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Abstract

Long-term excessive intake of fluoride (F) leads to chronic fluorosis, result-
ing in dental fluorosis and skeletal fluorosis. Chronic exposure to high doses of 
fluoride can also cause damage to soft tissues, especially when it passes through 
the blood-brain, blood-testis, and blood-placenta barrier, causing damage to the 
corresponding tissues. Fluorosis has become a public health problem in some 
countries or regions around the world. Understanding the pathogenesis of fluorosis 
is very important. Although the exact mechanism of fluorosis has not been fully 
elucidated, various mechanisms of fluoride-induced toxicity have been proposed. In 
this chapter, we will introduce the research progress of the mechanism of fluorosis, 
focusing on dental fluorosis, skeletal fluorosis, nervous and reproductive system 
toxicity, and influential factors related to fluoride toxicity (i.e., genetic background, 
co-exposure with other element). In addition, the application of proteomics and 
metabolomics in the study of the pathogenesis of fluorosis is also introduced. 
Currently, there is still no specific treatment for fluorosis. However, since fluorosis 
is caused by excessive intake of fluoride, avoiding excessive fluoride intake is the 
critical measure to prevent the disease. In endemic regions, health education and 
supplement diet with vitamins C, D and E, and calcium and antioxidant com-
pounds are important.

Keywords: chronic fluorosis, fluoride, influential factor, mechanisms, proteomics, 
skeletal fluorosis

1. Introduction

Fluorine is a highly active gaseous element found widely in nature. Fluoride in 
small doses is beneficial for preventing dental caries and is commonly used in the 
prevention of dental caries [1, 2]. However, long-term excessive fluoride intake 
will affect human health, causing chronic fluorosis. Chronic fluorosis is a systemic 
disease, high doses of fluoride leads to bioaccumulation in the body, especially hard 
tissues such as bones and teeth, and primarily harms bones and teeth [3–5]. Besides 
skeletal and dental damage, excessive exposure to fluoride can also cause other 
non-phrenological hazards, such as metabolic, structural, and functional damage to 
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the nervous system [6–12], kidneys [13–16], liver [14, 16–19], cardiovascular system 
[20–23], and reproductive system [24–26].

Chronic fluorosis is an endemic disease; it is endemic in at least 25 countries 
across the globe, China and India being the worst affected among them [27]. Most 
cases of fluorosis were caused by drinking fluorous water. In China, fluorosis is 
caused by drinking water as well as inhaling combustion fumes of coal being used 
as an indoor fuel source [28–31]. Guizhou is one of the most severely afflicted areas 
of endemic fluorosis in China and this occurrence is due to indoor coal burning 
[30]. Another type of fluorosis is brick tea-type fluorosis, due to fluoride accumula-
tion in brick tea. It is more prevalent in Tibet than in other regions of China [32]. It 
is also worth noting that chronic exposure to volcanic environments may lead to the 
exposure of excessive amounts of fluoride [33]. It is estimated that more than 10% 
of the worldwide population live within the potential exposure range of some active 
or historically active volcano, either erupting or in a post-eruption phase [34].

In recent years, numerous studies focused on the molecular mechanisms associ-
ated with fluoride toxicity [35–39]. Although the underlying mechanisms of chronic 
fluorosis is still not well understood, the results of the previous studies indicated 
that fluoride can induce oxidative stress; regulate intracellular redox homeostasis; 
and lead to mitochondrial damage, endoplasmic reticulum stress, and alteration 
of gene expression [35–39]. Other mechanisms include enzyme inhibition, induc-
tion of apoptosis, cell cycle arrest, etc. [35–39]. This chapter reviews the present 
research on the potential adverse effects of overdose fluoride on various organ-
isms, summarizes the molecular mechanism of fluorosis, and aims to improve our 
understanding of fluoride toxicity.

2. Mechanisms of skeletal fluorosis

Fluoride is a cumulative toxin, which accumulates in mineralized tissues, notably 
in the lattice of bone and tooth crystals. The bones and teeth are recognized as the 
target organs of fluoride, and bone tends to accumulate this element with age. The 
main features of the disease are dental fluorosis and skeletal fluorosis. Dental fluo-
rosis is the first visible toxic effect of F exposure, which manifests as pitting of tooth 
enamel and yellow cracked teeth in adults and in children [37]. Skeletal fluorosis 
is a metabolic bone disease with osteosclerosis as the major clinical sign, mostly 
involving bone joints [40]. It results in ligament calcifications, accompanied by 
osteopenia, osteoporosis, and osteomalacia to varying degrees [40, 41]. Fluorine is 
a trace element that is incorporated into bone mineral during bone formation [42]. 
Fluoride substitutes for the hydroxyl group in hydroxyapatite, forming fluorapatite. 
Bone metabolism includes the process of osteoblasts forming bone and the osteo-
clasts degrading bone. Fluoride has an effect on bone mineral, bone cells, and bone 
architecture [42]. Fluoride at physiological levels promotes osteoblast proliferation, 
increases bone mass, as well as increases osteoblast activity via the up-regulation of 
markers such as alkaline phosphatase (ALP), bone morphogenetic protein (BMP), 
and bone gla protein (BGP) [43]. The levels of ALP and BGP were higher in patients 
with skeletal fluorosis than the control group [44]. However, fluoride may stimulate 
osteoblastic activity and delay mineralization of new bone [42]. On the other hand, 
osteoclasts are derived from hematopoietic progenitors in bone marrow and are 
only responsible for bone resorption. The mechanism associated with the osteo-
clasts is complicated; some studies showed that high fluoride concentrations may 
promote the formation of osteoclasts [45], or reduce the number of osteoclasts and 
decrease their bone resorption ability [46, 47]. Others suggested that fluoride had 
little effect on the number of osteoclasts and no effect on the osteoclast formation 
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[48]. Indeed, excessive fluoride intake can destroy the processes of bone formation 
and resorption, which may lead to bone turnover disorders and result in skeletal 
fluorosis. Bone turnover is a dynamic balance regulated by osteoblasts and osteo-
clasts. Excessive fluoride disrupts this balance, influencing the differentiation of 
osteoblasts and osteoclasts and resulting in the development of bone lesions [49]. 
This may be related to certain signaling pathways and mechanisms. Fluoride influ-
ences bone turnover by regulating certain factors, such as runt-related transcription 
factor 2 (Runx2) and receptor activator for nuclear factor-κB ligand (RANKL), 
which act as markers of osteoblasts and osteoclasts [48, 50]. Through the mitogen-
activated protein kinases (MAPK) pathway, fluoride mediates gene expression and 
cell viability. In ameloblasts, fluoride activates the Rho/ROCK pathway. Fluoride 
can also induce endoplasmic reticulum (ER) stress, leading to protein misfolding 
[51]. In addition, TGFβ-SMAD signaling regulates expression of essential genes 
(MMP13, Collagen Type I, Collagen Type VII, Aggrecan, and Biglycans) involved in 
the formation of extracellular matrix (ECM). Fluoride exposure affects the expres-
sion of these genes through TGFβ-SMAD signaling [52]. Additionally, excessive 
fluoride exposure leads to disturbances of bone homeostasis. c-Fos is known to be 
essential in bone development by affecting osteoblast and osteoclast differentiation, 
suggesting that c-Fos might negatively regulate osteoprotegerin (OPG) expression 
induced by fluoride in osteoblastic cells [53].

Furthermore, collagen and noncollagenous proteins are of significant impor-
tance for maintaining the biomechanical integrity of the bone and many bone 
matrix proteins play important roles in mineralization [42]. Excessive intake of 
fluoride affects the bone matrix proteins, that is, collagen and noncollagenous 
proteins, which may be another possible mechanism of skeletal fluorosis [42, 54]. 
For example, it has been shown that fluoride could inhibit the synthesis of type I 
collagen and decrease the degree of collagen cross-linking [54–59] or affect other 
collagen proteins [60–62], and affect the synthesis of proteoglycan [63], and 
expression of matrix metalloproteinases (MMPs) [54, 64, 65]. Taken together, these 
studies suggested that exposure to fluoride alters growth, ECM formation, bone 
mineralization, and skeletal development and induced bone formation and bone 
resorption, thus leading to the development of fluorosis.

3. Nervous system toxicity

Excessive fluoride may cross the blood-brain barrier and accumulate in the 
brain, causing dysfunction of the central nervous system (CNS). In recent years, 
many studies have focused on fluorine neurotoxicity. The central nervous system 
during development is highly sensitive to the influence of fluorine due to its weak-
ened protective mechanisms [66]. Studies showed that children in high fluoride 
areas had significantly lower IQ (intelligence quotient) scores than those who lived 
in low fluoride areas [67, 68]. The results of meta-analyses supported the possibility 
of adverse effects of fluoride exposures on children’s neurodevelopment [67, 69]. 
In the animal experiments, as exposed to high levels of fluorine, the content of 
fluorides in the rats’ brains was even 220 and 300 times higher than in the control 
group [70], and fluoride exposure affects the behavior, memory, cognitive and 
learning ability [71–73]. Dendritic thickening and disappearance, mitochondrial 
swelling, neuronal endoplasmic reticulum dilation, and impaired hippocampus 
synaptic interface structure can be observed in the brain of fluoride exposed rats 
[73]. The numbers of Nissl bodies in neurons in the hippocampus and cortex of 
brains from both adult rats and their pups with fluorosis were reduced, suggesting 
an injury of neurons [10]. These data indicate that excessive exposure to fluoride 
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results in structural and functional damages to the central nervous system, and may 
significantly hinder the neurodevelopment.

Fluorine neurotoxicity may be associated with oxidative stress, neuroinflamma-
tory and neurotransmitter alterations. Fluorine induces increase in ROS (reactive 
oxygen species) and lipid peroxidation and decrease in anti-oxidative enzyme activ-
ity in neurons and glia, resulting in oxidative stress, which in turn causes cell dam-
age and metabolism disorders [12, 74]. Fluorine causes glial cell activation which is 
involved in inflammation through producing proinflammatory cytokines. Chronic 
inflammation in the brain appears to cause neuronal damage [66, 75]. Moreover, 
fluorine influences the synthesis of neurotransmitters, the activity of enzymes, the 
expression of receptors, and the plasticity of neurons [76–78]. Therefore, excessive 
exposure to fluoride results in structural and functional damages to the central 
nervous system.

Of note, because fluoride can not only cross the blood-brain barrier, but also 
penetrate through the placenta, fluorine exposure in the prenatal and neonatal 
periods is dangerous [66, 79]. A recent study showed that during pregnancy and 
lactation, even at very low concentrations, F exposure may alter parameters of the 
central nervous system functionality, producing a delay in eye-opening develop-
ment in the offspring as well as hypoactivity in adult offspring [80]. Further studies 
will be crucial to elucidate the molecular mechanisms through which F exposure 
during gestation and lactation trigger neurobehavioral changes [80].

4. Reproductive system toxicity

Research on the effects of fluoride on the reproductive system has been carried 
out for many years. As early as 1925, Schulz and Lamb reported the reproductive 
toxicity of fluoride [81]. Fluoride shows adverse effects on the male reproductive 
system, including spermatogenesis defect, sperm count loss, sperm differentiation, 
and maturation impairment [82], and increase in chromosomal aberrations in 
primary testicular cells and the rate of sperm deformity [83]. Interestingly, recent 
studies showed that exposure to fluoride can alter the BTB (blood-testis-barrier) 
[84, 85]; fluoride induced structural and functional alterations in the BTB by 
increasing the expression levels of Arp3 protein with a concomitant increase in 
the expression levels of IL-1ɑ (interleukin-1ɑ) that led to the reorganization of the 
highly branching F-actin and the decreased expression of F-actin [25]. A significant 
increase in the fluoride concentration in the testes of mice that were exposed to 
sodium fluoride (NaF) has been observed [85]. In addition, ovaries of albino rats 
treated with high doses of NaF exhibited abnormal ovarian follicles, dilated blood 
vessels, stromal congestion, and necrotic granulose cells [86].

Cell apoptosis is one early sign of genotoxic damage in mature testis, and 
plays critical roles in spermatozoa output. Fluoride may induce oxidative stress 
through the activation of MAPK cascade and Jun N-terminal kinase (JNK, c-Jun) 
and extracellular signal-regulated protein kinase (ERK) signaling pathway lead to 
cell apoptosis that includes both intrinsic and extrinsic apoptotic pathways [82]. 
Fluoride could also cause leakage of potassium ions, thereby reducing sodium and 
potassium levels in spermatozoa [87]. In addition, higher levels of inflammatory 
factor such as IL-1ɑ were detected in the testes of NaF-treated rats [25], suggesting 
that inflammation was involved in the in the toxicity of fluoride to the reproductive 
system [25, 88]. More recently, a proteomics study analyzed the proteome char-
acteristics of sperm from fluoride-exposed mice, and identified 15 differentially 
expressed proteins between fluoride-exposed and control groups. Most of them are 
associated with sperm functions such as sperm motility, maturation, capacitation 
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and acrosome reaction, lipid peroxidation, detoxification, inflammation, and 
stability of membrane structure [89]. Another study reported altered MicroRNA 
(miRNA) expression profiling in sperm of mice induced by fluoride. Sixteen altered 
miRNAs were identified and they mainly were involved in protease inhibitor activ-
ity, apoptosis, ubiquitin-mediated proteolysis, and signaling pathways of calcium, 
JAK-STAT, MAPK, p53, and Wnt [90]. These findings provide new insights into the 
mechanism underlying fluoride reproductive toxicity. However, the toxicity mecha-
nism of fluoride on the reproductive system still needs further exploration.

5. Other systems

As mentioned above, excess fluoride uptake affects other organs including liver 
and kidneys, and cardiovascular system. Liver is the most important detoxification 
organ in the body. The effect of fluoride on the liver has been widely studied and it 
has been demonstrated that excessive intake of fluoride causes serious liver damage 
[14, 16–19].

The kidneys are the main route of F removal from the body, and approximately 
60% of the total daily F absorbed is filtered and excreted in urine [91]. The link 
between fluoride and kidney disease has been known and confirmed for many 
years [13–16], the toxicity or damage of fluoride to the kidney has been observed 
in population and experimental animals, including the kidneys of the fetus and 
suckling mammal [92]. Of note, people on kidney dialysis, patients with reduced 
glomerular filtration rates, and diabetic mammals are particularly susceptible to 
fluoride exposure [15].

A rising number of research studies have been carried out on the toxic effect of F 
in cardiovascular system [20–23, 93]. Fluoride can accumulate in the cardiovascular 
system, resulting in arterial calcifications, elastic properties of ascending aorta 
disruption, and ventricular diastolic dysfunction [93].

6. Influence factor

6.1 Genetic susceptibility to fluorosis

Clearly, toxic effects in humans due to chronic fluoride ingestion mainly depend 
on the total dosage and duration of exposure. However, dose and time alone are not 
the only factor affecting fluorosis. Some studies have shown the existence of non-
responder populations to fluorine [94], while others have shown that some people 
seem to be very sensitive to fluorine [95, 96]. Animal experiments have observed 
that three inbred strains of mice (A/J, SWR/J, 129P3/J) displayed variations in the 
onset and severity of dental/enamel fluorosis with equivalent fluoride exposure 
[97]. The bone mechanical properties were reduced in the “susceptible strain” 
(A/J), moderately altered in the “intermediate strain” (SWR/J), and unaffected in 
the “resistant strain” (129P3/J), suggesting a genetic contribution to the variation 
in bone response to fluoride content [97]. Fluoride effects on bone formation and 
mineralization are influenced by genetics [42]. Another study showed that exposure 
to the same dosage and time, as compared with Wistar rats, the urine fluoride of SD 
rats was higher while bone and teeth fluoride levels were lower. Meanwhile, dental 
fluorosis susceptibility of SD rats is higher [98].

Interestingly, the association between genetic polymorphisms in candidate genes 
and the susceptibility in the development of fluorosis has been well reviewed [27]. 
Candidate genes associated with human dental fluorosis and skeletal fluorosis are 
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listed in Table 1. Candidate genes in dental fluorosis include BGLAP (Osteocalcin), 
COL1A2 (Collagen type 1 alpha 2), CTR/CALCR (Calcitonin Receptor), ESR 
(Estrogen Receptor), and VDR (Vitamin D Receptor). Candidate genes in skeletal 
fluorosis include MMP-2 (Matrix metallopeptidase2), MPO (Myeloperoxidase), 
GSTP1 (Glutathione S-transferase pi 1), PRL (Prolactin), and VDR (Vitamin D 
Receptor). These genes are involved in different functions—BGLAP, ESR, and 
COL1A2 are related to bone formation and development; VDR and CTR are related 
to bone formation and metabolism; and PTH and PRL are related to hormones’ 
secretion. GSTP1, MMP, COMT, and MPO are related to detoxifying enzymes, 
extracellular matrix, cognitive and immune responses, respectively [27]. These 
results suggest that an individual’s genetic background plays a major role in influ-
encing the risk to fluorosis.

6.2 Co-exposure with other element

Co-exposure to other elements is another major factor affecting fluorosis. All of 
these could complicate the overall toxic response. For example, in geothermal areas, 
volcanic activity includes CO2-rich hot springs, steaming vents, hot ground and 
boiling mud pools that normally contain unusually high concentrations of Li, Rb, 
Cs, Si, B, As, and F [33]. Thus, chronic exposure to volcanic environments may lead 
to the exposure of excessive amounts of fluoride and other elements. Interestingly, 
a recent study indicated that an increase or decrease in various elements (including 
F, Al, Se, Zn, Cu, Fe, Mo, Mn, B, V, Ca, Mg, and P) in the environment is related to 
the abnormal levels of the corresponding elements in a fluoride-exposed population 
[28]. High levels of F, Al, As, Pb, and Cr were a risk factor for dental fluorosis, but 
not Se, Zn, Cu, B, Ca, and P, which was a protective factor for dental fluorosis [28].

Candidate genes Polymorphism site (restriction sites or 

mutational bases)

References

Dental fluorosis

COL1A2 (Collagen type1 alpha 2) rs414408 (PvuII)

rs412777 (A/C)

[99]

[100]

ESR (Estrogen receptor) rs1256049 (G > A, RsaI)

rs2234693 (A > C, XbaI)

[101]

AMBN (Ameloblastin) rs4694075 (C/T) [102]

TFIP11 (Tuftelin interacting protein 11) rs5997096 (C/T) [102]

TUFT1 (Tuftelin) rs4970957 (A/G) [102]

DLX1 (Homeobox protein DLX-1) rs788173 (A/G) [103]

DLX2 (Homeobox protein DLX-2) rs743605 (A/G) [103]

TIMP1 (Metalloproteinase inhibitor 1) rs4898 (C/T) [103]

Skeletal fluorosis

FRZB1 (frizzled-related protein 1) rs2242070 (A/G) [104]

VDR (Vitamin D receptor) rs2228570 (Fok I) [105]

GSTP1 (Glutathione S-transferase pi 1) rs1695 (A/G) [106]

PRL (Prolactin) rs1341239 [107]

MMP-2 (Matrix metallopeptidase 2) rs2287074 (G/A) rs243865 [108]

Table 1. 
Candidate genes in dental fluorosis and skeletal fluorosis.
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At present, some studies have been reported on the co-exposure of fluorine and 
arsenic (As) or fluorine and aluminum (Al). Both arsenic and fluoride are ubiquitous 
in the environment. The co-exposure of fluorine and arsenic is mainly through drink-
ing water [109–111] or burning coal [112, 113]. The latter is a unique type in China, 
which was attributed to exposure to high levels of As and F in food and breathing 
As-laden air, caused by polluted food and air due to indoor combustion of coal [112, 
113]. The interaction mechanism of these two elements is complicated, which may be 
independent, synergistic, or antagonistic [114]. A recent study indicated that arsenic 
may be involved in fluoride-induced bone toxicity through PTH/PKA/AP1 signal-
ing pathway [115]. Arsenic affects the expression of c-Fos, thereby affecting the 
expression of transcription factor AP1, indirectly involved in fluoride-induced bone 
toxicity [115]. Another study showed that the joint effect of fluoride and arsenate on 
the gene expression of ODF (osteoclast differentiation factor) is antagonistic, while 
the combined effect on the gene expression of OPG is synergistic [116]. Ma et al. 
reported that As and F can induce the expression of adhesion molecules, chemokines 
and pro-inflammatory cytokines in rabbit aorta separately, and antagonistic effects 
were observed on inflammatory response [117]. Fluoride and arsenic, either alone or 
combined, can decrease learning and memory ability in rats [118].

Combined exposure to fluoride and aluminum is another noteworthy problem 
related to fluorosis. It mainly occurs through indoor combustion of coal, especially 
kaolin mixed with coal [119], and high Al content in tea such as brick tea [120]. 
The interaction mechanism of F and Al is also complicated, may be independent, 
synergistic, or antagonistic. Aluminum exposure impairs bone formation; inhibition 
of bone formation by aluminum through different signal transduction pathways 
has been reported [121]. Exposure to Al is associated with low bone mineral density 
(BMD) and an increased risk of osteoporosis [121–124]. Fluoride enhances the uptake 
of aluminum; the simultaneous administration of fluorine and aluminum increased 
plasma [125], and bone [126] concentrations of aluminum in rats, whereas aluminum 
suppresses the uptake of fluoride [127]. Decreased bone mineral density was observed 
in fluorine and aluminum-treated rats [126]. Patients with co-exposure to fluoride 
and aluminum display with osteomalacia or osteoporosis may be due to fluoride pro-
moting aluminum accumulation in bone, while aluminum inhibits bone formation. 
However, the vitro study showed that there was a synergistic effect of fluoride and 
aluminum on the expression of Runx2 and Osterix mRNA in osteoblastic MC3T3-E1 
cells, thereby enhance MC3T3-E1 cells proliferation and differentiation [128], and 
contribute to osteosclerosis. This may explain the different clinical features of skeletal 
fluorosis, that is, osteosclerosis accompanied with osteomalacia, and osteopenia.

It is worth mentioning that Al is a well-known neurotoxic agent, and it has long 
since been implicated in the etiopathology of AD [129]. Fluorine and aluminum are 
able to cross the blood-brain barrier and the placental barrier [66, 130]. They can 
accumulate in the brain, and fluoride did not affect the accumulation of aluminum 
in the CNS [131]. It has been reported that increases of microglia activation and 
inflammatory response were seen in aluminum, fluoride, and a combination of 
aluminum-fluoride-treated rat brain [132]. Excessive fluoride and aluminum intake 
induces the progression of cell death which inhibits acetylcholinesterase (AChE) 
activities and triggers the release of lysosomal and cell cycle proteins in the brain of 
rats [133]. More recently, Xie et al. found that continuous exposure to fluorine and/
or aluminum of mother rats impaired the neurobehavioral reflexes, spatial learn-
ing, and memory of offspring rats [134, 135]. The effects of F were obvious, but the 
effects of Al were slight. There were antagonistic effects between F and Al, with Al 
reduction in the toxicity of F [135].

In addition, Chinoy et al. reported that simultaneous exposure of the ani-
mals to NaF and AlCl3 was associated with an increased toxic effect on gonadal 
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steroidogenesis, uterine metabolism of carbohydrates, and hypercholesterolemia, 
as compared with each compound administered separately [136]. Recently, Dong 
et al. reported that F induced the reduction in testosterone and sperm amount; 
however, Al had antagonism effects on F and weakened the toxicity of F to some 
extent [137]. Moreover, fluoride interacts with aluminum to form a fluoro-alumi-
num complex AlFx (e.g., AlF3 and AlF4−), which can interact with the G protein 
(guanine nucleotide-binding proteins) and activated effect or enzymes, providing 
false information, and amplify the processes of signal transmission [138]. Together, 
further investigation is needed on the underlying mechanisms by which fluorine 
and arsenic or fluorine and aluminum induce toxicity.

7. Proteomics and metabolomics applications

Proteomics and metabolomics are useful and powerful tools for clarifying toxico-
logical mechanisms associated with diseases. Proteomics offers the possibility to map 
the entire proteome of an organism or cells and detect toxic effects at significantly 
lower doses, as well as faster screening for potential adaptive mechanisms by the use 
of high-throughput technologies [139]. In particular, during the last 10 years, apart 
from the gel-based techniques (e.g., 2D-PAGE and 2D-DIGE), gel-free techniques 
(e.g., stable-isotope labeling or using label-free methods) have been dominating the 
field of MS-based quantitation in proteomics [140]. This enhances the ability of pro-
teomics to explore disease mechanisms. As mentioned above, proteomics analysis has 
been used to investigate the toxicity mechanism of fluorine on sperm [89]. Proteomics 
analysis associated with F-toxicity has also been studied in other tissues including 
gastrocnemius muscle, kidney, liver, midgut, bone, cells, serum, and urine [18, 54, 62, 
68, 141–147]. All of these studies are listed in Table 2. As shown in Table 2, proteomic 
techniques 2D-PAGE, LC-MS/MS (liquid chromatography-tandem mass spectrom-
etry), and iTRAQ (isobaric tags for relative and absolute quantification) labeling 
coupled with LC-MS/MS analysis were employed in these studies. The proteins 
associated with fluoride exposure were found involved in oxidative stress, ER stress, 
cell proliferation and apoptosis, mitochondrial-metabolism, tricarboxylic acid (TCA) 
cycle, unfolded protein response, inflammatory response, etc. These pathways or 
biological processes have previously been linked to the pathophysiology of fluorosis. 
The results support the current views on the molecular mechanism of F-toxicity.

Interestingly, Khan et al. evaluated the effects of F on the liver proteome of mice 
susceptible (A/J) or resistant (129P3/J) to the effects of F. As compared with 129P3/J 
mice, most of the proteins with fold change upon treatment with lower F concen-
trate (15 ppm) were increased in the A/J mice, suggesting an attempt of the former 
to fight the deleterious effects of F. However, upon treatment with 50 ppm F, most 
proteins with fold change were decreased in the A/J mice, especially proteins related 
to oxidative stress and protein folding, which might be related to the higher suscep-
tibility of the A/J animals to the deleterious effects of F [18]. These results add light 
to the mechanisms underlying genetic susceptibility to fluorosis [18].

It is worth mentioning that in our previous comparative proteomic analysis of 
fluoride treated rat bone [54], 13, 35, and 34 differentially expressed proteins were 
identified in low-, medium-, and high-dose NaF exposure group. The medium- and 
high-dose groups shared a more similar protein expression pattern. Most of these 
proteins belong to collagen proteins, matrix metalloproteinases, proteoglycans 
(PGs), proteolytic protein, osteoclast-related protein, and myosin proteins, involved 
in collagen metabolism, bone mass change, mineralization process, dysfunction of 
the motor cell, and affected osteoblasts and/or osteoclasts, finally, contributing to 
the pathophysiology of skeletal and chronic fluorosis [54].
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Models/materials Toxic effects Method Critical proteins Pathways/biology 

processes

References

Calvarial osteoblasts Cells were treated 

with NaF

2-DE

MALDI-TOF 

MS

ATP synthase, Dihydropyrimidinase-like 2, Heat shock 70-kDa 

protein(HSP70), Nucleoside diphosphate kinase, Glutamate 

oxaloacetate transaminase, Phosphatidylethanolamine binding prote 

in Proteasome 26S ATPase, Nucleoside diphosphate kinase, Protein 

disulfide isomerase, Ras-GTPase-activating protein, Thioredoxin, 

Tubulin, beta

Cell proliferation

Nucleotide metabolism

Signal transduction

Protein oxidative folding

Hydrophobic ligands

Cell motility

Xu et al. 

[141]

Urine from the 

fluoride-treated 

Wistar rat

Dental fluorosis 2D-PAGE 

MALDI-TOF-

TOF MS/MS

Androgen regulated 20 kDa protein, Aflatoxin B1 aldehyde reductase, 

alpha-2-μ-globulin

Detoxification

Hormone regulation

Kobayashi 

et al [142]

Kidney (A/J and 

129P3/J mice)

Dental fluorosis

Kidney impairment

Genetic 

susceptibility

2D-PAGE

LC-MS/MS

Twenty five (25), 30 and 32 differentially expressed proteins were 

successfully identified between different doses of NaF treatment 

groups and their respective controls.

Metabolic and cellular 

processes

Response to stimuli

Development

Regulation of cellular 

processes

Carvalho 

et al. [143]

Gastrocnemius 

muscle

Streptozotocin-

induced diabetes 

exposed to fluorides

Alter glucose 

homeostasis and 

lead to insulin 

resistance

2D-PAGE

LC-MS/MS

78 kDa glucose-regulated protein, Alpha-enolase, Beta-enolase, 

Gamma-enolase, Gelsolin, Glyceraldehyde-3-phosphate 

dehydrogenase, Glycerol-3-phosphate dehydrogenase [NAD(+)], 

Heat shock cognate 71 kDa protein, L-lactate dehydrogenase A chain, 

L-lactate dehydrogenase B chain, L-lactate dehydrogenase C chain, 

Malate dehydrogenase, Myosin-3, Myosin-6, Myosin-7, Myosin-8, 

Myosin-binding protein C_ slow-type, Myosin-binding protein H, 

Pyruvate kinase isozymes M1/M2

Muscle contraction

Carbohydrate catabolic 

processes

Generation of precursor

Metabolites and energy

NAD metabolic processes

Gluconeogenesis

Leite et al. 

[144]

Femurs, tibiae, and 

lumbar vertebrae 

(129P3/J and A/J 

mice)

Bone architecture

Mineral apposition 

rate

Genetic 

susceptibility

LC-ESI-MS/MS 129P3/J vs A/J mice:

Bone morphogenetic protein 1, Bone sialoprotein 2, Collagen alpha-

1(I) chain, Collagen alpha-2(I) chain, Exportin-2, NADPH oxidase 4, 

Protocadherin beta 15, Secreted frizzled-related sequence protein 4

129P3/J vs F-treated 129P3/J mice:

Aflatoxin B1 aldehyde reductase member 2, Carbonyl reductase 

[NADPH] 2, Catenin alpha-2, Chromodomain-helicase-DNA-binding 

protein

Osteogenesis

Osteoclastogenesis

Kobayashi 

et al. [62]
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Models/materials Toxic effects Method Critical proteins Pathways/biology 

processes

References

4, Chromodomain-helicase-DNA-binding protein 7, NADPH oxidase 4,

Phosphatidylinositol 3,4,5-trisphosphate

5-phosphatase 2, Protocadherin beta 9

A/J vs F-treated A/J mice:

Eukaryotic translation initiation factor 2 alpha kinase 3, Exportin-2, 

Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1

Kidney (Wistar rats) Alteration of renal 

metabolism

2D-PAGE

MALDI-TOF 

MS

Control vs 10 ppm F:

Aldo–keto reductase, Adnylate kinase 3-like 1, Enoyl coenzyme A 

hydratase, Pyruvate carboxylase,

Detoxification

Metabolism

Housekeeping

Kobayashi 

et al [145]

Control vs 5 ppm F:

Aldolase B, Endoplasmic reticulum protein 29

Hippocampus from 

rats

Leaning ability

Memory

2D-PAGE, 

MALDI-

TOF-MS

5’-AMP-activated protein kinase, Aconitate hydratase, Actin, 

cytoplasmic2-like isoform 3, Actr2 protein, Beta-actin, Cytosolic 

aspartate, dehydrogenase [NADP+], and fructose-bisphosphate 

aldolase C, Dynamin, Fascin, Fructose-bisphosphate aldolase C-B, 

Gln synthetase, Glycogen phosphorylase, glycoprotein 1 precursor, 

Lysosome-associated membrane, MHC class I antigen, Mitogen-

activated protein kinase 1, Mixture 1: alcohol, N-ethylmaleimide 

sensitive, Otub1 protein, PDZ and LIM domain prptein 3, 

Phosphatase 1E isoform 1, Pyruvate carboxylase, Serum albumin, 

Tropomyosin 1, Ulip2 protein, Voltage-dependent anion-selective 

channel protein 1, WD repeat-containing protein 1

Biosynthesis of amino acids

Carbon metabolism

Insulin signaling pathway

Phagosome

Oxytocin signaling pathway

Pan et al. 

[146]

Serum from Wistar 

rats treated by NaF

Dental fluorosis iTRAQ labeling, 

NanoLC-MS/

MS

A total of 37 differentially expressed proteins were identified in 

different doses of the NaF treatment group

Complement and 

coagulation cascade

Inflammatory response

Complement activation

Wei et al. 

[147]

Defense response

Wound response
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Sperm samples from 

Kunming mice

Sperm damage 2D-PAGE,

MALDI-

TOF-MS

Adenylate kinase isoenzyme 1 isoform 2, Aldose reductase-related 

protein 1 Annexin A13, Annexin A4, Dihydrolipoyllysine-

residue acetyltransferase component of pyruvate dehydrogenase 

complex, Gamma-actin, Inhibitor alpha1 Phosphoglycerate kinase 

2, Proteasome (prosome, macropain) subunit, alpha type 3, 

Serotransferrin precursor, Triosephosphate isomerase

Sperm motility

Maturation

Capacitation and acrosome 

reaction

Lipid peroxidation

Detoxification

Inflammation

Stability of membrane 

structure

Sun et al. 

[89]

Bone samples

(Sprague-Dawley 

rats )

Chronic fluorosis iTRAQ labeling, 

NanoLC-MS/

MS

Thirteen (13), 35, and 34 differentially expressed proteins were 

identified in low-, medium-, and high-dose NaF-treated group, 

respectively.

These proteins belong to collagen proteins, matrix metalloproteinases 

(MPPs), proteoglycans( PGs),

Bone mass change

Mineralization process

Dysfunction of the motor cell

Affected on osteoblasts  

and/or osteoclasts

Wei et al. 

[54]

proteolytic protein, osteoclast related protein, and myosin proteins

Liver (A/J, 129P3/J 

mice)

Disturbances in 

soft tissues

Genetic 

susceptibility

Nano-LC-

ESI-MS/

MS

Eighty one (81) differentially expressed proteins were identified in 

the liver of A/J and 129P3/J mice treated with 15 ppm F.

One hundred one (101) differentially expressed proteins were 

identified in the liver of A/J and 129P3/J mice treated with 50 ppm F

Carboxylic acid metabolic 

process

Cellular amino acid 

metabolic

Process

Oxidative stress and protein 

folding might be related 

to the susceptibility to the 

deleterious effects of F

Khan et al. 

[18]

Plasma from 

Children

Children 

intelligence

Gene 

polymorphism

2-DE, 

MALDI-TOF/

TOF-MS

Alpha-1-B glycoprotein, Apolipoprotein E precursor, Complement 

C1s subcomponent precursor, Hemopexin, Immunoglobulin light 

chain variable region

Cell immunity

Metabolism

Zhang et al. 

[68]

Table 2. 
Fluorosis-related proteomics studies reported in the literatures.
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Metabolomics can capture low-molecular weight metabolites that are the clos-
est to the phenotype, which is believed to be one of the most powerful techniques 
to study the metabolic alteration associated with the treatment of environmental 
toxicants. However, the study on metabolic profile response to fluoride exposure is 
limited. A recent study carried out a metabonomics study on NaF treated human 
oral squamous cell carcinoma cells. The results showed that inhibition of the enolase 
reaction in glycolysis pathway was observed in the early stages of fluoride treatment. 
In the later stages, gradual increases in the AMP/ATP ratio (a putative marker of 
apoptosis) and oxidized products (e.g., GSSH, and methionine sulfoxide), and mar-
ginal changes in polyamine levels (putative marker of necrosis), were observed [148]. 
It suggested that the inhibition of enolase reaction and TCA cycle progression at early 
stage is specific to NaF, whereas the increase of ATP utilization at later stage may be 
common to apoptotis-inducing agents, but not to necrosis-inducing agents [148].

8. Treatment and prevention of chronic fluorosis

So far, there is no specific treatment for fluorosis. Efforts are being made to 
reduce the severity of the disease and improve quality of life of affected patients 
[149]. Medical treatment being used is mainly supplementation of vitamin (Vit) 
C, D, and E, calcium, antioxidants and treatment of malnutrition [150]. In recent 
years, some traditional Chinese medicines (TCM) have been developed to treat flu-
oride-induced bone lesions in China [49]. Treatment options for dental and skeletal 
fluorosis vary according to the severity of the disease [149]. Methods for treating 
dental fluorosis include micro/macro abrasion, bleaching, composite restorations, 
veneers, and full crowns [151]. Treatment of skeletal fluorosis may include surgical 
processes while treatment of deformity includes use of physiotherapy, corrective 
plasters, and orthoses (appropriate appliances) [149].

Clearly, chronic fluorosis is mainly caused by excess intake of fluoride through 
drinking water, food products, air, and industrial pollutants over a long period. 
Therefore, avoiding excessive intake of the fluoride is essential for the preven-
tion of this disease. Notably, to keep fluoride intake within safe limits, one needs 
to consider the total daily intake, including fluoride intake from water, food, air, 
fluoride-rich dental products and drugs. The recommended level for daily fluoride 
intake is 0.05–0.07 mg F/Kg/day [152, 153]. In China, for people aged 8–16 (including 
16-year-olds), the recommended values of the total daily fluoride intake per person 
is ≤2.4 mg; for those 16 years old, the total daily fluoride intake per person is ≤3.5 mg 
[154]. In water-borne fluorosis endemic areas, alternative water resources with low 
fluoride levels or defluorinated water can be used. Coal-burning endemic fluorosis 
areas need to change the way coal is burned and food is dried. Likewise, it is beneficial 
for a daily intake of foods, vegetables, and fruits rich in vitamin C, D, and E, calcium,  
and antioxidants for the prevention of chronic fluorosis in endemic regions [49, 82, 150].  
Moreover, health education is a very important aspect for disease management. 
Knowledge regarding the harmful effects of fluoride and the causes of fluorosis can 
help people, especially the affected population, pay more attention to their living hab-
its [49, 149]. Furthermore, the identification of candidate genes that affect risk factors 
is necessary to develop more effective measures to prevent and treat fluorosis [27].

9. Conclusions

The contents of this chapter are reviewed in Figure 1. Excess intake of fluoride can 
cause chronic fluorosis, leading to dental fluorosis and skeletal fluorosis and damage 
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to nervous system, reproductive system, cardiovascular system, liver, and kidney. The 
possible mechanisms involved different key proteins and signal transduction pathways 
associated with the pathogenesis of fluorosis have been proposed. Some high-through-
put methods such as proteomics, metabolomics, and transcriptomics have been used in 
the study of the mechanism underlying development of fluorosis. Genetic factors play 
a critical role in the pathogenesis of chronic fluorosis. Combined exposure to fluoride 
with other element such as arsenic or aluminum may result in more complicated adverse 
health effects than exposure to fluoride or these elements alone. Further research is 
needed to reveal the interaction between fluorides with these elements with regard 
to their toxic effects. Clearly, the mechanisms of chronic fluorosis still need further 
research. Prevention of chronic fluorosis is important and it can be prevented by keeping 
fluoride intake within safe limits. It is important to consider total exposure (i.e., expo-
sure through air, food, and water) when evaluating adverse health effects of fluoride.
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Figure 1. 
An overview of the occurrence, influencing factors, pathogenesis, treatment, and prevention of fluorosis.
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