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1. Introduction     

Over the past decades, controversial and conflict-laden water allocation issues among 
competing domestic, industrial and agricultural water use as well as urban environmental 
flows have raised increasing concerns (Huang & Chang, 2003); Particularly, Such 
competition has been exacerbated by the growing population, rapidly economic growth, 
deteriorating quality of water resources, and shrinking water availability due to a number of 
natural and human-induced impacts. A sounding strategy for water resources allocation 
and management can help to reduce or avoid the losses which are caused by water 
resources scarcity. However, in the water management system, many components and their 
interactions are uncertain. Such uncertainties could be multiplied not only by fasting 
changes of socioeconomic boundary conditions but also by unpredictable extreme weather 
events which caused by climate change. Thus, water resources management should be able 
to deal with all challenges above. Therefore, an effective integrated approach is desired for 
urban water adaptive management. 
Many methods, such as stochastic, fuzzy, and interval-parameter programming techniques, 
have been employed to counteract uncertainties in different fields of water management and 
have made great progresses in managing uncertainties in model scale. Water resource is an 
integral part of the socio-economic-environmental (SEE) system, which is a complex system 
dominated by human. In order to reach a sounding decision, it is necessary for decision-
makers to obtain a better understanding of the significant factors that shape the urban and 
the way the water resources system reacting to certain policy. Therefore, study of 
sustainable water resource management should be based on general system theory that 
addresses dynamic interactions amongst the related social-economic, environmental, and 
institutional factors as well as non-linearity and multi-loop feedbacks. 
System dynamics (SD) aims at solving of complex systems problems by simulating 
development trends of the system and identifying the interrelations of each factor in the 
system. This will help to explore the hidden mechanism and thus improve the performance 
of the whole system. Hence, after proposed by W. Forrester (Forrester, 1968), SD model has 
been widely used in global, national, and regional scales for sustainability assessment and 
system development programme (Meadows 1973; Mashayekhi, 1990; Saeed, 1994). Due to 
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the complexity of problems in the water system, the use of dynamic simulation models in 
water management has a long tradition (Biswas 1976; Roberts et al., 1983; Abbott and 
Stanley, 1999; Ahmad & Simonovic, 2004). The development journaey of several sections of 
applying system dynamics as a tool for integrated water management system analysis can 
be traced as from focusing on water system itself, to having a strong economic examinations 
on feedback relationships between industry and water availability, and then to having 
interaction with population growth (Liu et al., 2007). The above development make SD 
model has the flexibility and capability to support deliberative-analytical processes 
effectively. Meanwhile, SD and Multi Objective Programme (MOP) integrated model as an 
extension of the previous SD applications has been presented and used in urban water 
management in recent years, which takes into account both optimization and simulation 
(Guo et al, 1999; Zhang & Guo, 2002). This chapter will introduce a nonlinear dynamics 
approach for urban water resources demand forecasting and planning based on SD-MOP 
integrated model. 

2. Uncertainties in Urban water system 

2.1 Urban water system analysis 
Generally, urban water system could be divided into four subsystems, i.e., social subsystem, 
economic subsystem, environmental subsystem and water resources subsystem. The 
relationships and interactions are complicate, as Fig. 1. 
 

 

Fig. 1. Urban water management subsystems and relations 

2.2 Uncertainties of urban water management system analysis 

Urban water resources demand forecasting and planning are two important parts of urban 
water integrated management. Commonly, integrated water management should provide a 
framework for integrated decision-making and could be consists of system analysis, action 
results forecast, planning formulate and implementation, and evaluation and monitoring the 
goals and effects of implementation. At the system analysis stage, information collection and 
investigation are the basic work. A system structure is built based on a careful consideration 
of interactions among factors and subsystems. Long-term and short-term goals, problems, 
and priority focused will then are identified with both experts and stakeholders take part in. 
At the forecast stage, simulation model and evaluation model will be set up. Fixing on 
parameters and variable values of models and listing alternative solutions are the key 
process of the stage, based on field investigation, literature review and interviews with local 
stakeholders. Then according to the simulation and evaluation results of the alternatives, the 
selected solution can be identified and the corresponding desired actions can be determined. 

Urban flow 
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Implementation and re-evaluation can’t be separated completely. Management and re-
evaluation is the mechanism that improves management goals and practices constantly. 
Uncertainties limit the forecasting ability of and thus influence the quality of decision 
making. They can be categorized into four types : (1) intransience uncertainties caused by 
fasting changes of urban socioeconomic conditions; (2) external uncertainties caused by the 
stress of factors beyond the urban boundary (Liu, 2007); (3) uncertainties associated with 
raw data and model parameters driven from outdated or absent issues news, events, or 
statistic data; and (4) uncertainties arising from multiple frames (e.g. people’s cognizing/ 
perceiving technique/ability advance, world and ethical view change) (Jamieson, 1996; 
Pahl-Wostl, 2009). The above uncertainties are associated with all four stages, the details as 
Fig. 2.  
 

 

Fig. 2. The uncertainties in urban water management system 

We can find that all above uncertainties are raised from the cognitive dimension (e.g. limited 
understanding system behavior and interactions among composing factors, uncertainty 
from fasting changes of socioeconomic conditions and change of natural conditions) and 
technical dimension (e. g. outdated or absent issues news/events/data, absent specific to 
techniques and countermeasures, limited of forecasting method) two aspects.  

2.3 Overlook of counteracting measures to water system uncertainties 

Whether we recognize it or not, socioeconomic laws and the natural laws are located in the 
objective world. So we can say that uncertainty is raised from the limitations of human 
cognition. Due to human cognitive abilities change, their understanding of the current 
world and their forecast of the future world will change over time. Furthermore, SEE system 
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1

is a complexity system reflecting the mutual and complicated functions amongst the internal 
elements, which can be characterized by the complicated system structure properties far 
from balance status and with dissipation structures, as well as the behaviors of which the 
input-output response shows uncertainty that beyond people’s experiential and qualitative 
cognition. We can be in virtue of SD model as well as interactions between modelers and 
stakeholders to interact the behavior uncertain from input-output response. The SD model 
can be run by different scenarios, and thus the optimal scenario can be selected by the 
analyses and discussions.  
However, simulation model could be run in almost limitless scenarios according SEE 
complex system parameters changed in different policies. Thus it is difficult to simulate all 
possible scenarios constrained in time and fund. So it is difficult to ensure the optimal level 
of selected scenarios and its corresponding programme design. Therefore, SD-MOP 
integrated model (Zhang & Guo, 2002) is proposed to counteracts uncertainties with SD 
model applying in different scenarios simulation and analysis, and MOP model applying in 
optimization.  

3. System dynamics model 

3.1 The basic concepts of SD 

The SD model takes certain steps along the time axis in the simulation process. At the end of 
each step, the system variables denoting the state of the system are updated to represent the 
consequences resulting from the previous simulation step. Initial conditions are needed for 
the first time step. Variables representing flows of information and initials, arising as results 
of system activities and producing the related consequences are named as level variables 

described as              in the flow diagram, and rate variables described as  . Auxiliary 
variable means the detailed steps by which information associated with current levels are 
transformed into rates to bring about future changes. In addition, the symbol 
represents the sinks or sources. 
Fig. 3 is a sample flow diagram for the total population, in which the total population (TP) is 
a level variable; birth population (BP), death population (DP), and net migrated population 
(NP) are rate variables; and birth rate (BR), death rate (DR), and net migration rate (NR) are 
auxiliary variables. 

P

BP DP

BR
DR

NP

NMR

 

Fig. 3. SD flow chart of population subsystem 

In SD level equation, three time points are denoted as J᧤past᧥, K (present), and L (future). 

The step from J to K is referred to as JK and that from K to L as KL. The duration period 

www.intechopen.com



A Nonlinear Dynamics Approach for Urban Water Resources Demand Forecasting and Planning  

 

329 

between successive points is named DT. Therefore, a level variable could be referred to as 

LEVEL.J, LEVEL.K, or LEVEL.L at a time point，RATE.JK and RATE.KL will function in the 

duration period. We can express:  

LEVEL.K=LEVEL.J+DT*RATE.JK 

3.2 The procedures for applying SD model to simulate target system behavior 

The proedures for applying SD model to simulate target system behavior can be 
summarized into three steps. 
(1) Construction SD model 
The first step of the procedures is constructing SD model through analyses of the total 
system, and identifying the model validity by historical examination, and sensitivity 
analysis. Accordingly, parameters and relevance can be modified and confirmed. 
(2) Validity examination 
Validity examination examination includes direct observation, historical examination, and 
sensitivity analyses. Direct observation is through SD model run, if there is no obviouse 
unreasonable simulation results, we can to the historical examination.  
Historical examination is checking the error between simulation and reality. The errors of 
main forecasting level variables are accepted is one of the requirements of SD model being 
used in reality system.  
Another requirement is that the target system responds in lower degree sensitivity to most 

of the parameters through a series of sensitivity analyses conducted to examine the system’s 

responses to variations of input parameters and/or their combinations. A concept of 

sensitivity degree is defined as follows:  

 ( ) ( )

( ) ( )

t t

Q

t t

Q X
S

Q X

Δ
= ⋅

Δ
 (1) 

where t is time; Q(t) denotes system state at time t; X(t) represents system parameter affecting 
the system state at time t; SQ is sensitivity degree of state Q to parameter X; and ΔQ (t) and 
ΔX (t) denote increments of state Q and parameter X at time t, respectively. 
For the n state variables (Q1, Q2,…, Qn), the general sensitivity degree of a parameter at time 
t can be defined as follows: 

 
1

1
.

i

n

Q
i

S S
n =

= ∑  (2) 

Where n denotes a number of state variables; SQ is sensitivity degree of state Qi; and S is 

general sensitivity degree of the n states to the parameter X. 

If there are some departures from the model validity requirement standards, the SD model 

should be adjusted until fix to the standards. Then, SD model could be used in target system 

behavior simulation. 

3.3 SD model validity in simulating nonlinear feedback mechanism 

Although SD equations are linearity, they simulating in computer can describe nonlinear 

characteristics produced by multi-feedback when consider temporal dynamic affection. 
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Figure 4 is a piece of water resources subsystem delay feedback circle- water supply 
capacity building flow chart, which included two simple first-order delay feedbacks.  

plan time, Pt

water demand, Wd

delay flow,
Df(t)

delay time, Dt

water supply

capacity, Ws(t)

+

plan for transfer water

from other area, Wr(t)

+

water transfer project

building, Wbr(t)

-

——

�

---

 

Fig. 4. Water supply capacity flow chart 

Plan for transfer water from other area (Wr (t)) expression，in which had a first order delay, 

was shown as the basic divided differences formula: ( ) ( ( )) /Wr t Wd Ws t Pt= − . 

Due to delay time to implement from confirming water transfer scheme to water supply 
formation, water transfer project building (Wbr(t)) could be expressed as a simple first order 
mater delay function: ( ) ( ) /Wbr t Df t Dt= . 

As known, initialization of Df (t) is A m3, initialization of Ws (t) is B m3, Wd = C m3, Pt = a, 
Dt = b. According the above conditions can be established equations (3): 

 

0

0

( ) ( ( )) /

( ) ( ) /

C

a

b

( )| A

( )| B
t

t

Wr t Wd Ws t Pt

Wbr t Df t Dt

Wd

Pt

Dt

Df t

Ws t
=

=

= −⎧
⎪ =⎪
⎪ =
⎪

=⎨
⎪ =⎪
⎪ =
⎪ =⎩

 (3) 

Confluence rate was the derivative of the flow to time t. Hereby, it could be obtained the 
corresponding differential equations (4). 

 

       (4-1)

                      (4-2)

                    (4-3)

                                          (4-4)

'

'

( )1
( ) (C ( ))

a b
(0) A

( )
( )

b
(0) B

Df t
Df t Ws t

Df

Df t
W s t

Ws

⎧ = − −⎪
⎪

=⎪
⎨
⎪ =
⎪
⎪ =⎩

 (4) 
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By equations (4), it could be derived the expression of flow, and the following equation  
could be obtained by on both sides of equation (4-3) of equations (4) derivation. 

 
1

"( ) '( ) ( ) C
2

Ws t Ws t Ws t+ + =  (5) 

Solve equation (5), the curve of water supply capacity, the curve of the delay flow , the curve 
of the plan rate, and the curve of project building could be derivate. Thus the results is 
according follow three conditions. 
1.  Condition 1 

when 
a

b>
4

, 
2

1 4
0

b ab
− < , then 1,2

1 1 4b
1

2b 2b a
iλ = − ± −  

The solution of the equation (5) corresponding homogeneous equation is shown as: 

 
1

2b
( ) 1 2

1 4b 1 4b
( cos sin )

2b a 2b a

t

s tW e C t C t
−

= − + −  (6) 

Seeking the special solution of equation (5): 

 *
( )s tW C=  (7) 

According to equation (6) and (7), we can obtain the general solution of equation (5), which 
is shown as equation (8). 

 
1

2b
( ) 1 2

1 4b 1 4b
( cos sin

2b a 2b a

t

s tW e C t C t C
−

= − + − +  (8) 

Ws(0) =B will be into the equation (8). Then, 

1 CB C= + , 1 B CC = −  

From, 

 

1
' 2b

( ) 2

1

22b

1 1 4b 1 4b
((B C)cos 1 sin 1 )

2b 2b a 2b a

C B 4b 1 4b 4b 1 4b
( 1 sin 1 1 cos 1 )

2b a 2b a 2b a 2b a

t

s t

t

W e t C t

C
e t t

−

−

= − − − + −

−
+ − − + − −

 (9) 

(0) (0)

A
'

b
s fW D= =  is into the equation (9). Then, 

2

A 1 1 4b
(B C) 1

b 2b 2b a
C= − − + − ,

2

2A B C

4b
1

a

C
+ −

=
−

 

According to the above, the special solution of equation (5) is shown as the follow: 

 
1

2b
( )

1 4b 2A B C 1 4b
((B C)cos 1 sin 1 ) C

2b a 2b a4b
1

a

t

s tW e t t
− + −

= − − + − +
−

 (10) 

www.intechopen.com



 Nonlinear Dynamics 

 

332 

The equation (10) is the curve of the Water supply capacity. 

From: ( ) ( )'f t s tD bW= , then the curve of the delay flow can be obtained as equation (11): 

 
1

2b
( )

2b
A (B C)

1 4b 1 4ba(Acos 1 sin 1 )
2b a 2b a4b

1
a

t

f tD e t t
−

+ −
= − − −

−
 (11) 

The curve of plan for transfer water from other area can also be obtained as equation (12): 

 
1

2b
( )

1 4b 2A B C 1 4b
((B C)cos 1 sin 1 ) C

2b a 2b a4b
1

a

t

r tW e t t
− + −

= − − + − +
−

 (12) 

The curve of project building can also be obtained as equation (13): 

 
1

( ) 2b
( )

2b
A (B C)

A 1 4b 1 4ba( cos 1 sin 1 )
b b 2b a 2b a4b

b 1
a

tf t

br t

D
W e t t

−
+ −

= = − − −
−

 (13) 

2.  Condition 2 

When 
a

b
4

= ，
2

1 4
0

b ab
− = , Then: 1 2

1

2b
λ λ= = −  

The general solution of equation (5) is shown as the follow: 

 
1

2b
( ) 1 2( ) C

t

s tW e C C t
−

= + +  (14) 

Ws(0) =B will be into equation (14). Then, 

1B CC= + , 1 B CC = −  

From,  

 
1 1

2 2
( ) 2 2

1
' [(B-C) ]

2

t t
b b

s tW e C t C e
b

− −
= − + +  (15) 

(0)

(0)

A
'

f

s

D
W

b b
= =  will be into the equation (15). Then,  

2

A 1
(B C)

2
C

b b
= − − + ,  2

2A+B-C

2
C

b
=  

According to the above, the special solution of equation (5) is shown as the follow: 

 
1

2b
( )

2A B C
((B C) ) C

2b

t

s tW e t
− + −

= − + +  (16) 

The equation (16) is the curve of the water supply capacity. 
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From ( ) ( )b 'f t s tD W= , then 

 
1 1

2b 2b
( )

1 2A B C 2A B C
((B C) )

2 2b 2b

t t

f tD e t e
− −+ − + −

= − − + +  (17) 

 

The equation (17) is the curve of the delay flow. 
The curve of the water transfer rate can be obtained as (18) and the rate curve of Building 
water supply facilities can be obtained as (19). 

 
1

2b
( ) ( )

C-B 2A+B-C
(C ) / ( )

a 2ab

t

r t s tW W a e t
−

= − = −  (18) 

 
1 1

( ) 2b 2b
( ) 2

1 2A B C 2A B C
((B C) )

b 2b 2b 2b

t tf t

br t

D
W e t e

− −+ − + −
= = − − + +  (19) 

3.  Condition 3 

when 
a

b
4

< , 
2

1 4
0

b ab
− > , Then, 1,2

1 1 4b
1

2b 2b a
λ = − ± −  

  
1 1 4b 1 1 4b

( 1 ) ( 1 )
2b 2b a 2b 2b a

( ) 1 2 C
t t

s tW C e C e
− + − − − −

= + +  (20) 

Ws(0)=B will be into the equation (20). Then 

1 2 C BC C+ + = , 1 2B CC C= − −  

From 

 
1 1 4b 1 1 4b

( 1 ) ( 1 )
2b 2b a 2b 2b a

( ) 1 2

1 1 4b 1 1 4b
' ( 1 ) ( 1 )

2b 2b a 2b 2b a

t t

s tW C e C e
− + − − + −

= − + − + − + −  (21) 

( )

(0)

A
'

b b

f t

s

D
W = =  will be into the equation (21). Then 

 1 2

A 1 1 4b 1 1 4b
( 1 ) ( 1 )

b 2b 2b a 2b 2b a
C C= − + − + − − −  (23) 

Because 

1 2B CC C= − −  

 

So, 1

4b
( 1 1)(B C) 2A

a

4b
2 1

a

C
− + − +

=
−

,    2

4b
( 1 1)(B C) 2A

a

4b
2 1

a

C
− − − −

=
−

 

 

According to the above, the special solution of equation (5) is shown as the follow: 
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1 1 4b
( 1 )

2b 2b a
( )

1 1 4b
( 1 )

2b 2b a

4b
( 1 1)(B-C)+2A

a

4b
2 1-

a

4b
( 1 1)(B-C)+2A

a C
4b

2 1-
a

t

s t

t

W e

e

− + −

− + −

− +
=

− −
+ +

 (22) 

The equation (22) is the curve of the Water supply capacity. 

From ( ) ( )b 'f t s tD W= , then 

 
1 1 4b 1 1 4b

( 1- ) ( 1- )
2b 2b a 2b 2b a

( )

4b 4b 4b 4b
(C-B)+2A(-1+ 1- ) (C-B)+2A(1+ 1- )

a a a a

4b 4b
4 1- 4 1-

a a

t t

f tD e e
− + − −

= +  (23) 

The equation (23) is the curve of the delay flow. 
And the curve of the water transfer rate can be obtained as (24). 
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( )
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 (24)                          

The rate curve of Building water supply facilities can be obtained as (25). 

 

1 1 4b
( 1 )( ) 2b 2b a

( )

1 1 4b
( 1 )

2b 2b a

4b 4b
(C B)+2A( 1+ 1 )

a a
b 4b

4b 1
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4b 4b
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4b
4b 1

a

tf t

br t

t

D
W e

e

− + −
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− − −
= =

−

− −
+
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 (25) 

From above deduction, we can know that although SD equations are linearity, they 
simulating in computer can describe nonlinear characteristics produced by multi-feedback 
when consider temporal dynamic affection. 

4. Decision-making system based on SD-MOP integrated model for urban 
water resources demand forecasting and planning 

From above analysis, we can know that urban water resources demand forecasting is the 
key procedure of urban water system management. In different scenarios, the forecasting 
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outcomes may be different, which result in different corresponding planning. From above 
deduction, we can also get the conclusion that SD model can be applying to simulate 
nonlinear and complex system behavior though the basic equations are linear and simple. 
Hence, we introduce a decision-making system which core in SD-MOP integrated model for 
urban water resources demand forecasting and planning. The procedure of applying SD-
MOP integrated model as Fig.5.  
 

 

Fig. 5. The procedure of SD-MOP integrated model applying 

In SD-MOP integrated model, SD is used for water resources system dynamics nonlinear 
behavior simulation, and MOP is used for optimal policy choice and optimal design 
forming.  

4.1 Setting up SD model  

The first step of  SD-MOP applying is constructing SD model based on information 
collection system analysis.  The procedures of constructing SD model are the follows: 
1. identify the boundary of SD model; 
2. classify sub-systems of urban water system; 
3. determine the set of  main level variables; 
4. analysis the realtions of system parameters and variable; 
5. design the flow diagram; 
6. determine the basic value of parameters by mathmatic forecasting method both in 

statistical method and experience according to current and historical imformation of the 
target system; 

7. set up basic mathmatic equations which consist of SD model; 
8. test SD model validity and adjust it accoding testing results until it can be used in 

realistic system simulation. 
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4.2 Analyzing IPV 

Analyzing the sensitivity by sensitivity test and original run (run in the condition which the 
system keep current behavior and tendency without any policy adjustment), the sensible 
parameters and the closed relating variables can be identified, which are named as IPV 
(Important  Parameter and Variable). 
IPV aggregation includes controllable factors and non-controllable two types. Non-control 
lable factors can become system development neck, while adapting controllable factors  in 
suitable way could exploit urban development. 

4.3 Setting up MOP model 

Running the SD model based on the current situations (called original run). The gap 
between the original run results and ideal level of the system can be identified. In order to 
obtain optimal programme design and adjust the system function and behavior, MOP 
model cored in IPV is set up. In the MOP model the controllable factors of IPV become 
decison variables and non-controllable factors of IPV become constrains,  while some level 
variable which closely related to IPV become maximum or minimum aim. 
General format of MOP model as follow: 

 max ( ) /k kf x ∀  (26) 

 s.t. ( ) ,i i ig x b≤ ∀  (27) 

 0,j jx x x≥ ∈  (28) 

Where, x is decision variable (a set of real number in a closed boundary limit and is the 
value of IPV or value of variable that are related to IPV),  equation (26) is objective function,  
(27) and (28) are the limiting conditions. 

4.4 Setting up assistant model to solve MOP 

Applying ODTL (Objective Deviation Tolerance Level)  method (Zhou, 1998) to solve MOP 
model. Here, there is some different from Zhou in interview process. First, we determin 
each goal  ODTL by interview with stakeholder based on giving them original run results 
and the ideal goals. Second, the decision is not finished in one time, but in several times 
based on showing them the former scenarios SD model simulation results which 
corresponding to their choice of each goals ODTL, and the stake holders can adjust there 
decision by comparing and discussing the former results. Finally, the optimal IPV can be 
determined by several adjust assistant model, solve MOP, simulation corresponding system 
tendency, and compare and selecte the desirable scenario. 

4.5 Planning 

Based on the optimum values of IPV, the proposals for running the model can be designed. 

Accordingly the final plan proposal can be formulated. 

5. Case study 

Applying SD-MOP integrated model in a real urban system to test its validity [Zhang 2010].  
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The boundary of the target system is the urban area of Qinhuangdao, which is  a city of 

Hebei province, located at latitude 39°22′-40°37′N and longitude 118°33′-119°51′E, and 

covers an area of 7,812 km2. Qinhuangdao has jurisdiction over three districts (Shanhaiguan, 

Beidahe, and Haibin) and four countries (Lulong, Qinglong, Funing, and Changli). The 

annual rainfall in Qinhuangdao is about 670mm, with the water resource per capita in 

Qinhuangdao is 600m3/a, which is 1/4 the average level in China. The system is composed 

of population subsystem, industry subsystem, services subsystem, water supply subsystem 

and water environmental protection subsystem. The planned period is 15 years (2006 - 

2020). It is divided into two phases, i.e., 2006-2010 and 2010 - 2020. The base year is 2000. 

5.1. Constructing SD model 

Based on the analysis of the target system, SD model of Qinhuangdao (QHDWSD) can be 

constructed, and thus the sensibility of the model can also be tested.  There are more than 

110 variables in SD model, in which there are more than 110 system dynamic equations. Fig. 

6 is the flow chart of QHDWSD. 
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Fig. 6. QHDSD diagram 
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5.2 Identifying IPV 

Based on original running and putting eight variables and fourteen parameters into 

sensitivity analysis, IPV were identified. Those are: Increase rate of second industrial GDP, 

per second industrial GDP water consumption, Per capita plow land water consumption. 

5.3 Setting up and solving MOP model 

In the original simulation, when GDP getting in the aim scale’ water resource supply and 

demand balance index (water available supply to human social and economic activities 

divided by water demand human social and economic activities) will be lower than 0.6 in 

2020 (Fig. 2). The consequence will be that people active’s water  consumption invade and 

occupy eco-environmental share and lead to water ecosystem quality degradation and water 

resource sustainable supply capability decrease. According above analysis, the key issue is 

the structure of the economic, thus MOP model is setting up as follow. 

 
3

1
1

Z ( ) max i
i

X X
=

= ∑  (29) 

 
3

2
1

Z ( ) min qi i
i

X X
=

= ⋅∑  (30) 

 
3

1

q Qi i
i

X
=

⋅ ≤∑  (31) 

 
3

1

Ymin /( ) Ymaxi i i i
i

X X
=

≤ ≤∑  (32) 

 0iX ≥  (33) 

where: Xi=GDP of three industry (108￥); qi=per GDP water consumption of three industry 

(t/108￥); Q=water resource amount could be supplied to human economic activities (t);  

Ymini= the lower bound of three industry proportion in total GDP; Ymaxi= the higher 

bound of three industry proportion in total GDP.  Then set up assitant model and solved it 

based on interaction with stakeholders who consists of the staff of water resources bureau, 

the staff of the environmental protection agency, the staff of regional development and 

reform Commission the staff of related bureaus, the staff of water supply and wastewater 

treatment firms, delegates of the three industries, and representatives from the public.  

5.4 Obtaining relative optimal programme 

According IPV solution, the optimal design could be obtained and the corresponding water 

resources plan of Qinhuangdao city was formulated. Table 1 shows the comparison of 

different industry ratio in the total gross domestic production (GDP) respectively between 

optimal solutions and original tendency. The comparison results of the water supply-

demand balance, GDP, population scale and water pollution index between the feasible 

programme simulations with the original simulation as Fig. 7.  

www.intechopen.com



A Nonlinear Dynamics Approach for Urban Water Resources Demand Forecasting and Planning  

 

339 

 

 

year item 
Primary industry

(%) 

Secondary 
industry 

(%) 

Tertiary industry 
(%) 

optimal designs 62 356 457.5 
2010 

original tendency 65 370 440.5 

optimal designs 102 1220 1397.2 
2020 

original tendency 107 1256 1357.2 

 

Table 1. Industrial structure (different industry ratio in GDP) 
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Fig. 7. Main level variable comparing between optimal design and original tendency 
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In Fig. 7, sub Fig-a is for gross domestic production, sub Fig-b is for total population scale, 

sub Fig-c is for water pollution index (WPI-the ratio of simulating year water contamination 

discharge to base year water contamination discharge ) contamination, and sub Fig-d is for 

water resources supply-demand balance index (WRSDBI-the ratio of water supply quantity 

to water demand quantity). 

Fig. 7 and table 1 indicate that through adjusting system structure can realize water 

sustainable utilization while not decreasing the speed of economic development. The water 

resource strategy plan is based on nonlinear dynamics forecasting approach for water 

resource demand.  

5.5 Nonlinear dynamics approach validity test in practice 

Follow is an example of Qinhuangdao water resource plan of 2000 to 2005.  And it was 

researched by our group during 1998 to 2000. In the plan, we used two methods, nonlinear 

method and trend extending method, to forecast urban water resources demand.  Fig. 8 

shows the comparative errors for forecasting data and actual data between SD nonlinear 

method and trend extending method.  From Fig. 8, we can know that nonlinear forecasting 

is more accurate with can give support to water resources plan. 
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Fig. 8. The comparative analysis results 

6. Conclusion 

From above study, we can get the conclusion : (i) complex system analysis and nonlinear 

dynamics simulation are very useful for urban water resource demand forecasting and 

planning, (ii) the integrated model of SD-MOP can avoid the randomness of proposal 

designed by experiences of planners and decision-makers, which results in the generated 

planning proposal has high reliability. 
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