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Chapter

Therapeutic Applications and 
Mechanisms of YC-1: A Soluble 
Guanylate Cyclase Stimulator
Chieh-Hsi Wu, Chun-Hsu Pan and Ming-Jyh Sheu

Abstract

Nitric oxide (NO) is an essential endogenous vasodilator to maintain vascular 
homeostasis, whose effects are mainly mediated by NO-dependent soluble guanyl-
ate cyclase (sGC) which catalyzes the synthesis of cyclic guanosine monophosphate 
(cGMP), a critical mediator of vascular relaxation. YC-1, a novel NO-independent 
sGC stimulator, was first introduced as an inhibitor of platelet aggregation and 
thrombosis. Accumulating studies revealed that YC-1 has multiple medication 
potentials to use for a broad spectrum of diseases ranging from cardiovascular 
diseases to cancers. In contrast to NO donors, YC-1 has a more favorable safety 
profile and low medication tolerance. In this chapter, we introduce canonical and 
pathological roles of NO, review activations, and regulatory mechanisms of YC-1 
on NO-independent sGC/cGMP pathway and present the potential pharmacological 
applications and molecular mechanisms of YC-1.

Keywords: nitric oxide, soluble guanylate cyclase, YC-1

1. Introduction

Since the discoveries of the biological effects of NO on physiological actions 
mediated by cGMP, delineation of the molecular mechanism of NO actions and 
understanding of NO activation of guanylate cyclase (GC) and the subsequent 
signal processes have been greatly advanced [1]. NO can function as an intracellular 
messenger, an autacoid, a paracrine substance, a neurotransmitter, or as a hormone 
that can be carried to distant sites for effects [1, 2]. It is therefore a unique simple 
molecule with diversified physiological functions.

2. Canonical function of NO

NO, initially known as the endothelium-derived relaxing factor (EDRF), is a 
gas molecule and free radical with an unpaired electron which has been shown to 
be involved in an ever-growing list of biological processes. NO generated in the 
tissue binds to major physiological target, haem moiety of GC, activating the cGMP 
cascade. The GC family is composed of two members including membrane-bound 
GC and soluble GC (sGC). Membrane-bound GC is a receptor responsive to atrial 
natriuretic peptide (ANP), and sGC acts as the NO sensor. NO exerts its biological 
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effects by activating sGC to increase the cGMP level and vascular effects known to 
be mediated by cGMP such as vasodilation, inhibition of platelet aggregation, and 
inflammatory reaction. Cyclic GMP modulates a number of signaling processes 
downstream of NO. The NO-cGMP cascade can be regulated by pharmacological 
modulation of protein kinases, phosphodiesterases (PDE), and ion channels to 
alter vascular tones as well as endothelial and vascular smooth muscle cell growth. 
Pharmacological alteration of the NO level has been a major strategy to develop 
therapeutic agents for cardiovascular diseases.

Deguchi and his colleagues found that GC activity in the supernatant of neu-
roblastoma and brain preparations were activated by L-arginine which has been 
identified as an endogenous activator of sGC [3]. Hibbs et al. noted the latter that 
the cytotoxic properties of macrophages in co-cultures with tumor cells could be 
enhanced with L-arginine but suppressed by N-N-methyl-arginine (LNMA), an 
inhibitor of nitric oxide synthase (NOS) [4]. This cytotoxicity action was accom-
panied by accumulation of nitrite in the conditioned medium. These important 
studies provide the insight to identify a pathway of L-arginine metabolism that 
could produce NO and nitrite.

NOS is a group of isozymes which convert L-arginine to L-hydroxyarginine and 
subsequently to NO and L-citrulline through cofactors including reduced nico-
tinamide-adenine dinucleotide phosphate (NADPH), flavin adenine dinucleotide 
(FAD), flavin mononucleotide (FMN), and tetrahydrobiopterin (BH4) [5]. The first 
NOS isoform to be identified was the neuronal NOS (nNOS or named as NOS-1) 
[6]. This was followed shortly thereafter by inducible NOS (iNOS), also known as 
type II NOS (NOS-2) [7], and then by endothelial NOS (eNOS or named as NOS-3) 
[8]. NOS can also be inactivated by asymmetric dimethyl arginine (ADMA), an 
endogenous and competitive inhibitor of NOS [9–11].

3. Pathological role of NO

NO is essential in the maintenance of vascular homeostasis including smooth 
muscle relaxation, inhibition of platelet aggregation, attenuation of vascular 
smooth muscle cell (VSMC) proliferation, neurotransmission, and immune defense 
[12]. Therefore, the impaired NO pathway has been implicated in endothelial 
dysfunction and pathogenesis of a number of diseases featuring inflammatory 
reaction. These include arthritis, myocarditis, colitis, and nephritis. Altered NO 
synthesis has been noted in selected pathologic conditions such as amyotrophic lat-
eral sclerosis, cancer, diabetes, and neurodegenerative diseases [13, 14]. In general, 
physiological NO actions on target tissues are brief, reversible, and dependent on 
the downstream cGMP-dependent signaling events. Conversely, the pathological 
actions noted with excessively and sustained NO production involved NO interac-
tion with superoxide to generate peroxynitrite, a highly reactive free radical which 
exhibits the toxic actions of potent oxidants. Peroxynitrite, independent of the 
cGMP signaling events, has been implicated in oxidative injury noted in a number 
of disease models [15–17]. In addition to its free radical actions, peroxynitrite 
inactivates prostacyclin synthase to reduce prostacyclin levels, leading to vascular 
dysfunction [18].

ADMA, a risk factor for cardiovascular diseases, inhibits NOS to reduce bio-
synthesis of NO, resulting in impaired blood flow, accelerated atherogenesis, and 
suppressed angiogenesis [19]. ADMA is involved in the development of endothelial 
dysfunction. In essential hypertension patients, the L-arginine and ADMA levels are 
elevated and inversely related to endothelial function [20, 21]. Endothelial func-
tion depends on the integrity of eNOS and the availability and vascular signaling of 
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NO. In clinical settings, endothelial dysfunction is important because it may develop 
hypertension and atherosclerosis and therefore is a predictor in ensuing cardio-
vascular diseases [22]. In hyperhomocysteinemia, an increase in ADMA has been 
linked to impaired vascular endothelial function. Elevated homocysteine levels exert 
inhibitory effects on the expression or activation of dimethylarginine dimethylami-
nohydrolase (DDAH) [23–27]. Two isoforms of DDAH, DDAH-1 and DDAH-2, were 
identified in tissues expressing nNOS and eNOS, respectively [28]. Both DDAH iso-
forms are expressed widely in different organs, with higher content found in the liver 
and kidney [29]. Similarly, endothelial dysfunction has also been found in hypercho-
lesterolemia. Several studies indicated that hypercholesterolemia may cause a decline 
in DDAH activity and an increase in the ADMA level [30, 31]. Böger et al. also found 
that exposure of cultured endothelial cells to oxidized low-density lipoprotein 
(oxLDL) cholesterol resulted in ADMA accumulation in the culture medium [31]. 
Oxidized LDL could cause endothelial dysfunction in complex mechanisms includ-
ing reduction of eNOS expression [31], to trigger endothelial apoptosis [32] and to 
inhibit vascular endothelial growth factor (VEGF)-induced endothelial proliferation 
[33]. Furthermore, oxLDL impairs NO-induced stimulation of cGMP accumulation 
[34]. Patients with cardiac syndrome X (CSX) have higher levels of ADMA and 
increased mean common carotid intima-media thickness that are ascribed to ADMA 
effects on NO bioavailability resulting in endothelial dysfunction and subsequently 
impede microvascular circulation, which are the leading mechanisms in the develop-
ment of CSX [10, 35, 36]. ADMA also plays important roles in endothelial dysfunc-
tion in subjects with chronic kidney failure [9, 37, 38]. ADMA is metabolized to 
L-citrulline via the action of DDAH-1, which is highly expressed in the kidney [29]. 
There is a strong association between impairment of renal function and elevation 
of ADMA content [9, 39]. Microangiopathy-related cerebral damage (MARCD) is 
a cerebrovascular disease caused by arteriosclerosis in deep white matter, which 
includes lacunar infarction and white matter hyperintensity [40]. Arteriosclerosis in 
deep white matter resulting from acute and chronic ischemia is probably responsible 
for the development of MARCD [41]. Several potential risk factors for arteriosclero-
sis have been evaluated in patients with MARCD [42, 43]. NO is involved not only in 
regulating cerebral blood flow but also in preventing arteriosclerosis by inhibiting 
fibrosis and proliferation of smooth muscle cells in the arterial wall [44]. In fact, 
NOS inhibitors and functional single-nucleotide polymorphisms in the eNOS gene 
have been shown to be correlated with MARCD [44, 45]. Excessive NO production 
could also be a problem in the progression of the disease such as glaucoma. Increased 
NO generated by iNOS in astrocytes and microglia in the optic nerve head of patients 
with glaucoma may contribute to the optic neuropathy associated with this disease. 
The pharmacological use of an inhibitor of iNOS, aminoguanidine, significantly 
prevents the loss of retinal ganglion cells [46].

4. Novel compounds for NO-independent sGC/cGMP activation

Organic NO donors such as nitrite and nitroglycerin are successful examples 
in clinical practice for more than a century. However, formation of harmful 
intermediate, peroxynitrite, and the long-term treatment with NO donors result-
ing in drug resistance limit the clinical applications of NO donor compounds. To 
overcome these obstacles, the novel agents for triggering sGC/cGMP cascade in 
NO-independent manner have been developed.

A series of 1-(substituted benzyl)-3-(substituted aryl)-condensed pyrazole 
derivatives were synthesized and identified as class novel antiplatelet agents [47, 48]. 
As one of the most promising analogues, 1-benzyl-3-(5′-hydroxymethyl-2′-furyl) 
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indazole (YC-1) was selected for further investigation. The physiological property of 
YC-1 in stimulation of sGC was demonstrated by Ko and colleagues [49]. Potential 
regulatory mechanisms of YC-1 on cardiovascular protections were summarized in 
Figure 1. Ko et al. showed that YC-1 is an antithrombotic agent. It inhibits platelet 
aggregation by increasing platelet cGMP levels in an NO-independent manner. 
YC-1 action was noted to exert its antiplatelet effect through the activation of 
NO-independent sGC/cGMP pathway [50]. Nearly, all the newer generations of 
sGC stimulator except acryl-acrylamide family have been derived based on YC-1 
as the parent compound [51]. YC-1 and its successors all require the presence of 
a reduced haem moiety within sGC to stimulate sGC, but they also act in synergy 
with NO by binding NO or iron-free precursor of haem to structurally resemble 
the NO-haem complex and stabilize sGC in its active configuration [52–54]. Stasch 
et al. also reported that YC-1 and its derivate, BAY 41-2272, bind to regulatory sites 
(cys 238 and cyst 243 regions) in the α1-subunit of sGC, resulting in conformational 
change and subsequent activation of recombinant sGC by NO-independent but 
haem-dependent mechanism [55]. Mulsch et al. also noted that the combined effect 
of nitrovasodilators and YC-1 in cultured VSMCs and isolated rabbit aortic rings 
reflected the direct synergistic action of YC-1 and NO on the sGC [56]. Wohlfart 
et al. reported that YC-1 can stimulate synthesis and release NO in endothelial cells 
independent of raising the cGMP content in a calcium-dependent manner [57]. 
In addition, YC-1 inhibits the cGMP-specific phosphodiesterase type 5 (PDE-5) 

Figure 1. 
Schematic overview of regulatory mechanisms of YC-1 on cardiovascular protections. cAMP, cyclic adenosine 
monophosphate; cGMP, cyclic guanosine monophosphate; ECs, endothelial cells; FAK, focal adhesion kinase; 
GMP, guanosine monophosphate; GTP, guanosine triphosphate; HO-1, heme oxygenase-1; Hsp70,  
heat shock protein 70; iNOS, inducible nitric oxide synthase; MMP2, matrix metalloproteinase-2;  
MMP-9, matrix metalloproteinase-9; oxLDL, oxidized low-density lipoprotein; PDE5, phosphodiesterase 
5; PKG, protein kinase G; sGC, soluble guanylyl cyclase; TGF-β, transforming growth factor-beta; VASP, 
vasodilator-stimulated phosphoprotein; VSMC, vascular smooth muscle cells.
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in platelets and in aortic extracts to raise cGMP levels and prolong its duration 
of action [58, 59]. The vasodilator-stimulated phosphoprotein (VASP) has been 
reported to be involved in cGMP- and cAMP-mediated antiplatelet actions [60]. 
Becker et al. noted that VASP is the target of YC-1 since VASP phosphorylation can 
be directly increased through stimulation of the cGMP/protein kinase G/VASP 
pathway [61].

5. Additional pharmacological activities of YC-1

In addition to the effects in antiplatelet aggregation and antithrombosis, YC-1 
has been demonstrated to provide several beneficial effects including cardiovascu-
lar protections; antitumor, neuroprotective, and anti-inflammatory effects; as well 
as optical protections.

5.1 Cardiovascular protections

YC-1 inhibits VSMC proliferation, similar to specific guanylate cyclase inhibi-
tors, suggesting that the antiproliferative effect of YC-1 is mediated by cGMP 
[62]. A similar conclusion has also been drawn by other investigators [63, 64]. 
As shown in Figure 1, NO-/cGMP-dependent processes have been suggested to 
modulate VSMC phenotype and the arterial response to endovascular injury [65, 66]. 
It has been reported that YC-1 can upregulate expression of iNOS and inducible 
heme oxygenase-1 (HO-1) at the transcriptional and translational level as well 
as stimulate sGC and cGMP production in the balloon-injured artery [63]. These 
results support the proposal that YC-1 can be developed as a potent new thera-
peutic agent for reducing restenosis via endogenous carbon monoxide (CO)- and/
or NO-mediated cGMP-dependent processes. Wu et al. found that two important 
modulators, transforming growth factor (TGF)-β1 and focal adhesion kinase 
(FAK), responsible for VSMC proliferation and migration were reduced in content 
in the cultured VSMC treated with YC-1. The effect of YC-1 on preventing balloon 
injury-induced vascular stenosis has also been demonstrated in a rat carotid angio-
plasty model [64]. Liu et al. also found that YC-1 can inhibit neointima formation 
in balloon-injured rat carotid through suppressing the expression and actions 
of matrix metalloproteinase (MMP)-2 and MMP-9 [67]. YC-1 can also prevent 
oxLDL-mediated apoptosis by inducing heat shock protein 70 (Hsp70) expression 
in VSMCs suggesting its cytoprotective effect in vascular diseases [68]. Similarly, 
Hsp70 overexpression has also been involved in protective effect of YC-1 on heat 
stroke [69]. In vivo evidence shows that YC-1 and zaprinast, an inhibitor of cGMP-
selective PDE, inhibit injury-induced vascular remodeling through anti-mitogenic 
and pro-apoptotic actions in a rat carotid artery balloon injury model [70]. 
Moreover, YC-1 has also been found to induce cell cycle arrest of HUVEC through 
upregulation of p21 and p27 protein via inhibition of the cyclin/cyclin-dependent 
kinase (CDK) system. This finding suggests that YC-1-induced antiproliferation 
effect in HUVEC is via a cGMP-independent manner [71]. Besides, the prevention 
effects of YC-1 on the development of hypoxia-induced pulmonary arterial hyper-
tension (PAH), right ventricular hypertrophy (RVH), and pulmonary vascular 
remodeling has been clearly mentioned in animal model [72].

5.2 Antitumor effects

A growing body of evidence indicates that hypoxia-inducible factor-1 (HIF-1) 
contributes to tumor progression and metastasis. YC-1 inhibits HIF-1-mediated 
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hypoxic responses [73–76]. YC-1 enhanced radiation sensitivity by inhibiting 
HIF-1α expression [77]. Lau et al. also found that YC-1 suppressed both synthesis 
and stability of HIF-1α, via regulation of murine double minute (Mdm2) protein 
[78]. In hypoxic gastric carcinoma cell and xenograft models, low-dose YC-1 
combined with glucose and insulin can effectively inhibit anaerobic glycolysis and 
induce hypoxia-dependent apoptosis by suppressing HIF-1α expression [79].

YC-1 also enhanced chemosensitivity of hepatocellular carcinoma cells to 
cisplatin through a Stat3-dependent manner [80]. Similarly, YC-1 also enhanced 
camptothecin toxicity by activating the caspase-8, the Bid pathway, and the 
mitochondria-mediated apoptotic pathway in ovarian carcinoma cell lines [81]. 
Additionally, it has also been found that YC-1 can suppress constitutive NF-κB 
activation and induce apoptosis in human prostate cancer cells [82]. YC-1 inhibited 
VEGF- and basic fibroblast growth factor (bFGF)-mediated ERK1/ERK2 mitogen-
activated protein kinase (MAPK), AKT, and protein kinase Cα (PKCα) pathways 
in vitro and angiogenesis in in vivo models [83]. YC-1 arrested the cell cycle in G0/
G1 in human hepatocellular carcinoma cells by upregulating p21CIP1/WAP1 and p27KIP1 
expression [84]. YC-1 arrested the cell cycle at S-phase and induced apoptosis by 
activating checkpoint kinases in several cancer cells [85]. Similarly, YC-1 can also 
increase p21 protein and decrease cyclins and CDKs to induce G0/G1 phase arrest 
as well as activate caspases and disrupt the mitochondrial membrane potential to 
trigger mitochondria-dependent apoptosis in cisplatin-resistant human oral cancer 
CAR cells [86]. Additionally, apoptotic mechanism of YC-1 may also be mediated by 
activating JNK phosphorylation and upregulating FasL and Fas receptor clustering 
to activate caspase-3 and caspase-8 and then trigger mitochondria-mediated and 
caspase-dependent pathways in renal carcinoma cells [87]. YC-1 has been shown 
to downregulate several invasion-related signaling proteins, such as β-catenin, 
caveolin, Src, and epidermal growth factor receptor (EGFR), as well as multiple 
growth-related proteins, including 5’-AMP-activated protein kinase α (AMPKα), 
phospho-acetyl-CoA carboxylase (p-ACC), human epidermal growth factor recep-
tor 2 (HER-2), and mammalian target of rapamycin (mTOR) in nasopharyngeal 
carcinoma [88]. Other anti-invasion mechanisms of YC-1 have also been identified 
in nasopharyngeal carcinoma (NPC) cells by reverse phase protein array [88]. 
Activation of beta-catenin signaling has also been evidenced to involve in inhibiting 
the proliferation and metastasis of hepatocellular carcinoma using combination 
therapy with local radiofrequency ablation and YC-1 [89]. Moreover, the previ-
ous study indicated that YC-1 has a potential effect to improve drug resistance by 
inhibiting multidrug-resistant protein resulting in decrease of P-glycoprotein (Pgp) 
efflux, whose effect is modulated by the NO-cGMP-PKG-ERK signaling pathway 
[90]. These observations revealed together that YC-1 exerts inhibitory effects in key 
signaling pathways essential for maintaining cancer or endothelial cell viability and 
may be developed as an antitumor agent on a broad spectrum of cancer types by 
facilitating apoptosis and suppressing tumor angiogenesis.

5.3 Neuroprotective and anti-inflammatory effects

The use of NO donors (e.g., NONOate) results in excessive NO production 
which may cause NO-induced axonal damage by inhibiting mitochondrial respira-
tion, independent of cGMP [91]. YC-1 has been shown to protect white matter 
axons from NO toxicity. This axonoprotective action of YC-1 was unrelated to its 
activity on sGC but through a novel action on voltage-dependent Na+ channels in 
the rat isolated optic nerve [92]. Lu et al. showed YC-1 inhibition of lipopolysac-
charide (LPS)-induced iNOS and cyclooxygenase-2 (COX-2) expression as well as 
NF-κB activation, implying that YC-1 can be developed as an anti-inflammatory 
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neuroprotective agent [93]. Chien et al. reported that YC-1 promoted learning 
behavior in Morris water maze and avoidance tests and YC-1 pretreatment reduced 
scopolamine-induced learning deficit. Thereby, the NO/cGMP/PKG pathway may 
be involved in the learning enhancement-based experiments with intracerebro-
ventricular injection of L-NAME and PKG inhibitors [94]. Similarly, YC-1 can also 
improve age-related learning and memory dysfunction [95]. Furthermore, YC-1 
may inhibit HIF-1α accumulation and VEGF production to protect blood-brain 
barrier against ischemia-/reperfusion-induced injury [96]. In addition, beneficial 
effect of YC-1 in ameliorating combined allergic rhinitis and asthma syndrome 
(CARAS) was demonstrated through reducing expressions of HIF-1α, NF-kB, and 
peroxisome proliferator-activated receptor α (PPARα) [97].

5.4 Optical protections

Therapeutic application of YC-1 on sepsis has been mentioned. After administra-
tion with YC-1, several LPS-stimulated modulations, such as NF-κB activation, iNOS 
expression, NO overproduction, and cytokine release, were markedly inhibited, 
thus improving survival rate of endotoxemic mice [98]. YC-1 has also been shown 
to inhibit HIF-1α-induced iNOS and VEGF expressions in various tissue models. 
Studies showed that YC-1 inhibited optical neovascularization in the pathological 
stages [99, 100]. Song noted that YC-1 could prevent laser-induced choroidal neo-
vascularization by suppressing photocoagulation-mediated HIF-1 expression [99]. 
The pathological retinal neovascularization could also be inhibited by YC-1 through 
decreasing ischemia-induced expression of HIF-1 and its downstream angiogenic 
mediators (e.g., VEGF) in the ischemic retina. The physiological revascularization 
of the retinal vascular plexuses was enhanced by YC-1 via inhibiting iNOS expres-
sion at mRNA and protein levels [100]. Besides, it also has been reported that YC-1 
alleviated macular edema in the animal model of laser-induced experimental central 
retinal vein occlusion by reducing several inflammatory or angiogenesis-related 
factors, such as interleukin-6 (IL-6), IL-8, VEGF, and HIF-1 [101].

5.5 Other activities

Wang and his colleagues evidenced that YC-1 inhibited bone resorption and 
induced extrinsic apoptosis of osteoclasts to reduce bone loss, which implied that 
YC-1 has potential application for use as an antiresorptive drug in postmenopausal 
osteoporosis [102]. Besides, YC-1 and its derivatives also have been mentioned to 
improve hepatic fibrosis, which mechanisms may be caused by inhibiting liver 
neutrophil infiltration as well as decreasing in TNF-α signaling and macrophage 
aggregation [103, 104].

6. Clinical significance of YC-1

Extensive studies have been conducted to explore possible systemic actions of 
YC-1 in disease models in animals to demonstrate that YC-1 has versatile physi-
ological activities to be a potent candidate drug for a number of vascular disorders. 
In the cardiovascular and hematological systems, it has been reported that local 
extravascular administration of YC-1 could prevent neointima formation in a rat 
carotid artery model of balloon angioplasty [63, 64, 67]. In a study of experimental 
thrombosis model, YC-1 conferred beneficial effect through its anti-aggregating 
and pro-fibrinolytic effects [105]. BAY 63-2521 (riociguat™), a NO-independent 
but heme-dependent sGC stimulators like TC-1, is currently in clinical development 
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for the treatment of pulmonary arterial hypertension with the only reported 
significant side effect to be a decrease in systemic arterial diastolic pressure [106, 107]. 
Similarly, intravenous administration of YC-1 has been shown to lower mean 
arterial blood pressure in normotensive and hypertensive rat [108]. For anticancer 
therapy, Lau et al. demonstrated that intraperitoneal injection of YC-1 enhances 
cisplatin chemosensitivity of hepatocellular carcinoma cells in nude mice xenograft 
tumor model, suggesting that YC-1 may be as an adjuvant agent for anticancer 
therapy [80]. Furthermore, oral administration of YC-1 can also decrease tumor 
mass in human renal cancer xenograft mice model [87]. In Morris water maze and 
avoidance test of mice, Chien et al. showed that YC-1 may be a good candidate for 
the improvement of learning and memory [94, 109]. Hwang et al. demonstrated 
that YC-1 can potentiate the relaxant responses of exogenous or endogenous NO 
through the elevation of cGMP in guinea-pig trachea [110]. The above in vivo stud-
ies all demonstrated the relevance of YC-1 in association with NO.

7. Conclusions

Accumulating evidences have shown that the administration of YC-1 may have 
beneficial pharmacological or physiological functions in diseased states for clini-
cal applications. In the future, less toxic and more effective candidates would be 
the focus of further investigations through structural modification of YC-1 or its 
derivatives and better understanding of the molecular mechanisms of its actions.
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