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Chapter

Fuzzy Logic and Fuzzy Expert
System-Based Material Synthesis
Methods
Mustafa B. Babanli

Abstract

Analyzing a wide diversity of approaches to material selection and synthesis, one
can observe a tendency to shift research efforts from physical experiments to
systematic analysis based on mathematical models and computational schemes. The
latter, in turn, evolves from traditional analytical methods and computational
schemes to modern approaches that are based on collaboration of fuzzy logic and
soft computing, machine learning, big data and other new methods. In this study,
emphasis is put on modeling of fuzzy relationship between performance of new
materials and affecting factors. This chapter includes applications of fuzzy model-
based synthesis of different alloys. Fuzzy If-then rules based TiNiPt alloy synthesis
problem, fuzzy expert system based synthesis of material for pressure vessel and
other problems are considered.

Keywords: fuzzy logic, material synthesis, big data, fuzzy clustering, expert system

1. Introduction

Development of new materials is one of important tasks of theoretical and
practical interest. Traditionally, this task is implemented mainly on the basis of
intensive (and sometimes “ad hoc”) experiments which are time- and resource
consuming or even not practically implementable. Nowadays, it is well understood
that more systematic and effective approaches are needed which are based on
computer-guided synthesis of materials. Such approaches rely on data-driven
mathematical models and knowledge base obtained from big data previously col-
lected during intensive experiments. Existing computational approaches include
methods based on phase diagrams, simulation modeling, theory of associated solu-
tions, methods of microstructure modeling, random fields, etc. In [1], authors
analyze the way data-driven techniques are used in deciphering processing-
structure-property-performance relationships in materials, with examples of for-
ward (property prediction) and inverse (materials discovery) models. Such analysis
can noticeably improve cost-effective materials discovery as the aim of Materials
Genome Initiative (MGI). It is shown that adding data sciences to the paradigms of
materials science is important to deal with big data.

Agrawal et al. [2] used the Japan National Institute for Materials Science (NIMS)
MatNavi database [3] to develop models for prediction of fatigue strength of steel.
Prediction accuracy is important for a number of applications due to the significant
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complexity of fatigue testing and serious consequences of its failures. Actually,
fatigue usually leads to more than 90% of all mechanical failures of structural
components [4].

In [5], the authors processed the materials properties database for selecting and
designing high-temperature alloys for solid oxide fuel cell (or SOFC) applications.
Also, this work considers the selection of alloy compositions and properties, which
are relevant to the SOFC application. The alloys of interest included such high-
temperature alloys as Co, Ni, and Fe base superalloys, as well as stainless steels and
Cr base alloys.

The fusion of clustering and regression methods with optimization approaches
provides a new opportunity for materials discovery and design. In [6], they discuss
the challenges and opportunities associated with materials research. The work [7]
for the first time represents machine learning-based determination of viable new
compound from true chemical white space, whereas no characterization was pro-
vided by promising chemistries. The authors consider an effective prediction model
for materials properties that may be easily accessible and useful for researchers.

Existing works based on classical computational schemes used for material syn-
thesis and selection provided good results. However, one important issue related to
big data-based computerized material synthesis is that experimental data include
measurement errors, partially reliable information, imprecise evaluations, etc. This
mandates the use of fuzzy logic approaches for material synthesis. Let us consider
some existing works in this regard.

Papers [8–10] show the necessity to account for nonlinearity and uncertainty
factors that characterize modeling of material design problems. This requires
searching for new ways in formalization of systematic approaches to material
design. These papers are devoted to these factors.

Authors in [11] used a new combining tool with which it is possible to model and
optimize new alloys that simultaneously satisfy up to 11 physical criteria. To
develop a new polycrystalline nickel-base superalloy with the optimal combination
of cost, density, gamma-primary phase and sol content, phase stability, durability,
yield point, tensile strength, stress rupture, oxidation resistance, and elongation.

In [12], they have developed a rule-based fuzzy logic model for predicting shear
strength of Ni-Ti alloy specimens which were produced using powder metallurgy
method.

In [13], they applied the fuzzy set theory to knowledge mining from big data on
material characteristics. The authors propose fuzzy clustering-generated If-Then
rules as a basis for computer synthesis of new materials. These fuzzy If-Then rules
describe relationship between material composition and material properties. Valid-
ity of the proposed approach is verified on an example of prediction properties of
Ti-Ni alloy, and computer experiments of the proposed fuzzy model show its better
performance than the physical experiment-based analysis.

In [14], ANFIS model is used to describe the high-temperature deformation
behavior of Ni-based superalloy. The inputs of the ANFIS model are deformation
temperature, strain rate, and true strain, and the output is true stress. The optimal
numbers and types of membership function for the input variables are found. The
results show that the constructed ANFIS model is effective in predicting the con-
sidered behavior of the Ni-based superalloy.

In this chapter, we propose fuzzy If-Then rule-based model to predict properties
of new materials. The model is constructed on the basis of fuzzy clustering of big
data on dependence between material composition and related properties. The
motivation to use fuzzy model is inspired by the necessity to construct an intui-
tively well-interpretable development strategy from imperfect and complex data.
The proposed approach is applied to synthesis of Ti-Ni-X alloys with required

2

Fuzzy Logic



properties and synthesis of material for pressure vessel. Computer experiments of
the proposed fuzzy models show better performance than the physical experiment-
based analysis.

2. Statement of material synthesis problem and solution methods

The motivation to use fuzzy model is inspired by the necessity to construct an
intuitively well-interpretable development strategy from imperfect and complex
data. Analyzing a wide diversity of approaches to material selection and synthesis,
one can observe a tendency to shift research efforts from physical experiments to
systematic analysis based on mathematical models and computational schemes. The
latter, in turn, evolutes from traditional analytical methods and computational
schemes to modern approaches that are based on collaboration of fuzzy logic and
soft computing, machine learning, big data, and other new methods. Uncertainty of
materials properties requires to use fuzzy logic methods to more adequately model
and predict possible material behavior. This will help to deal with imprecision of
experimental data; partial reliability of experimental data, prediction results, and
expert opinions; uncertainty of materials properties stemming from complex rela-
tionship between material components; and a necessity to analyze, summarize, and
reason with a large amount of information of various types (numeric data, linguistic
information, graphical information, geometric information, etc.).

Fuzzy logic methods have a good capability to effectively capture and process
imprecise experimental data, that is, interpret, classify, learn, and compute with
them. Fuzzy logic may help to improve abilities of big data principles to deal with a
huge amount and variety of information. In this realm, fuzzy clustering and fuzzy
logic-based knowledge bases and information search algorithms provide a bridge
between complexity, imperfectness, qualitative nature of information, and research
techniques. Particularly, this may help to get intuitive general interpretation of
materials science results obtained by various techniques, and ways to get practical
results would be then more evident.

Assume that big data on smart materials sourced from experiments is available.
These big data describe relationship between alloy composition and its characteris-
tics (Table 1) [13, 15, 16].

The problem is to extract knowledge-based model from the considered data and
to find an alloy composition which provides a predefined alloy characteristics. We
will consider fuzzy knowledge-based synthesis model [17–20]. The problem is
solved as follows [21].

First, fuzzy clustering of the big data is applied to determine fuzzy clusters
C1,C2,…,CK.

Second, fuzzy IF-THEN rule-based model is constructed from C1,C2,…,CK:

IF y1 is Ak1 and,…, andyn is AknTHENz1 is Bk1 and,…,

Experiment Alloy composition (in %) Conditions Alloy characteristics

# Metal 1, y1 … Metal n, yn Cond.1 … Cond. l Char. 1, z1 … Char. m, zm

1 y11 … y1n T11 … T1l z11 … z1m

⋮ ⋮

s ys1 … ysn Ts1 … Tsl zs1 … zsm

Table 1.
Big data of relationship between alloy composition and its characteristics.
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andzm isBkm, k ¼ 1,…, K (1)

Third, fuzzy inference is implemented on the basis of the fuzzy IF-THEN rules
to compute optimal values B0

1,…, B0
m of alloy characteristics z1, …, zm. The fuzzy

inference is mainly based on composition of a fuzzy input information on material
constituents (and other conditions) and fuzzy relation which describes fuzzy IF-
THEN rules. A different approach to fuzzy reasoning also exists and is applied in
case of scarce rule base. This is based on fuzzy inference by using similarity of fuzzy
input information and antecedents of existing fuzzy rules; a resulting output is then
computed as linear interpolation of fuzzy rule consequents.

By using fuzzy inference, optimal values B0
1,…, B0

m are found as those closed to

the ideal vector of characteristics B∗ ¼ B∗

1 ;…;B∗

m

� �

. For material synthesis, also
fuzzy expert system approach is used. In this case, fuzzy expert system ESPLAN
implements IF-THEN rule base obtained from fuzzy clustering of data.

The use of fuzzy rules and fuzzy inference provides us important tools for
transition from intensive experiments which deal with a physical model to a fuzzy
logic-based mathematical model. Further experiments are conducted not by using
physical model but by using fuzzy logic-based mathematical model.

3. Material synthesis of Ti-Ni-X alloys by using ideal vector of
characteristics

3.1 Synthesis of Ti-Ni-Pd alloys with given characteristics

A problem of computational synthesis of Ti-Ni-Pd alloy with predefined char-
acteristics is considered. A big data fragment describing dependence alloy compo-
sition and the corresponding characteristics is shown in Table 2.

A problem of computational synthesis is related to determination of alloy com-
position with corresponding values of the characteristics close to the target values:

z1 ¼ 302:3ð Þ, z2 ¼ 323:3ð Þ, z3 ¼ 347:1ð Þ, z4 ¼ 331:3ð Þ (2)

Thus, B∗ ¼ B∗

1 ;B
∗

2;B
∗

3

� �

¼ 302:3ð Þ; 323:3ð Þ; 347:1ð Þ; 331:3ð Þð Þ can be considered as

an ideal solution.
In order to describe relationship between alloy composition and the characteris-

tics values, the fuzzy IF-THEN rules were obtained by using FCM clustering of the
considered big data:

IF Ni is L and Pd is A2
THEN Mf is A and Ms is A and As is aand Af is A
IF Ni is Aand Pd is A1
THEN Mf is L and Ms is L2 and Af is L2 and As is L
IF Ni is H2 and Pd is L1
THEN Mf is VL and Ms is VL and As is Land Af isVL,
IF Ni is H1 and Pd is L2
THEN Mf is L and Ms is L and Af is L and As is L
IF Ni is VH and Pd is VH
THEN Mf is H and Ms is H and Af is VH and As is VH
The codebooks for inputs are shown in Tables 3 and 4.
The linguistic approximation of the inputs is shown in Tables 5 and 6.
The codebooks for the outputs are shown in Tables 7–10.
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No. Linguistic value TFN

1. Very low (VL) (3, 3, 13.5) (1)

2. Low (L) (3, 13.5, 24) (2)

3. Average (A) (13.5, 24, 34.5) (3)

4. High (H) (24, 34.5, 45) (4)

5. Very high (VH) (34.5, 45, 45) (5)

Table 3.
Codebook for input 1 (Ni).

No. Linguistic value TFN

1. Very low (VL) (3, 3, 13.75) (1)

2. Low (L) (3, 13.75, 24.5) (2)

3. Average (A) (13.75, 24.5, 35.25) (3)

4. High (H) (24.5, 35.25, 46) (4)

5. Very high (VH) (35.25, 46, 46) (5)

Table 4.
Codebook for input 2 (Pd).

No. Linguistic value TFN

1. Very low (VL) (0, 3.977, 19.2)

2. Low (L) (6.709, 18.6, 30.48)

3. Average (A) (14.53, 24.7, 34.86)

4. High 1 (H1) (21.16, 39.33, 57.51)

5. High 2 (H2) (20.88, 30.73, 40.59)

Table 5.
Linguistic terms for input 1 (Ni).

Composition Transformation temperatures

x1
(Ni, %)

x2
(Ti, %)

x3
(Pd, %)

y1 (martensitic

finish

temperature, K)

y2 (martensitic

start

temperature, K)

y3 (austenitic

finish

temperature, K)

y4 (austenitic

start

temperature, K)

41 50 9 322.3 329.4 341.3 331.2

39 50 11 318.2 335.7 347.6 334.7

29 50 21 406.4 424.5 440.3 426.6

20 50 30 515.3 533.8 546.8 534.9

Table 2.
A big data fragment on Ti-Ni-Pd alloy composition [22].
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The constructed fuzzy model will be used to determine an input vector

A0 ¼ A0
1;…;A0

n

� �

that induces the corresponding output vector B0 ¼ B0
1;…;B0

m

� �

maximally close to the ideal solution B∗ ¼ B∗

1 ;B
∗

2;B
∗

3

� �

.

We have found that the fuzzy optimal output vector B0 induced by the fuzzy
input vector A0 ¼ A0

1;A
0
2;A

0
3

� �

¼ 19:5; 50:5; 30ð Þ is B0 ¼ B0
1;B

0
2;B

0
3;B

0
4

� �

¼

347:78ð Þ; 364:86ð Þ; 382:17ð Þ; 375:22ð Þð Þ. It is the closest vector to the considered ideal
fuzzy vector B∗ ¼ 302ð Þ; 323ð Þ; 347ð Þ; 313ð Þð Þ. The distance is D (B,B*) = 94. Thus,

No. Linguistic value TFN

1. Average 1 (A1) (21.28, 30.03, 38.78)

2. Average 2 (A2) (15.9, 24.9, 33.9)

3. Low 1 (L1) (0, 10.58, 28.06)

4. Low 2 (L2) (9.962, 19.04, 28.13)

5. Very high (VH) (28.8, 43.21, 57.62)

Table 6.
Linguistic terms for input 2 (Pd).

No. Linguistic value TFN

1. Average (A) (394.8, 502.1, 609.5)

2. Low 1 (L1) (359.2, 451.3, 543.5)

3. Very low (VL) (199.3, 322.3, 445.2)

4. Low 2 (L2) (294.4, 386.8, 479.2)

5. Very high (VH) (475.4, 674.5, 873.5)

Table 7.
Linguistic terms for output 1 (Mf).

No. Linguistic value TFN

1. Average (A) (417.4, 523.8, 630.2)

2. Low 1 (L1) (369.6, 463.1, 556.6)

3. Very low (VL) (221.4, 338.8, 456.2)

4. Low 2 (L2) (306.8, 400.4, 494)

5. Very high (VH) (532.2, 717.8, 903.5)

Table 8.
Linguistic terms for output 2 (Ms).

No. Linguistic value TFN

1. Average (A) (414.3, 527.4, 640.5)

2. Low 1 (L1) (374.6, 466.5, 558.4)

3. Very low (VL) (246.3, 354.8, 463.3)

4. Low 2 (L2) (319.1, 409, 498.9)

5. Very high (VH) (536.5, 730.6, 924.7)

Table 9.
Linguistic terms for output 3 (As).
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the computational synthesis based on the fuzzy model uncovers the following alloy
composition: Ni is about 19%, Ti is about 51%, and Pd is about 30% with the
characteristics Mf = 347.78, about Ms = 364.86, about Af = 382.17, and As = 375.22.

3.2 Synthesis of Ti-Ni-Pt alloys with given characteristics

A problem of computational synthesis of Ti-Ni-Pt alloy with predefined charac-
teristics is considered. A big data fragment describing dependence alloy composi-
tion and the corresponding characteristics is shown in Table 11.

The following fuzzy IF-THEN rules were obtained by using FCM clustering of
the considered big data:

If x1 is VL and x3 is VH THEN y1 is VH and y2 is VH.
If x1 is H2 and x3 is L1 THEN y1 is VL and y2 is VL.
If x1 is A and x3 is L3 THEN y1 is L2 and y2 is L2.
If x1 is L and x3 is H THEN y1 is H and y2 is H.
If x1 is H1 and x3 is L2 THEN y1 is L1 and y2 is L.

# Linguistic value TFN

1. Average (A) (420.5, 537.7, 654.9)

2. Low 1 (L1) (360.5, 471.1, 581.6)

3. Very low (VL) (214.5, 344, 473.6)

4. Low 2 (L2) (301.9, 406.6, 511.3)

5. Very high (VH) (599.2, 771, 982.8)

Table 10.
Linguistic terms for output 4 (Af).

Composition Transformation temperatures

x1
(Ni, %)

x2
(Ti, %)

x3
(Pt, %)

y1 (martensitic start

temperature, K)

y2 (austenitic start

temperature, K)

30 50 20 539 544

20 50 30 833 867

15 50 35 953 1023

…

10 50 40 1173 1123

Table 11.
Transformation temperatures of Ti-Ni-Pt alloy [23].

No. Linguistic value TFN

1. Very low (VL) (5, 5, 13.75)

2. Low (L) (5, 13.75, 22.5) (2)

3. Average (A) (13.75, 22.5, 31.25) (3)

4. High (H) (22.5, 31.25, 40) (4)

5. Very high (VH) (31.25, 40, 40) (5)

Table 12.
Codebook for input 1 (x1).
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The codebooks for inputs are shown in Tables 12 and 13.
The linguistic approximation of the inputs is shown in Tables 14 and 15.
The codebooks for the used outputs are shown in Tables 16 and 17.
We have found that the fuzzy optimal output vector B0 induced by the fuzzy

input vector A0 ¼ A0
1;A

0
2;A

0
3

� �

¼ 40; 50; 10ð Þ is B0 ¼ 479:68ð Þ; 488ð Þð Þ. It is the

closest vector to the considered ideal fuzzy vector B∗ ¼ 363ð Þ; 373ð Þð Þ. The distance
between them is D B0

; ;B∗ð Þ ¼ 164. The fuzzy model-based results show that the

No. Linguistic value TFN

1. Very low (VL) (10, 10, 18.75) (1)

2. Low (L) (10, 18.75, 27.5) (2)

3. Average (A) (18.75, 27.5, 36.25) (3)

4. High (H) (27.5, 36.25, 45) (4)

5. Very high (VH) (36.25, 45, 45) (5)

Table 13.
Codebook for input 2 (x3).

No. Linguistic value TFN

1. Very low (VL) (0, 7.535, 22.65)

2. High 1 (H1) (25.98, 35.17, 44.35)

3. Average (A) (19.27, 26.33, 33.39)

4. Low (L) (8.109, 17.64, 27.17)

5. High 2 (H2) (21.67, 30.06, 38.48)

Table 14.
Linguistic terms for input 1 (Ni).

No. Linguistic value TFN

1. Very high (VH) (27.18, 42.47, 57.75)

2. Low 1 (L1) (5.859, 14.84, 23.82)

3. Low 2 (L2) (14.14, 21.78, 29.42)

4. High (H) (22.63, 32.36, 42.08)

5. Low 3 (L3) (13.71, 19.75, 26.18)

Table 15.
Linguistic terms for input 2 (Pt).

No. Linguistic value TFN

1. Very low (VL) (363, 363, 565.5)

2. Low (L) (363, 565.5, 768)

3. Average (A) (565.5, 768, 970.5)

4. High (H) (768, 970.5, 1173)

5. Very high (VH) (970.5, 1173, 1173)

Table 16.
Codebook for output 1 (y1).
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desired alloy composition is as follows: Ti is about 50%, Ni is about 37%, Pt is about
13%, and the obtained characteristics are about Ms = 479,6828 and about
As = 488,1005.

4. Material synthesis by fuzzy expert system

A series of works exist on material synthesis by using fuzzy models [12, 24, 25].
In this study, to solve material synthesis problem for pressure vessel, two methods
are used: possibility measure-based inference method (by ESPLAN shell, Aliev
inference) and Mamdani inference method (by MATLAB environment, Fuzzy
Toolbox) [26].

4.1 Statement of the problem

Defining the performance index for pressure vessel in material synthesis is a
very important problem. The basic problem is to evaluate the performance index by
using weighted performance indices.

For determining the performance index, we use data of alloys. There are many
types of alloys.

The weighted performance index denoted Out is a compound index built from
four characteristics each of which is extracted from the data set. The four charac-
teristics are in1-scaled PREN, in2-scaled yield strength, in3-scaled weldability, and
in4-scaled impact strength.

Using the abovementioned parameters, the performance index model can be
expressed as.

IF x1 is A11 and ….. xn is A1n THEN y is B1 .
IF x1 is A21 and ….. xn is A2n THEN y is B2 .
… … …

IF x1 is Am1 and ….. xn is Amn THEN y is Bm.

where xj¼
j1…n are the linguistic input variables, y is the output variable, and Aij

and Bi are the fuzzy sets, n = 4, m = 7.
Fragment of data set is given in Table 18.

4.2 Modeling of material data by fuzzy C-means clustering

To create this model, we use clustering approach, mainly fuzzy C-means. Data
set contains 35 records extracted from big data. For modeling we use two-thirds of
the given data and testing one-third. Inputs: x1, scaled PREN; x2, scaled yield; x3,
scaled weldability; x4, scaled impact strength. Output: y, performance index. For
simulation FCM-based clustering initial data are:

No. Linguistic value TFN

1. Very low (VL) (373, 373, 585.5)

2. Low (L) (373, 585.5, 798)

3. Average (A) (585.5, 798, 1010.5)

4. High (H) (798, 1010.5, 1223)

5. Very high (VH) (1010.5, 1223, 1223)

Table 17.
Codebook for output 2 (y2).
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Cluster numbers = 7.
Max iteration =1000.
Exponent = 2.
Min. improvement = 0.000001.
Obtained centers of the clusters are given in Table 19. Each row describes a

cluster center as five-dimensional vector with coordinates x1 (scaled PREN), x2
(scaled yield), x3 (scaled weldability), x4 (scaled impact strength), and y (perfor-
mance index). Columns describe the values of the coordinates of the cluster centers.

Representation of the extracted fuzzy rules from big data by using fuzzy
c-means method fragment is given below and in Figure 1.

1. IF Scaled PREN = about 18 and Scaled yield = about 3 and Scaled
weldability = about 14.5 and scaled impact strength = about 10.8,THEN
Performance index = about 46.5.

2. IF Scaled PREN = about 27 and Scaled yield = about 4.4 and Scaled
weldability = about 21 and scaled impact strength = about 12 THEN Performance
index = about 65.

Scaled

PREN

Scaled yield

strength

Scaled

weldability

Scaled impact

strength

Performance

index

26.60 3.60 18.40 5.00 53.50

29.70 4.40 23.00 8.60 65.60

19.80 3.60 23.00 5.00 51.30

22.30 3.20 23.00 8.60 57.10

26.00 3.60 18.40 6.80 54.70

22.30 5.40 13.80 11.30 52.70

… … … … …

47.00 4.60 18.40 13.50 83.50

29.70 4.40 18.40 15.80 68.30

20.40 12.00 18.40 5.00 55.80

21.00 9.80 23.00 4.50 58.30

23.50 4.60 23.00 13.50 64.60

11.80 2.50 18.40 9.00 41.60

15.50 2.50 18.40 8.80 45.10

22.90 5.80 13.80 7.10 49.50

26.60 6.20 4.60 3.20 40.50

… … … … …

18.60 2.90 18.40 8.80 48.60

32.20 6.20 18.40 6.00 62.70

42.70 4.30 23.00 15.20 85.10

21.00 2.50 18.40 8.80 50.70

21.60 9.50 18.40 4.50 54.00

Table 18.
Fragment of data set (extracted from big data).

10

Fuzzy Logic



3. IF Scaled PREN = about 26 and Scaled yield = about 5 and Scaled
weldability = about 4.8 and scaled impact strength = about 3 THEN Performance
index = about 38.5.

4.IF Scaled PREN = about 21 and Scaled yield = about 9 and Scaled
weldability = about 21.2 and scaled impact strength = about 5 THEN Performance
index = about 55.

5. IF Scaled PREN = about 25 and Scaled yield = about 3.6 and Scaled
weldability = about 19 and scaled impact strength = about 6 THEN Performance
index = about 53.5.

6. IF Scaled PREN = about 47 and Scaled yield = about 4.5 and Scaled
weldability = about 18 and scaled impact strength = about 13 THEN Performance
index = about 83.

Figure 1.
Extracted fuzzy rules (by using fuzzy C-means method).

x1 x2 x3 x4 y

Center 1 18.5215 3.0384 14.7548 10.7647 46.9898

Center 2 27.6395 4.4574 21.3502 12.6412 66.0559

Center 3 26.0329 4.9933 4.8428 3.2598 39.0312

Center 4 20.8528 9.7068 21.3952 5.0337 56.9826

Center 5 25.0287 3.5955 19.0063 6.3912 53.9372

Center 6 46.9418 4.5996 18.4040 13.4963 83.4416

Center 7 24.1544 6.2895 14.0802 9.7481 54.2839

Table 19.
Centers of the clusters.
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7. IF Scaled PREN = about 24 and Scaled yield = about 6 and Scaled
weldability = about 14 and scaled impact strength = about 10 THEN Performance
index = about 54.

Graphical representation of the linguistic terms of inputs and outputs of the
rules as trapezoidal fuzzy numbers is given in Figures 2–6.

Figure 2.
Linguistic terms of input 1 (scaled PREN).

Figure 3.
Linguistic terms of input 2 or scaled yield strength.

Figure 4.
Linguistic terms of input 3 or scaled weldability.
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4.3 Solution of the problem

For solving the problem described in Section 4.1, we will use ESPLAN shell.
The problem is to determine material with the given level of performance index

using the fuzzy model obtained in Section 4.2.
In this context we define basic objects and linguistic terms according to ESPLAN

shell. The linguistic terms are described by trapezoidal fuzzy numbers. The rule
base given above is put as knowledge base in ESPLAN shell. Then, different tests are
performed.

TEST 1.
IF Scaled PREN = about 18 and Scaled yield = about 3 and.
Scaled weldability = about 21 and scaled impact strength = about 12.
THEN Performance index =?

ANSWER:
EXPERT system shell ESPLAN’s result is “Performance index is about 46.5”

(alloy Monel-400).
The fuzzy rules were derived from alloy big data by using FCM method, and

fuzzy inference within these rules is implemented in expert system shell ESPLAN.
The obtained results confirm efficiency of the proposed approach.

Solution by using Mamdani inference method. General form of the
abovementioned rules are as form (4.13). Mamdani fuzzy inference is most com-
monly used approximate reasoning methodology for fuzzy modeling. The method

Figure 6.
Linguistic terms of outputs or performance index.

Figure 5.
Linguistic terms of input 4 or scaled impact strength.
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works with crisp input which is transformed into a linguistic value using the ante-
cedent membership functions. After the aggregation process of consequents
induced by antecedents, obtained final fuzzy set is defuzzified. We can describe
fuzzy inference process in algorithmic view as follows:

1. Firing level for each rule is defined as follows:

αi ¼ min
n

j¼1
max
x
j

A
0

j xj
� �

∧Aij xj
� �

� �

"

(3)

where A
0

j xj
� �

are current input values.

2. Outputs for each rule are calculated:

B
0

i yð Þ ¼ min αi;Bi yð Þð Þ (4)

3. Calculate aggregative output:

B
0

yð Þ ¼ max B
0

1 yð Þ;B
0

2 yð Þ; :…;B
0

m yð Þ
� �

(5)

In our example the number of input variables is equal to 4, and for each variable,
linguistic value number is equal to 7.

For example, scaled PREN variable is evaluated as (about 18, about 27, about 26,
about 21, about 25, about 47, about 24).

Observing the relationship between input and output clusters, we may formu-
late the following linguistic descriptions—productions rules, for example:

1. IF In1 about 18 and In2 = about 3 and In3 = about 14.5 and In4 = about 10.8
THEN Out = about 46.5.

2. IF In1 = about 27 and In2 = about 4.4 and In3 = about 21 and In4 = about 12
THEN Out = about 65.

3. IF In1 = about 26 and In2 = about 5 and In3 = about 4.8 and In4 = about 3 THEN
Out = about 38.5.

4.IF In1 = about 21 and In2 = about 9 and In3 = about 21.2 and In4 = about 5
THEN Out = about 55.

5. IF In1 = about 25 and In2 = about 3.6 and In3 = about 19 and In4 = about 6
THEN Out = about 53.5.

6. IF In1 = about 47 and In2 = about 4.5 and In3 = about 18 and In4 = about 13
THEN Out = about 83.

7. IF In1 = about 24 and In2 = about 6 and In3 = about 14 and In4 = about 10
THEN Out = about 54.

The obtained rules are put into Fuzzy Toolbox to perform tests by using the
following data (Table 20):

Below, we provide some test results.
Test results. The following input data are given:
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In1 = 18.60, In2 = 2.90, In3 = 18.40 and In4 = 8.
For these data, the following defuzzified output describing the alloy perfor-

mance index is computed by using Mamdani fuzzy inference:
Out = 48.60.
This value fits the performance index of alloy 317 L (from the given big data).
Consider other values of the inputs:
In1 = 18.60, In2 = 2.90, In3 = 18.40 and In4 = 8.80.
For these values, the defuzzified output is Out = 50.3. This result fits the perfor-

mance index of alloy 317LM.
Consider also the following input values:
In1 = 26, In2 = 3.6, In3 = 18.4, and In4 = 6.8.
The computed output (performance index) is 54.7. The performance index

computed for the third case and the performance index from big data set are shown
in Table 21.

Deviation between testing and expert data is 0.18% or 0.0018.
Summarizing the findings in this chapter, we have to conclude that the discov-

ery and design of new materials are driving forces for much of the research that
takes place in multiple disciplines, including materials science and engineering,
matter physics, materials chemistry, and emerging technologies such as fuzzy logic,
soft computing, etc. However, this task is implemented mainly on the basis of time-
and resource-consuming experiments. Thus, we consider to shift the approaches to
material design investigations from physical experiments to experiments on the
basis of fuzzy If-Then rule-based material model. The motivation to use fuzzy
model is inspired by the necessity to construct an intuitively well-interpretable
material design model based on imperfect and complex data. In this chapter we
have considered three material synthesis problems which had shown that instead of
carrying out complicated experiments, researchers can use fuzzy model-based
computational synthesis approach utilizing digital twins of physical models. Appli-
cations of this approach have shown that fuzzy model-based experiments can give
better results than physical experiments in terms of desirable characteristics of
synthesized materials. The approaches suggested in this chapter are universal and
may be applied not only in materials science but also in chemical engineering, drug
design, and other fields. Complexity of material design problems mandates to
combine fuzzy logic and efficient learning methods as artificial neural networks,
evolutionary algorithms, and others to more adequately model and predict possible
material behavior.

Scaled

PREN

Scaled yield

strength

Scaled

weldability

Scaled impact

strength

Computed

performance index

Given

performance

index

26.00 3.60 18.40 6.80 54.70 54.8 (alloy

1925hMo)

Table 21.
Comparison of computed and given data.

Scaled

PREN

Scaled yield

strength

Scaled

weldability

Scaled impact

strength

Performance

index

18.60 2.90 18.40 8.80 48.60

21 2.5 18.4 8.8 50.7

Table 20.
Testing data (fragment).
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5. Conclusion

In this chapter, we have used data-driven approach to construction of fuzzy
model which is more effective than expert-driven approach. Consequently, we have
used fuzzy C-means clustering to derive fuzzy If-Then rules from material data that
describe material composition and related characteristics. In order to determine the
required characteristics, computational experiments on the basis of fuzzy inference
and fuzzy expert system were conducted. The expert opinions and some few phys-
ical experiments have proven validity of the obtained results. The main advantage
of the fuzzy logic-based approach is a high interpretability of fuzzy If-Then rules.
However, learning the ability of the fuzzy models is scarce. Thus, combination of
fuzzy logic with deep learning methods, mainly, reinforcement learning methods,
would help to achieve better results on material synthesis.

In future works, fuzzy materials paradigm may improve processing-structure--
property-performance relationship in hierarchy of structural materials levels, from
the atomic and electronic to the macrostructural levels. Another important applica-
tion of fuzzy logic is fuzzy phase diagram construction for different alloy models
using uncertain enthalpies and other thermodynamic parameters will be investi-
gated, which opens a door to design new materials.
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