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Chapter

Thermal-Hydrodynamic
Characteristics of Turbulent Flow
in Corrugated Channels

Nabeel S. Dhaidana and Abdalrazzaq K. Abbas

Abstract

The heat transfer-flow characteristics of turbulent flow inside corrugated chan-
nels heated by constant heat flux are numerically investigated. The rate of heat
transfer, pressure drop, and performance evaluation criterion is determined for
smooth channel and various designs of corrugated channels at the Reynolds number
ranged from 5000 to 60,000. The effect of rib arrangement distributions of inward,
outward, and inward-outward ribs are examined. The various rib configurations of
corrugated channels are also tested. In addition, the influences of rib roughness
parameters (height, pitch, and width) and rib shapes (semicircular, trapezoidal,
and rectangular) are researched. The Reynolds-averaged Navier-Stokes equations
(RANS) are used to model the governing flow equations. The computational model
is validated through a reasonable agreement between the present numerical results
and the outcomes of related works. For different geometrical and operating condi-
tions, the results revealed that the rate of heat exchange in corrugated channels
exceeds higher than that of smooth ones but with additional pressure loss. More-
over, the rib arrangements, rib configuration, and rib roughness parameters exhibit
a relatively significant effect on the performance of the corrugated channels. On the
other hand, the influence of the rib shapes seems to be small.

Keywords: thermal-flow performance, corrugated channel, rib distribution,
rib configuration, rib shapes

1. Introduction

The reliable efficient heat exchangers transfer the maximum rate of heat with
minimum friction losses. The rate of heat transfer of most fluids is restricted by
their low thermal conductivity. Thus, the thermal systems adopt techniques of heat
transfer enhancement to reduce the effect of this issue. There are three techniques
of enhancing heat transfer, namely, active methods (require external power) [1],
passive methods (fins, corrugation, ribs, etc.) [2], and compound techniques
(simultaneous use of active and passive techniques) [3]. Corrugation of tubes and
channels is considered an efficient passive method to augment the rate of heat
exchange. The thermal-flow features of turbulent flow in corrugated tubes are
reported extensively in many articles (for example [4-8]).

Corrugated channels are widely utilized in industrial applications as they are the
major components in plate heat exchangers. Naphon [9] conducted experiments to
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show the performance of a turbulent flow inside a two-sided corrugated channel
with an in-line and staggered arrangements. He showed the important effect of
corrugation on the augmentation of heat transfer and pressure loss. Eiamsa-ard and
Promvonge [10] experimentally examined the thermal-hydrodynamic perfor-
mance of the three types of ribbed-grooved ducts. They reported that the maximum
rate of heat exchange and pressure drop exist in the ducts with a rectangular rib
and a triangular groove. Elshafei et al. [11] conducted experiments to examine the
thermal-hydraulic performance of corrugated channels under the influence of var-
iations of phase shift and channel spacing. The corrugated channels exhibit a com-
pound increase in heat transfer and pressure loss. Mohammed et al. [12] performed
a computational model to investigate the effects of wavy tilt angle, channel height,
and channel height on the flow-thermal fields in a corrugated channel. A three-
dimensional numerical model to investigate the employing baffles on the heat
transfer-flow in the corrugated channels was presented by Li and Gao [13].
Increasing the baffle height enhances heat transfer effectively but leads to dramatic
penalty in pressure drop. Pehlivan et al. [14] experimentally investigated the rate of
heat exchange for sharp corrugation peak fins of corrugated channel for three
different types and sinusoidal converging—diverging channels. It is reported that the
rate of heat transfer increases with the corrugated angle. The numerical results
showed that the wavy channel is an efficient method to increase the heat transfer.
Ravi et al. [15] numerically studied the impact of different rib configurations on the
heat transfer-flow characteristics of the turbulent flow inside corrugated channels.
Shubham et al. [16] numerically investigated the thermal-hydrodynamic transport
characteristics of non-Newtonian fluids in corrugated channels. It was found that
using of shear thinning fluids is more convenient for maximum augmentation of
thermal performance with a minimum penalty in pressure drop.

The present study offers a numerical model to investigate the thermal flow
attributes of turbulent flow in corrugated channels. The performance of corrugated
channels are examined under the effects of corrugation arrangement (inward, out-
ward, and inward-outward rib distribution), corrugation configuration, corrugation
roughness parameters (rib pitch, rib width, and rib height), and rib shapes (rectan-
gular, trapezoidal, and semicircular). The comparisons between the predicted ther-
mal flow performance of corrugated channels and that of smooth ones are fulfilled
under a large range of Reynolds number (5000-60,000).

2. Numerical model

The two-dimensional corrugated channel with a width (b) of 10 mm is described
schematically in Figure 1. The water as heat transfer fluid enters the computational
domain at a temperature of 27°C and intensity of turbulent of 5%. Also, 5% of
turbulent intensity is considered at the exit. The end effects and viscous dissipation
terms are ignored. The constant heat flux of 600 W/cm? is applied on the channel
wall. The consideration of an axisymmetric situation reduces the size of the numer-
ical domain for saving computational time.

The flow-thermal behavior is modeled by the governing conservation equations
(continuity, momentum, and energy) in a RANS technique as

ou;
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Schematic representation of the computational domain.

in which p, u, #/, and pu are density, viscosity, fluctuated velocity, and
turbulent shear stress, respectlvely.

9 o [oT Cots
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where Pr, is the turbulent Prandtl number and (7;) ¢ is the deviatoric stress
tensor which is evaluated as

ou; Oou; 2 ou;
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The transport equations in k-e model are presented as [17]
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and y, is the eddy viscosity which is modeled as
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€
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The model constants C,, Cy,, C»,, 0, and o, are 0.09, 1.44, 1.92, 1.0, and 1.3,
respectively.

No-slip condition and constant wall heat flux are assumed as boundary conditions.

The thermal-hydrodynamic performance of the corrugated channels is assessed
by dimensionless parameters which are the Nusselt number, friction factor, and
performance evaluation criterion (PEC).

The average Nusselt number is presented as

qud "X 1

Nu =4 JO () — Ty (%)

dx (8)
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where ¢” and T,,(x) and T}, (x) act as the supplied heat flux and wall and local
bulk temperatures, respectively.
The friction factor is defined as

 2APd
L puy,?

f 9)

The comparison between the enhancement in thermal performance and a pen-
alty in the pressure drop is assessed by introducing the performance evaluation

criteria (PEC) of corrugated channels with different roughness dimensions. The
PEC can be calculated as

Nu /N
PEC = M (10)

(Ff)"°

where f; and Nu, are the friction factor and the Nusselt number of smooth
channel, respectively.

The performance of corrugated channels is estimated according to different
values of the Reynolds number which is introduced as

:pumdh
Y2,

Re (11)

where u, p, dy, and u,, are dynamic viscosity, density, hydrodynamic diameter,
and mean fluid velocity.

The ANSYS Fluent CFD package-based control volume method is adopted to
discretize the governing equations and simulate thermal flow behavior of corru-
gated channels. The SIMPLE algorithm is utilized for solving the flow field. The
diffusion terms and other resulting terms are discretized by employing the first-
order upwind scheme. The residuals lower than 10 ° is chosen to achieve the
convergence criterion for all variables. A fine grid discretization close to the wall is
adopted. Also, the meshing system of 23,964 grids is sufficient for solution accu-
racy. On the other hand, the numerical code that is validated through a reasonable
agreement is shown (Figure 2a) between the Nusselt number of the present work
and the same number which is obtained from the well-known Gnielinski correlation
[18]. Furthermore, good agreement is indicated for the friction factor (Figure 2b)
between the present work and the work of San and Huang [5].
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Figure 2.
(a) Numerical Nu of the present work and that obtained from Gnielinski’s corrvelation [17] and (b) Numerical
f and that of San and Huang [5].
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3. Results and discussion

The flow-thermal features of turbulent flow in corrugated channels are evalu-
ated numerically. The enhanced heat transfer and an accompanied pressure loss are
assessed for corrugated channels under the influences of rib arrangement, rib con-
figuration, rib roughness parameters, and rib shapes. The dimensionless parameters
Nu, f, and PEC through a wide range of Re are presented to assess the performance
of corrugated channels.

3.1 The effect of rib arrangements

Corrugated channels exist in three layouts depending on rib arrangements,
IOCC, ICC, and OCC, as described in Figure 1a. The variations of Nu and f with the
Re number of all rectangular rib arrangements of corrugated channels and smooth
one are presented in Figure 3a and b, respectively. The rate of heat that is trans-
ferred in corrugated channels is higher than that of the smooth channel. The heat
transfer varies insignificantly with the rib distribution at the low Re. The rib distri-
bution experiences a pronounced influence on the Nusselt number when Re
increases. The ICC shows a maximum ability to exchange the heat, while the OCC
has a lower thermal performance. On the other hand, there is an additional pressure
loss associated with corrugated channels compared with smooth ones as exhibited
in Figure 3b. The friction factor decreases slightly with the Re. Also, the OCC has a
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Figure 3.
(a) Different vib arrangements of corrugated channels and the influence of vib configuration on Nu, f, and PEC
as described in (b), (c), and (d), respectively, for the different values of Re.



Boundary Layer Flows - Theory, Applications and Numerical Methods

minimum friction factor, while the ICC owns a maximum pressure loss. Moreover,
the performance evaluation criterion (PEC) varies inversely with the Re as
exhibited in Figure 3c. The increase in pressure loss exceeds the enhancement in
the heat transfer for all corrugated channel layouts. Also, OCC has higher PEC than
both IOCC and ICC channels. This is due to the increase in f of OCC is lower than
that of ICC and IOCC. Even though, both ICC and IOCC have higher Nu than IOCC.

3.2 The influence of rib configurations

Seven configurations of rib trapezoidal corrugated channels are denoted (B1, B2,
C1, C2, C3, D1, and D2) which are presented in Figure 4a. Also, the smooth channel
is indicated by A. The variation of the Nusselt number for all channels is depicted in
Figure 4b. The increase in Re and flow velocity causes enhancement in mixing the
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(a) Different configurations of corrugated channels and the influence of rib configuration on Nu, f, and PEC as
depicted in (a), (b), and (c), respectively, for the different values of Re.
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rate between the core flow and recirculating flow. Thus, the heat exchange between
the heating wall and the flow is enhanced. On the other hand, f is higher for corru-
gated channels than the smooth one as revealed in Figure 4c. In one side, the results
revealed that the heat is transferred more effectively in the corrugated channel than
the smooth one due to the additional surface area, suppressing the boundary layer
thickness associated with corrugated channels. On the other side, the corrugation
results in a substantial flow recirculation and separation and an extra surface area, and
thus it creates higher pressure drop. The corrugated channel C1 registers the highest
Nu, while the minimum Nu is achieved for corrugated channel B1. Conversely, the
results exhibit that the minimum pressure drop is registered for B1 configuration
channel among other corrugated channels. Moreover, the influence of rib configura-
tion of corrugated channels on the PEC is presented in Figure 4d. The results reveal
that there is a monotonic decrease of PEC with the Re. The optimum performance is
accomplished at the lower Re. As Re increases the conflict between the augmentation
in thermal performance and degradation in pressure drop is initiated. The higher
values of PEC are obtained for C3 and B1 corrugated channels, whereas D1 and D2
configurations have the minimum values of PEC.
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Figure 5.
Nu, f, and PEC for different (a) vib heights, (b) rib pitches, and (c) vib widths.
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3.3 The impact of rib roughness parameters

The roughness parameters of corrugated channels involve relative rib height
(e/b), relative rib pitch (p/b), and relative rib width (w/b) as illustrated later in
Figure 6a. The impact of roughness parameters on the thermal-flow behavior of
corrugated channels is presented in Figure 5. The computed Nu, f, and PEC are
tested for different relative roughness heights which are presented in Figure 5al,
5a2, and 5a3, respectively, with constant values of p/b and w/b. Generally,
corrugated channels have higher Nu than a smooth channel. It is observed that the
Nusselt number increases monotonically with both rib height and Re. But there is a
relatively small effect of rib height on the Nu at lower values of Re. At the same
time, the friction factor varies positively with the relative rib height. While, there is
an insignificant effect of Re on f, the variation of PEC (Figure 5a3) confirms that
the diverse effect of friction factor exceeds the enhancement in transferred heat
especially with an increase of Re. The influence of rib pitch of corrugation on Nu, f,
and PEC of corrugated channels is illustrated in Figure 5b1, 5b2, and 5b3, respec-
tively, for constant corrugation height and width. Decreasing the pitch results in an
increase in the number of ribs for unit length and excites the secondary flow.
Therefore, the thickness of boundary layer is decreased, and the rate of heat trans-
fer is augmented. However, the flow impedance is increased due to the increase in
the number of roughness elements which add extra friction to the flow stream. It
appears that the influence of corrugation pitch is insignificant on the PEC as
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(a) Different vib shapes of IOCC channels and the influence of vib shapes on the Nu, f, and PEC as presented in
(b), (c), and (d), respectively, for the different values of the Re.
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presented in Figure 5b3. In a similar way, the influences of two values of rib width
on the performance of corrugated channel are shown in Figure 5c. As the rib width
increases, the secondary flow becomes more intense. Therefore, there is a mutual
increase in Nu and f as depicted in Figure 5c1 and 5¢2, respectively. Furthermore,
the PEC shows a monotonic decrease with the rib width and Re as described by
Figure 5c3.

3.4 The influence of rib shape

The heat transfer-flow behavior of IOCC channel, for example, is examined
for rectangular, semicircular, and trapezoidal rib shapes. The different shapes of
the rib are illustrated in Figure 6a, while the Nu, f, and PEC for various rib shapes
are presented in Figure 6b, c and d, respectively, for (p/b = 1, e/b = 0.025, and
w/b = 0.05). It is found that the influence of the roughness shape is small on the
performance of corrugated channels.

4., Conclusion

The computational investigation of thermal-flow performance of turbulent flow
in corrugated channels is carried out for the Reynolds number from 5000 to
60,000. The effects of rib arrangements, rib configurations, rib roughness parame-
ters, and rib shapes are investigated. All layouts of corrugated channels showed a
superior ability of exchange heat than that experienced by smooth channel. How-
ever, the pressure loss associated with corrugated channels is higher than that of the
smooth ones. Furthermore, it is inferred that the arrangement of rib distribution,
rib configuration, and rib roughness parameters has a pronounced effect on the
thermal-flow performance of corrugated channels, while the influence of rib shapes
seems to be small.
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