft model)

[105]

Hypericin Histone deacetylase 

inhibitor sodium 

phenylbutyrate (NaPB)

Reported significant increase in tumor suppressor 

CDKN1A gene in CRC model with enhanced uptake 

and PDT effects.

[106]

IR780 iodide Self-assembled 

transferrin-IR780 for 

direct Transferrin-

receptor (TfR) targeting

Within Murine CT26 colon carcinoma cells and CT26 

tumor-bearing mice notable targeting and tumor 

suppression was observed.

[107]

Meso-tetraphenyl 

chlorin disulfonate 

(TPCS2a)

IM7-saporin 

immunotoxin CD44 

targeting receptor

Drug carrier was successfully transported into in vitro 

WiDr CRC cells via photochemical internalization 

(PCI) and resulted in 90% cytotoxic response.

[108]

Meta-

tetra(hydroxyphenyl) 

chlorin (mTHPC)

Bevacizumab 

(Avastin™), an 

anti-VEGF neutralizing 

monoclonal antibody

PDT PS with Avastin™ and monoclonal antibody 

in murine model, reported even lowered expression 

of VEGF in tumors with improved tumor killing 

efficacy than when compared to anti-angiogenic 

chemotherapeutic Avastin™ and monoclonal 

antibody treatment alone (which indirectly kills cells 

by via vascular damage), suggesting that PDT PS 

contributed to overall combined treatment approach 

by directly killing cells via ROS generation as well, and 

so improved CRC cell death.

[109]

None Photothermal 

gold coated 

superparamagnetic iron 

oxide nanoparticles 

conjugated with thiol 

modified MUC-1 

aptamers

Photothermal therapy of colon cancer cells exhibited 

notable cell death.

[110]
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8. Conclusion

From this chapter it can be observed that PDT is most definitely a highly effec-
tive and alternative therapeutic treatment for CRC [8]. However, conventional 
PS drug delivery applications have numerous limitations in relation to solubility 
and poor tumor subcellular localization specificity [26]. Nevertheless, NP PS drug 
delivery systems which are surface functionalized with various tumor-targeting 
moieties can help overcoming some of these limitations be passively, as well as 
actively enhancing PS drug uptake.

In this chapter, we have shown that there are many positive and promising 
research studies being conducted in vitro and in vivo, for the use of PDT in CRC 
treatment (Table 1). We have also evidenced the remarkable potential of passiv-
ation NP PS drug carrier platforms (Table 2) and specific receptor based PS drug 
active targeting (Table 3), in order to promote the selective absorption of PS drugs 
in target CRC tumor sites only and so avoid unwanted side effects, as well as overall 
enhance the PDT treatment of CRC. However, it must be noted that the research 
studies which have been reported in Tables 2 and 3 are within early stages of in 
vitro and in vivo research and no clinical trials have been performed as of yet. Thus, 
researchers need to start further exploring specific functionalized NP PS drug 
delivery platforms for the targeted drug delivery of PSs and effective PDT treat-
ment of CRC within pre-clinical and clinical trials in order to develop optimized 
standards for this form of CRC therapy [8]. The findings from these studies should 
drive the application of targeted PDT PS drug delivery to the forefront of oncologi-
cal interventions as a possible treatment modality for the eradication of CRC.
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In vitro and in vivo PDT CRC research

Photosensitizer Active drug delivery 

system

Remarks Ref.

Pyropheophorbide-a 

(PPa) protoporphyrin

ATP-binding cassette 

subfamily G2 (ABCG2) 

porphyrin-based 

targeted PDT.

PS drug delivery was improved within in vitro HT29 

cells show high levels of ABCG2 expression with 

significant PDT induced cell damage.

[111]

Pyropheophorbide-a 

methyl ester (PPME)

Peroxisomal 

proliferator-activated 

receptor gamma 

(PPARγ) ligand 

troglitazone

Enhanced uptake in DLD-1 CRC in vitro cells, with 

significant growth retardation and apoptotic cell 

death in a PDT dose-dependent manner.

[112]

Verteporfin 

succinimidyl ester

Single chain variable 

fragments (scFvs), 

antibody fragments

Improved uptake and within in vitro and in vivo PDT 

applications it effectively killed tumor LoVo (CEA+, 

HER2-) cells.

[44]

Zinc phthalocyanine 

(C11Pc)

HER2 receptor or 

jacalin, a lectin specific 

for carbohydrate T 

antigen on PEG Gold 

nanoparticles

HT-29 CRC cells reported enhanced targeted PDT 

with 80–90% cell death being noted.

[113]

Table 3. 
Active Targeting PDT PS drug delivery mechanisms within in vitro and in vivo CRC.
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