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Chapter

Crystallography of Precipitates in
Metals and Alloys: (2) Impact of
Crystallography on Precipitation
Hardening
Yoshitaka Matsukawa

Abstract

Following the previous chapter, this chapter describes crystallography of
second-phase precipitate particles in metals and alloys; the focus of this chapter is
placed on the effect of crystallography of precipitates on precipitation hardening.
Unlike nonmetallic composite materials whose strength is determined by the vol-
ume fraction ratio of constituent phases, the strength of metals and alloys can be
several times greater by introducing a minor amount of precipitate particles such as
2%. The magnitude of strengthening (hardening) due to precipitates is, in tradi-
tional understanding, controlled by the shear modulus, whether or not the precipi-
tates are harder than the matrix. The most recent major update in this research field
is a discovery that crystallography of precipitates is another factor controlling the
magnitude of strengthening. In the case where the slip plane of dislocations in
precipitates is not parallel to that in the matrix, dislocations gliding in the matrix are
unable to cut through the precipitates, resulting in intense hardening regardless of
the shear modulus. This chapter also reviews the classical theory of precipitation
hardening established in the 1950s–1960s, in order to sort out open questions to be
resolved.

Keywords: precipitates, nucleation, crystal structure, strength, dislocations

1. Introduction

This chapter is a supplement to the previous chapter on crystallography of
precipitate particles in metals and alloys, for the purpose of describing how the
crystallography of precipitates practically affects the physical properties of entire
the material. The crystallography of precipitates is of interest not only for funda-
mental materials science but also for engineering, in particular, structural materials
engineering. The strength of metals and alloys is highly affected by a minor amount
of precipitates such as a few percent. In the case of nonmetallic composite materials,
their strength is determined by the volume fraction ratio of constituent phases. In
other words, the strength of nonmetallic composites is expected not to exceed that
of constituent phases. On the other hand, metals and alloys containing second-
phase precipitate particles, say, 2% in volume fraction, can exhibit a strength sev-
eral times greater than the matrix phase (Figures 1–3). Such intense hardening is
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achieved when precipitate particles are strong obstacles against the motion of dis-
locations gliding on a slip plane in the matrix. They are strong obstacles in the case
where dislocations are unable to cut through them (Figure 4). In the classical
theory of precipitation hardening (a.k.a. dispersion strengthening) established in
the 1950s–1960s, the obstacle strength is assumed to be determined by the shear
modulus [1, 2]; those which are harder than the matrix are strong obstacles. In
general, this condition is fulfilled by a combination of metallic matrix and nonme-
tallic compound precipitates such as oxides and carbides whose strength is typically
a few GPa, which is �10 times greater than the yield strength of metals. Recent
experimental studies demonstrated that crystallography of precipitate particles is

Figure 1.
A model calculation of precipitation hardening in the hcp Ti, the hcp Mg, the fcc Cu, and the bcc Fe, as a
function of the volume fraction of precipitates for the cases of precipitate diameter of 5 and 50 nm. The obstacle
strength is set to α = 0.8.

Figure 2.
A model calculation of precipitation hardening in the hcp Ti, the hcp Mg, the fcc Cu, and the bcc Fe, as a
function of the diameter of precipitates for the case of precipitate volume fraction of 2%. The obstacle strength is
set to α = 0.8.
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Figure 3.
Example of precipitate particles in alloys: (a) G-phase precipitates in a duplex stainless steel and (b) bcc Nb
precipitates in a Zr▬2.5Nb alloy [4].

Figure 4.
Interaction between a gliding dislocation and a precipitate particle: (a) the Orowan mechanism for strong
obstacles and (b) the cutting mechanism for weak obstacles [1]. The factor controlling the obstacle strength has
been assumed to be the shear modulus, i.e., precipitates harder than matrix are strong obstacles. This concept
has recently been updated; crystallography of precipitates is another factor controlling their obstacle strength.
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another factor dominating their obstacle strength [3, 4]. When the slip plane in
precipitates is not parallel to that in the matrix, dislocations gliding in the matrix are
unable to cut through the precipitates regardless of the shear modulus. In this case,
metallic precipitates are strong obstacles as well as nonmetallic compound precipi-
tates. It follows that metals and alloys can be several times stronger than their
constituent phases. In this way, crystallography enables us to create strong materials
from a combination of weak materials: one plus one becomes more than two.

2. Magnitude of hardening as a function of precipitate size and number
density

The abovementioned statement about the magnitude of precipitation hardening
of the case of 2% volume fraction is derived from the following numerical calcula-
tion. Based on a geometry consideration of dislocation-precipitate interaction, the
increase of material’s yield strength, σy, which is a critical stress level where the
deformation mode changes from elastic to plastic deformation, is given as follows
[3, 5–7]:

∆σy ¼ αMμbðNvdÞ1=2 (1)

where α is the obstacle strength of the precipitates, M is the Taylor factor, μ is
the shear modulus of the matrix, b is the magnitude of the Burgers vector of
dislocations in the matrix, and Nv and d are the number of precipitate particles per
unit volume (i.e., the number density) and their mean diameter. The Taylor factor
(M) is a material-specific constant primarily dependent on the crystal structure, slip
systems, and texture. An M value of 3.1 is commonly applied to non-textured
polycrystalline metals having an fcc structure or a bcc structure [5–7]. For metals
having an hcp structure, M values of 6.5 and 5.0 are commonly applied to Mg [8, 9]
and Ti [10, 11], respectively. Their difference is related to the number of active slip
system, which is dependent on the c/a ratio. The c/a ratio is 1.633 for ideal close-
packed structure, 1.623 for Mg, and 1.587 for Ti. In the hcp Mg only the basal plane
is available for dislocation slip, whereas in the hcp Ti, the primary slip plane is the
prism plane, and the basal plane is also available as a secondary slip plane. In the
traditional concept of the Orowan hardening, the obstacle strength (α) is dependent
on the shear modulus. The obstacle strength of strong obstacles is, in theory, α = 1.
However, when particles are dispersed in random distribution, the obstacle strength
α is no longer 1, but instead a factor of 0.80–0.85 is introduced [12–16].

In the past several years, Eq. (1) has been frequently cited especially in the
research community of nuclear materials, which exhibit hardening and embrittle-
ment due to precipitation induced by high-energy neutron irradiation. According to
previous publications [5–7], the source of this equation goes back to a paper
published in 1958 [17]. This information appears to be incorrect; Eq. (1) is not
mentioned in it. For future reference, here we provide the detailed derivation
method of Eq. (1) as follows.

When a gliding dislocation is pinned by a precipitate particle (Figure 5), the
force acting on the dislocation (F) is given as a function of bowing angle (θ) and the
line tension (T):

F ¼ 2Tcos θ=2ð Þ (2)

The force acting on a dislocation line is alternatively given as a function of a
shear stress (τ), the Burgers vector (b), and the length of dislocation line, which is
in this case the distance between particles (L):
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F ¼ τbL ! τ ¼ 2T

bL
cos θ=2ð Þ (3)

By adopting the simplest approximation for the line tension of dislocations, i.e.,
T = μb2/2, we obtain:

τ ¼ μb

L
cos θ=2ð Þ !¼ αμb=Lð Þ (4)

The obstacle strength (α) corresponds to the bowing angle (θ). In the case where
the precipitate particle is an impenetrable obstacle, the dislocation eventually
bypasses the obstacle with forming a dislocation loop around it (Figure 4). The
formation of dislocation loop occurs at θ = 0°, where the segments of dislocation line
on both sides of the obstacle become parallel from each other. Those segments have
the same Burgers vector and opposite line senses, thereby they are attracted each
other and eventually merged into one. At θ = 0°, F becomes a maximum value
(=2 T). In other words, the maximum value of α is 1. Degree of precipitation
hardening in macroscopic length scale is denoted by the tensile stress rather than
the shear stress; they converted each other using the Taylor factor (τ = σ/M):

∆σy ¼
Mμb

L
cos θ=2ð Þ !¼ αMμb=Lð Þ (5)

Eq. (5) is converted into Eq. (1), based on the simplest approximation for the
spatial distribution of precipitates, i.e., a square lattice arrangement:

L ¼ 1=N1=2
s ¼ 1=ð2rNvÞ1=2 ¼ 1=ðNvdÞ1=2 (6)

where Ns is the number of precipitate particles per unit area on a plane
(i.e., the planar number density) and r is the mean radius of precipitates. The
relation of Ns = 2rNv is derived from the Delesse’s principle [18], where the volume
fraction of precipitate particles in 3D space (VV) is equivalent to their area fraction
in 2D space (AA):

VV ¼ AA

Nv �
4πr3

3

� �

¼ Ns � π r0ð Þ2

Nv �
4πr3

3

� �

¼ Ns � π
r

1:22

� �2

Figure 5.
Dislocation on a slip plane where each obstacle exerts localized glide resistance force (F) balanced in
equilibrium by line tension forces (T).
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Ns ≈ 2rNv (7)

The average radius of particles measured on 2D space (r’) is a function of their
true radius (r): r’ = r/1.22. This relationship is derived as follows [19]. The radius
(r’) varies with the position of sectioning plane relative to the center of sphere:

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � h2
p

(8)

where h is the distance from the center to the sectioning plane. The probability
that the test plane intersects the sphere at a distance between h and h + ∆h from its

center is dh/r. The average of the area of section π r0ð Þ2 is obtained by applying the
definition of mean value [19] as follows:

π r0ð Þ2 ¼
ðr

0
π r2 � h2� �dh

r
¼ 2

3
πr2

r0ð Þ2 ¼ 2

3
r2

r≈ 1:2247r0 (9)

The obstacle strength α is 1 for particles dispersed in an ideal square lattice
arrangement but �0.8 for those dispersed randomly. This is an empirical rule
obtained from 2D simulations performed by Foreman and Makin (Figure 6). The
motion of dislocations is not uniform, but they propagate preferentially through “local
soft spots” where the local number density of obstacles is smaller than the others
(Figure 7). As a result of such spatially localized deformation, the average stress level
required to sweep a unit area becomes smaller than the case of square arrangement.

An alternative explanation of α 6¼ 1 is obtained from a geometry analysis
(Figure 8) considering the possibility that effective average interparticle distance
(Λ) on the slip plane may be different from the actual average interparticle distance
(L) in 3D space due to the effect of a dislocation-obstacle interaction on another
interaction. This concept is based on an assumption that the lattice friction against
dislocation glide is negligibly small, in a steady-state plastic deformation at a

Figure 6.
Simulation results of Foreman and Makin [12] in comparison with the Orowan model, which assumes a square
lattice arrangement of obstacles, and a calibrated model based on the Friedel’s assumption shown in Figure 14.
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constant strain rate. In this case, after unpinning from an obstacle, the curvature
of a dislocation remains unchanged until it encounters another obstacle [20]
(Figure 8). If the area swept by such motion of dislocations upon unpinning is
greater than the area occupied by one obstacle in the average of 3D space (given as a
regular square lattice arrangement), it follows that the apparent stress level
required to sweep a unit area becomes smaller. The area swept by the dislocation
(Λ2) is regarded as the effective area occupied by a single particle on the slip plane.
This area is the area of large segment of a circle of radius (R) minus that of two
small ones:

Λ2 ¼ R2 sin �1 L

2R

� �

� L

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4R2 � L2
p

	 


� 2 R2 sin �1 L

R

� �

� L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � L2
p

	 


(10)

This formula cannot be solved unless otherwise some kind of approximation is

introduced. A common approximation of L < <R results in Λ2 ¼ 0. Judging from
the geometry shown in Figure 8, a rather approximation is L = R.

Figure 7.
Simulation results of Foreman and Makin [12]: (a) strong obstacles and (b) weak obstacles. The arrows
indicate the propagation direction of dislocations.

Figure 8.
A geometry consideration of simultaneous interaction of a dislocation with multiple obstacles. When a
dislocation segment starts interacting with an obstacle, this segment is already curved due to the aftereffect of
previous interaction with another obstacle. Since the dislocation segment sweeps an area between obstacles
without any additional stress (when the friction is assumed to be negligibly small), the average flow stress
becomes smaller that of the case of single obstacle interaction (and also the square lattice arrangement).
Consequently, their effective obstacle strength becomes smaller.
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Λ2 ¼ π

6
þ

ffiffiffi

3
p

2

� �

L2

Λ≈ 1:18L (11)

In this case, a factor of 1/1.18 = 0.85 is introduced into Eq. (4). In other words,
the maximum value of α is 0.85 if this geometry effect is considered. It is notewor-
thy that this value coincides with the coefficient of the well-known Ashby-Orowan
model [16]. The Ashby-Orowan model adopted this value from Kocks’ works,
which consist of a graphical analysis performed on 550 obstacles in random distri-
bution [13] and a geometry consideration expressed in a more complicated form
than this analysis [15].

Eq. (1) is, although obtained from simplified assumptions in terms of the line
tension of dislocations and the spatial distribution of precipitates, helpful for intu-
itive understanding about the effects of precipitate size and number density on
hardening. Using this formula, here we evaluate the magnitude of hardening as a
function of those factors in fcc Cu, bcc Fe, hcp Ti, and hcp Mg. Under a constant
volume fraction of precipitates, smaller size results in greater hardening due to:

Vv ¼ Nv �
4πr3

3

� �

(12)

Smaller size results in higher number density. In many cases, the maximum
value of the number density of precipitates introduced by thermal aging is
�1 � 1023m�3, which corresponds to an interparticle distance of �22 nm in the case
of the square lattice distribution. With this number density, when the volume
fraction is 2%, it follows that the diameter of particles is 7.3 nm (Table 1). In the
case of bcc Fe, the yield strength is estimated to be �1.4 GPa, �10 times greater
than the yield strength without precipitates, �120 MPa. Irradiation with high-
energy particles such as neutron often induces (or enhance) precipitation of second
phase. The number density of irradiation-induced precipitates can become the
order of 1024/m3, which corresponds to an interparticle distance of 10 nm. For
instance, the number density and diameter of neutron irradiation-induced Cu pre-
cipitates and Ni▬Si▬Mn precipitates are both some 1024/m3 and 0.5–1.5 nm,
respectively [21]. Their volume fractions are 0.007% for 0.5 nm and 0.18% for
1.5 nm. Their hardening is estimated to be 1.1 GPa for the former and 1.9 GPa for
the latter. For reference, the magnitude of hardening in the bcc Fe, the fcc Cu, the
hcp Ti, and the hcp Mg as a function of volume fractions and diameter of pre-
cipitates is summarized in Figures 1 and 2.

Number density

[m�3]

Volume fraction

[%]

Diameter

[nm]

Interparticle distance

[nm]

∆σ

[MPa]

2 � 1023 2 5.8 17.1 1750

1 � 1023 2 7.3 21.5 1365

1 � 1022 2 15.6 46.4 631

1 � 1021 2 34 100 295

1 � 1020 2 73 215 137

Table 1.
Estimation of realistically achievable maximum precipitation hardening in bcc iron at a constant volume
fraction (2%) with variation of number density and mean diameter of precipitate particles.

8

Crystallography



3. Effects of crystallography on obstacle strength

After Orowan, extensive studies have been made on the effects of various
factors such as dislocation character (edge vs. screw), spatial distribution of pre-
cipitates and their size distribution, elastic anisotropy, stacking fault energy, coher-
ency, formation of ledges at the precipitate/matrix interface due to passage of
dislocations (a.k.a. chemical strengthening), formation of antiphase boundary at
the interface (a.k.a. ordering strengthening), etc. However, the effect of crystallog-
raphy of precipitates has long been unexplored until very recently, partly due to
technical difficulties in experiments. The absence of simulations on this issue is due
to the following two reasons. (1) For molecular dynamics (MD) simulations,
reproducing the realistic interaction geometry between gliding dislocations and
incoherent particles is technically rather difficult, because experimental databases
on the atomic structures of the precipitate-matrix interphases are limited. (2) For
dislocation dynamics (DD) simulations based on continuum elasticity theory calcu-
lations, the effect of crystal mismatch is beyond the capability.

In 2016 it was experimentally demonstrated that soft precipitates can be strong
obstacles. That report examined bcc Nb precipitates in hcp Zr matrix, the shear
modulus of which are 28 and 33 GPa, respectively. Traditionally, the obstacle
strength of such soft precipitates has been scaled by the difference of the shear
modulus between precipitates and matrix in accordance with a model proposed by
Russell and Brown in 1972 [22]. An implication of the Russell-Brown model is that a
greater difference in the shear modulus results in a greater obstacle strength, as
described later. Since the Nb precipitates in the Zr▬2.5Nb alloy are as soft as the Zr
matrix, they are considered weak obstacles. Nevertheless, their experimentally
determined obstacle strength was α = 0.8–1 (Figure 9), indicating that they are
ideal Orowan-type strong obstacles. This analysis result is supported by transmis-
sion electron microscopy (TEM) observation (Figure 10). The morphology of the
Nb precipitates does not change even after severe cold rolling up to 90%; they are
certainly non-shearable obstacles. Later, Matsukawa et al. further demonstrated
that, by means of transmission Kikuchi diffraction (TKD), crystal orientation of the
Nb precipitates is practically random (as described in the previous section of this
chapter). Considering that dislocations can glide only on specific atomic planes, the
most probable scenario is probably that dislocations cannot cut through the

Figure 9.
Experimentally determined obstacle strength of bcc Nb precipitates and irradiation-induced Nb nanoclusters in
Zr▬Nb alloys [3]. The former was obtained from Zr▬Nb alloys containing various amounts of bcc Nb
precipitates, whereas the latter from a Zr▬2.5Nb alloy subjected to ion irradiation.
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precipitates as the slip plane of precipitate interior is not parallel to the slip plane of
the matrix.

The hcp Zr matrix of the Zr▬2.5Nb alloy contained Nb �0.5 at.%, which is
greater than the solubility (see Figure 10 of the previous chapter). The excess Nb
atoms formed nanoprecipitates when the alloy is subjected to high-energy particle
irradiation. Unlike the bcc Nb precipitates whose α is 0.8–1, the α of the Nb
nanoprecipitates produced by irradiation was estimated to be �0.2 or less. Their
obstacle strength α is plotted in Figure 9 as a function of damage level (displace-
ment per atom: dpa). This analysis is based on an assumption that the irradiation-
induced hardening occurred solely due to nanoprecipitates. In reality, however, the
irradiated samples may also have contained defect clusters such as dislocation loops
at high density. This assumption yields an overestimation of the α of
nanoprecipitates; nevertheless, the obtained α was extremely small, indicating that
the Nb nanoclusters are weak obstacles. The origin of such small α of
nanoprecipitates is presumably attributable to the structural change of precipitates

Figure 10.
Bcc Nb precipitates in a Zr▬2.5Nb alloy subjected to cold rolling up to 90% [4]. Although the bcc Nb is softer
than the hcp Zr in terms of shear modulus, the bcc Nb precipitates in the hcp Zr matrix are actually
nonshearable, strong obstacles against gliding dislocations.

Figure 11.
Coherent fcc Co precipitates embedded in fcc Cu matrix of a Cu-3 wt.% Co alloy [23]. The strain contrast
around the precipitate particles in undeformed samples is lost in deformed samples.
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during precipitation described in the previous chapter. This hypothesis is still open
for further investigation.

Soft precipitates can become non-shearable obstacles against dislocations due to
the effect of crystallography. Likewise, hard precipitates can become shearable if
crystallography allows, i.e., when their slip plane is parallel to that of the matrix. An
example shown here is a coherent fcc Co precipitate particle embedded in fcc Cu
matrix [23] (Figure 11). The shear modulus of the fcc Co is about two times greater
than that of the fcc Cu [24]; nevertheless, the Co precipitates are actually shearable
(Figure 12). It still remains unclear how much hard particles are shearable. It
appears that this process occurs only in a limited circumstance. The Co particles
were sheared only when interacted with Shockley partial dislocations having the
same Burgers vector, gliding on adjacent {111} planes, forming a twin band. Other-
wise, dislocations bypassed the Co precipitates via the Hirsch mechanism [25]
(Figure 13). The Hirsch mechanism is similar to the Orowan mechanism but
distinct in terms of the type of dislocation loop remained after the interaction.

Figure 12.
Cutting of strong obstacles by dislocations: fcc Co precipitates in fcc Cu matrix [25]. The shear modulus of the
fcc Co is two times larger than the fcc Cu [24].

Figure 13.
The Hirsch mechanism [26] observed by TEM in situ straining experiments: fcc Co precipitates in fcc Cu matrix
[25].
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The Orowan loop is a shear dislocation loop whose Burgers vector is parallel to the
loop plane, whereas the Hirsch mechanism produces a prismatic loop [26] whose
Burgers vector is not parallel. When the Burgers vector is perpendicular to the loop
plane, the prismatic often exhibit one-dimensional back and forth motion along the
Burgers vector [27]. The Hirsch mechanism is frequently observed in TEM in situ
straining experiments using thin foil specimens, which have a less constraint for
deformation in the thickness direction (i.e., so-called plane stress condition). In
such a thin foil geometry, screw dislocations that compensate the out-of-plane shear
displacements are dominant over edge dislocations [28]. Screw dislocations exhibit
cross slip (slip transfer from the slip plane to another slip plane) on non-shearable
obstacles. The Hirsch mechanism is induced by the cross slip of screw dislocations
on the surface of obstacles [25]. Hence, the Hirsch mechanism is probably dominant
over the Orowan mechanism in the deformation of thin foil samples.

4. Precipitation hardening due to solute clusters

Precipitation hardening is a key research subject not only for developing new,
strong materials but also for estimating the engineering lifetime of existing mate-
rials. For instance, engineering lifetime of reactor pressure vessels (RPVs) of light-
water nuclear reactors is determined by embrittlement due to precipitation of
minor alloying elements such as Cu, Ni, Mn, and Si rather than accumulation of
irradiation damages. Since the RPVs are practically non-replaceable due to eco-
nomic reasons, their engineering lifetime determines the useful lifetime of entire
power plants. Establishing a predictive model of material embrittlement (loss of
ductility) is a long-standing challenge in fundamental physical metallurgy.
Although the theory of dislocations is well established for quantitatively describing
the strength of materials, the dislocation theory is incapable of directly describing
the ductility. Hence, the loss of ductility has often been indirectly scaled by the
degree of hardening, based on a generally accepted empirical rule that stronger
materials exhibit less ductility. The size of irradiation-induced precipitates in the
RPV steels is typically a few nm. In the early stage of precipitation, they may be
solute clusters rather than second-phase particles crystallographically distinct from
the matrix.

In order to evaluate hardening due to solute clusters, the Orowan model needs a
modification as follows. The simulation by Foreman and Makin was performed not
only on strong obstacles but also on weak obstacles. In Figure 6 empirical results of
their simulations are plotted as a function of bowing angles (θ), together with out-
puts of two theoretical models: one is the Orowan model with a square lattice
arrangement, and the other is a model obtained based on Friedel’s geometry con-
sideration (a.k.a the Friedel’s statistics) [29, 30] similar to Figure 8. In the Friedel’s
concept the angle (β) of Figure 14 is assumed to be very small, i.e., L < <R, which
is a realistic approximation for weak obstacles. In fact, the simulation results were
in good agreement with this model at bowing angles of greater than �100°. The
formula based on the Friedel’s approximation is obtained as follows [29, 30]:

F ¼ 2Tsin β ¼ τb 2βRð Þ ! 2Tβ≈ 2τbβR ! R ¼ T

τb
(13)

sin β ¼ L

R
! β≈

L

R
(14)

tan
β

2

� �

≈
h

L
! β

2
≈

h

L
! h ¼ L2

2R
(15)
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Λ2
≈Lh (16)

From Eqs. (13) and (15), (16), we obtain.

Λ2 ¼ L3

2R
¼ τbL3

2T
! L ¼ 2TΛ2

τb

� �1=3

¼ μbΛ2

τ

� �1=3

(17)

From Eqs. (4) and (17), the following relationship is obtained [12]:

L ¼ μb

τ
cos θ=2ð Þ ¼ μbΛ2

τ

� �1=3

μb

τ

� �3

cos θ=2ð Þ½ �3 ¼ μbΛ2

τ

τ2 ¼ μb

Λ

� �2

cos θ=2ð Þ½ �3

τ ¼ μb

Λ
cos θ=2ð Þ½ �3=2 (18)

By replacing Λ with L, this formula is generalized as follows [12]:

τ ¼ μb

L
cos θ=2ð Þ½ �3=2 θ≥ 100° (19)

In practice, however, applying Eq. (19) to the analysis of weak obstacles is not
straightforward; it is difficult to evaluate how much weak the obstacles are. The
Russell-Brown model [22] is an alternative model, more practically useful than the
previous model for this purpose (Figure 15). This model was originally developed
for Cu precipitates in Fe▬Cu steels; the crystal structure of which is not fcc but bcc
in the early stage of precipitation. In this model the obstacle strength is scaled by the
ratio of the energy of dislocation segments in precipitates and in matrix. The energy
of dislocations is dependent on the shear modulus. The shear modulus of fcc Cu is
lower than bcc Fe. According to the results of ab initio calculations, the shear
modulus of bcc Cu is even smaller. The energy of dislocation segment inside the Cu
precipitate is lower than that in the matrix Fe.

Figure 14.
Friedel’s geometry consideration of dislocation-obstacle interactions [29, 30]. This approximation assumes L <
<R, i.e., 2β ≈ 0, whereas the other previously discussed in Figure 8 assumes L = R.
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In accordance with the aforementioned empirical knowledge obtained from the
simulation of Foreman and Makin, on the applicability limit of the Orowan model in
terms of dislocation bowing angle, when sin�1(E1/E2) ≤ 50°,

τ ¼ 0:8
μb

L
1� E1

E2

� �2
" #1=2

, σ ¼ 0:8
Mμb

L
1� E1

E2

� �2
" #1=2

: (20)

When sin�1(E1/E2) ≥ 50°,

τ ¼ μb

L
1� E1

E2

� �2
" #3=4

, σ ¼ Mμb

L
1� E1

E2

� �2
" #3=4

(21)

The energy ratio is given as follows:

E1

E2
¼

E∞

1 log r
r0

E∞

2 log R
r0

þ log R
r

log R
r0

(22)

where E∞

1 and E∞

2 refer to the energy per unit length of a dislocation in infinite
media, r is the radius of precipitates, and r0 and R are the inner and outer cutoff
radius (they adopted R = 103r0). Since the energy of dislocation is proportional to
the shear modulus, the ratio of energy E∞

1 =E
∞

2 is equal to the ratio of shear modulus

G1/G2 for a screw dislocation, and G1 1�ν2ð Þ
G2 1�ν1ð Þ for an edge dislocation (ν: the Poisson’s

ratio)—in the case of bcc Cu precipitates embedded in bcc Fe matrix, 0.59 for the
former and 0.64 for the latter.

The Russell-Brown model indicates that, even in the case where precipitates are
softer than the matrix, they become weak obstacles only when their shear modulus
is slightly smaller than the matrix. Two extreme conditions, E∞

1 ¼ E∞

2 and E∞

1 ¼ 0,
correspond to the situations of “no obstacle” and “the strongest obstacle,” respec-
tively. The latter may be consistent with our empirical knowledge that voids are the
strongest obstacles, obtained from experiments [31] and from MD simulations
[32, 33]. Although the Russell-Brown model indicates that those which are as soft as
the matrix are weak obstacles, as mentioned earlier, such precipitates can also
become ideal Orowan-type strong obstacles if the slip plane inside the precipitates is
not parallel to that of the matrix [3–4]. From this respect, the situation where
precipitate particles become weak obstacles against dislocations may be rather rare.
The Russell-Brown model has been applied to the analysis of irradiation-induced

Figure 15.
The Russell-Brown model for weak obstacles [23]. This model scales the obstacle strength of soft precipitates by
the ratio of shear modulus between precipitates and matrix.
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hardening of RPV steels due to not only Cu precipitates but also Ni▬Si▬Mn pre-
cipitates [34–37], though it remains unclear whether the Ni▬Si▬Mn precipitates
are softer than the matrix. If they were harder than the matrix (E∞

1 >E
∞

2 ), it may not
be mathematically valid to apply the Russell-Brown model to them, regardless of
whether they are shearable obstacles. Furthermore, the effect of crystal structure
change during precipitation has not been considered thus far.
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